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The next-to-leading term of the renormalized stress-energy tensor of the quantized massive field with an

arbitrary curvature coupling in the spacetime of the Schwarzschild black hole is constructed. It is achieved

by functional differentiation of the DeWitt-Schwinger effective action involving coincidence limit of the

Hadamard-Minakshisundaram-DeWitt-Seely coefficients a3 and a4. It is shown, by comparison with the

existing numerical results, that inclusion of the second-order term leads to substantial improvement of the

approximation of the exact stress-energy tensor even in the closest vicinity of the event horizon. The back

reaction of the quantized field upon the Schwarzschild black hole is briefly discussed.
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I. INTRODUCTION

If the Compton length, �c ¼ @=mc, associated with a
quantized massive field is much smaller than a character-
istic radius of curvature, L, (where the latter means, as
usual, any length scale of the background geometry) then
the nonlocal contribution to the renormalized effective
action, WR, can be neglected and its series expansion in
m�2 can be constructed using the DeWitt-Schwinger
method. Since in the renormalization prescription one
has to absorb the first three terms of the expansion into
the classical action of the quadratic gravity with the cos-
mological term, the lowest nonvanishing term of the WR is
to be constructed from the (integrated) coincidence limit of
the fourth Hadamard-Minakshisundaram-DeWitt-Seely
coefficient, [a3], whereas the next-to-leading term is con-
structed form [a4]. Generally one has

WR ¼ 1

32�2

X1
n¼3

ðn� 3Þ!
ðm2Þn�2

Z
d4x

ffiffiffi
g

p ½an�: (1)

For the technical details of this approach the reader is
referred, for example, to Refs. [1,2] and the references
cited therein.

It is a well known fact that the complexity of [an]
increases rapidly with n making calculations of the coef-
ficients for n > 2 a highly nontrivial task. It is expected
therefore that the applicability of the series (1), truncated at
some definite n, will be limited to the simplest geometries
with symmetries. On the other hand, however, as the co-
efficients depend on the background geometry, and, possi-
bly, on a ‘‘potential’’ term, they can be used to construct the
renormalized stress-energy tensor, Tb

a , by functional dif-
ferentiation ofWR with respect to the metric. Such a tensor
can be defined in a wide class of geometries, and, by
construction, it gives a unique opportunity to study the
back reaction on the metric in a self-consistent way. Of

course, the results of such calculations should be inter-
preted with care as the particle creation, which is a non-
local process, is ignored.
The coefficient [a2] has been calculated by DeWitt [3]

whereas [a3] has been obtained by Sakai and Gilkey [4,5];
the fifth coefficient [a4] has been calculated in Refs. [6–8].
The results for [a4] are rather hard to compare as there are
various simplification strategies that can be employed, and,
unfortunately, some of the results contain not only typo-
graphical errors. Moreover, a compact or even tricky no-
tation is of little help in situations when the main task is to
calculate the stress-energy tensor in a specific spacetime.
Therefore, in order to construct the approximation to the
renormalized stress-energy tensor we have independently
calculated [a4] for a massive scalar field with an arbitrary
curvature coupling satisfying the equation

ð�hþ �Rþm2Þ� ¼ 0; (2)

where � is the parameter describing the curvature coupling
and R is the curvature scalar, using the fully covariant
method of DeWitt [3] and checked the calculations con-
structing [a4] in the Riemann normal coordinates [9]. The
thus calculated coefficients have been compared among
themselves and with their known values in concrete ge-
ometries. For example, when specialized to n ¼ 4 the
coefficient [a4] precisely reproduces the coefficient ob-
tained from Dowker’s general formula for [an] in the
de Sitter (dS) spacetime [10]

½a4�dS ¼ � 6

ð4a2Þ4
X4
k¼0

jð22k�1 � 1ÞB2kj
k!ð4� kÞ! ¼ � 1

105a8
; (3)

where B2k are Bernoulli numbers and a is the radius of the
curvature. It is zero in the optical version of the Nariai
metric, as expected. Moreover, as an additional partial
check, we have also calculated the basic ingredient of the
DeWitt method [h5�] in two different ways, where the
biscalar �ðx; x0Þ is half the square of the geodetic distance
between points x and x0. Subsequently, making use of the
standard formula
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Tab ¼ 2ffiffiffi
g

p �WR

�gab
; (4)

we have constructed the next-to-leading (i.e., m�4) term of
the renormalized stress-energy tensor in a general space-
time. To the best of our knowledge it is the first attempt to
go beyond the first order (i.e., m�2) in the calculations of
this type.

There are several reasons of carrying out the second-
order calculations (besides natural curiosity as this is a
practically unexplored region of the quantum field theory
in curved background). First, it should be emphasized that
although the m�2 expansion is used, it does not mean that
the second-order term is negligible. Indeed, it may com-
prise a considerable fraction of the first-order term, lead-
ing, as we shall show in this paper, to improvement of the
approximation. Further, the higher order terms may dra-
matically change the type of the solutions of the semiclas-
sical Einstein field equations. An interesting example in
this regard is given by the Bertotti-Robinson geometry. It
can be shown that although the Bertotti-Robinson geome-
try is a self-consistent solution of the semiclassical
Einstein field equations with the source term given solely
by the leading term of the renormalized stress-energy
tensor [11] it does not remain so when the next-to-leading
term is taken into account. Finally, let us observe that the
coincidence limits of anðx; x0Þ appear naturally in the for-
mulas for the field fluctuation in both the massive and
massless case.

The DeWitt method is easily programmable, and the
number of terms that appear at intermediate stages of
calculations can be reduced significantly by a carefully
chosen simplification strategy. On the other hand, the
calculations carried out in the Riemann normal coordinates
are extremely fast [12]. The calculations of the coefficient
[a4] and its functional derivatives with respect to the metric
tensor have been carried out with the aid of FORM [13] and
its multithread version TFORM [14].

The thus obtained approximate stress-energy tensor can
be applied in any spacetime provided the temporal changes
of the geometry are small and �c=L � 1. The effective
action approach that we employ in this paper requires the
metric to be positively defined. Consequently, the stress-
energy tensor can be obtained by analytic continuation of
its Euclidean counterpart at the final stage of calculations.

The first-order (i.e., m�2) approximation to the renor-
malized stress-energy tensor of the massive scalar, spinor,
and vector field in the general spacetime has been con-
structed in Refs. [15,16]. These results generalize the
analogous results obtained earlier by Frolov and
Zel’nikov [2,17,18] for the vacuum type-D metrics as
well as the analytic approximation obtained by
Anderson, Hiscock, and Samuel for the massive scalar
field in a general static and spherically-symmetric geome-
tries [19]; see also Popov’s paper [20]. The Anderson,
Hiscock, and Samuel approximation is equivalent to the

Schwinger-DeWitt expansion; to obtain the lowest (i.e.,
m�2) terms, one has to use the sixth-order WKB expansion
of the mode functions.
The range of applicability of such a stress-energy tensor

is dictated by the limitations of the validity of the renor-
malized effective action. Numerical calculations reported
in Refs. [19,21] confirm that the Schwinger-DeWitt
method provides a good approximation of the renormal-
ized stress-energy tensor of the massive scalar field with an
arbitrary curvature coupling as long as the mass of the field
remains sufficiently large.
The stress-energy tensors constructed in

Refs. [15,16,19] have been applied in a number of physi-
cally interesting cases, such as various black holes
[15,16,21–24], their interiors [25], and wormholes [26].
In this paper, we shall calculate the renormalized stress-
energy tensor of the massive scalar field (in a large mass
limit) with an arbitrary curvature coupling in the geometry
of the Schwarzschild black hole up to m�4 terms and
explicitly demonstrate that inclusion of the next-to-leading
term leads to substantial improvement of the approxima-
tion. That means that the second-order term is not negli-
gible and should be included in any serious calculations.
We shall also analyze the back reaction problem and briefly
study the quantum-corrected Schwarzschild black hole.
Throughout the paper a natural system of units is adopted,
although in some formulas the constants @, c, and G have
been, for clarity, restored.

II. THE STRESS-ENERGY TENSOR

Now let us return to Eq. (1) and retain only the first two
terms. The approximate stress-energy tensor constructed
from the coefficients [a3] and [a4] is, therefore, given by

Tab ¼ 1

32�2m2

2ffiffiffi
g

p �

�gab

Z
d4x

ffiffiffi
g

p ½a3� þ 1

32�2m4

2ffiffiffi
g

p

� �

�gab

Z
d4x

ffiffiffi
g

p ½a4� � Tð1Þ
ab þ Tð2Þ

ab : (5)

Since the coefficients [a3] and [a4] are, respectively, the
operators of dimension six and eight constructed from the
Riemann tensor, its covariant derivatives up to some pre-
scribed order and contractions, the result of the functional
differentiation of the effective action with respect to the
metric tensor is rather complicated. Moreover, one expects
that any attempt to employ the thus obtained results for a
concrete line element would be, computationally, a real
challenge [27]. For example, for a general static and
spherically-symmetric geometry described by a line ele-
ment of the form

ds2 ¼ �fðrÞdt2 þ hðrÞdr2 þ r2ðd�2 þ sin2�d�2Þ; (6)

the expression describing the next-to-leading term of the
stress-energy tensor, when fully expanded, consists of 2582

primitive terms for Tð2tÞ
t , 2026 for Tð2Þr

r , and 2066 for Tð2Þ�
� .

This can be contrasted with the number of the primitive
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terms in the tensor Tð1Þb
a :615 for Tð1Þt

t , 463 for Tð1Þr
r , and 634

Tð1Þ�
� . Fortunately, the final result for a simple metric is, as

we shall see, quite simple. Here we shall confine ourselves
to the simplified case hðrÞ ¼ 1=fðrÞ, which, nevertheless,
covers numerous situations of physical interest.

The stress-energy tensor can be written in the form

Tð2Þb
a ¼ 1

32�2m4

X4
i¼0

T ðiÞb
a �i (7)

where

T ð0Þt
t ¼ 964f4

945r8
þ fð8Þf3

630
þ 17fð7Þf3

1080r
� 13fð6Þf3

7560r2
� 37fð5Þf3

1260r3
þ 1387fð4Þf3

6300r4
� 2683fð3Þf3

3150r5
þ 1

315r8
þ 7321f00f3

3150r6

� 20 449f0f3

4725r7
� fð4Þ2f2

504
þ 1

252
fð3Þfð5Þf2 þ 19f00fð6Þf2

1260
þ 17f0fð7Þf2

1260
þ fð3Þfð4Þf2

70r
þ 37f00fð5Þf2

420r
þ 19f0fð6Þf2

180r

� 103fð3Þ2f2

840r2
� 253f00fð4Þf2

1260r2
� 11f0fð5Þf2

126r2
þ fð6Þf2

210r2
þ 929f00fð3Þf2

6300r3
� 127f0fð4Þf2

6300r3
þ fð5Þf2

90r3
þ 176f002f2

315r4

þ 6473f0fð3Þf2

6300r4
� 2fð4Þf2

15r4
� 47f0f00f2

10r5
þ 22fð3Þf2

45r5
þ 5159f02f2

900r6
� 44f00f2

45r6
þ 44f0f2

45r7
� 13f2

15r8
þ 1

210
f002fð4Þf

� 1

105
f0fð3Þfð4Þfþ 1

35
f0f00fð5Þfþ 1

42
f02fð6Þf� f03fð3Þ

18r2
� 13f0fð3Þ2f

840r
þ f002fð3Þf

210r
þ 127f0f00fð4Þf

1260r
þ 19f02fð5Þf

140r

� 11f003f
140r2

� fð3Þ2f
360r2

� 229f0f00fð3Þf
420r2

� 149f02fð4Þf
630r2

þ f00fð4Þf
180r2

þ f0fð5Þf
60r2

þ 2573f0f002f
6300r3

þ 577f02fð3Þf
2100r3

þ f0fð4Þf
45r3

� 19f002f
90r4

þ 5993f02f00f
6300r4

� 37f0fð3Þf
90r4

þ fð4Þf
225r4

� 1361f03f
700r5

þ 17f0f00f
10r5

� fð3Þf
450r5

� 103f02f
60r6

� 113f00f
450r6

þ 259f0f
225r7

� 148f

945r8
� f004

1680
� f02fð3Þ2

420
þ 1

420
f0f002fð3Þ þ f03fð5Þ

210
þ f0f003

630r
� f02f00fð3Þ

315r
þ f03fð4Þ

63r
þ f003

945r2
� 37f02f002

1260r2

� f0f00fð3Þ

315r2
þ f02fð4Þ

210r2
þ 23f03f00

225r3
þ 3f04

175r4
� f002

900r4
� 4f02f00

45r4
þ f0fð3Þ

450r4
þ 4f03

15r5
� f0f00

225r5
� 26f02

225r6
þ 8f0

945r7
(8)

T ð1Þt
t ¼ � 100f4

21r8
� fð8Þf3

70
� fð7Þf3

7r
þ 2fð6Þf3

45r2
þ 71fð5Þf3

210r3
� 1709fð4Þf3

630r4
þ 351fð3Þf3

35r5
� 7517f00f3

315r6
þ 1586f0f3

45r7
� 26f3

3r8

þ 23fð4Þ2f2

840
� 3

140
fð3Þfð5Þf2 � 11

84
f00fð6Þf2 � 17

140
f0fð7Þf2 þ 127fð3Þfð4Þf2

420r
� 697f00fð5Þf2

1260r
� 563f0fð6Þf2

630r

þ 77fð3Þ2f2

45r2
þ 3583f00fð4Þf2

1260r2
þ 823f0fð5Þf2

630r2
� 23fð6Þf2

315r2
� 25f00fð3Þf2

9r3
� 79f0fð4Þf2

315r3
� fð5Þf2

6r3
� 4183f002f2

630r4

� 778f0fð3Þf2

63r4
þ 35fð4Þf2

18r4
þ 2029f0f00f2

35r5
� 20fð3Þf2

3r5
� 4527f02f2

70r6
þ 28f00f2

3r6
þ 4f0f2

r7
þ 496f2

45r8
þ 1

42
f00fð3Þ2f

� 11

420
f002fð4Þf� 101

420
f0f00fð5Þf� 3

14
f02fð6Þfþ 137f0fð3Þ2f

252r
þ 13f002fð3Þf

90r
� 41f0f00fð4Þf

210r
� 317f02fð5Þf

315r

þ 979f003f
1260r2

þ fð3Þ2f
20r2

þ 919f0f00fð3Þf
140r2

þ 283f02fð4Þf
90r2

� 7f00fð4Þf
90r2

� 23f0fð5Þf
90r2

� 443f0f002f
63r3

� 221f02fð3Þf
45r3

þ 5f00fð3Þf
18r3

� 2f0fð4Þf
9r3

þ 139f002f
45r4

� 604f02f00f
63r4

þ 539f0fð3Þf
90r4

� 4fð4Þf
45r4

þ 243f03f
10r5

� 1133f0f00f
45r5

þ fð3Þf
15r5

þ 1889f02f
90r6

þ 191f00f
45r6

� 278f0f
15r7

þ 766f

315r8
þ f004

210
þ f02fð3Þ2

40
� 2

105
f0f002fð3Þ þ 1

210
f02f00fð4Þ � 3f03fð5Þ

70
� 4f0f003

315r

þ 31f02f00fð3Þ

315r
� 5f03fð4Þ

63r
� 11f003

630r2
þ 347f02f002

1260r2
þ 787f03fð3Þ

1260r2
þ 11f0f00fð3Þ

210r2
� 23f02fð4Þ

315r2
� 53f03f00

35r3
þ f02fð3Þ

18r3

þ 137f04

1260r4
þ f002

45r4
þ 6f02f00

5r4
� 2f0fð3Þ

45r4
� 187f03

45r5
þ 4f0f00

45r5
þ 88f02

45r6
� 44f0

315r7
� 8

315r8
þ 13

105
f0fð3Þfð4Þf (9)
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T ð2Þt
t ¼ � 26f4

r8
þ fð8Þf3

30
þ fð7Þf3

3r
� 14fð6Þf3

45r2
� 11fð5Þf3

9r3
þ 487fð4Þf3

45r4
� 551fð3Þf3

15r5
þ 307f00f3

5r6
þ 754f3

9r8
� 29fð4Þ2f2

120

� 13

60
fð3Þfð5Þf2 þ 13

60
f00fð6Þf2 þ 17

60
f0fð7Þf2 � 202fð3Þfð4Þf2

45r
� 11f00fð5Þf2

15r
þ 149f0fð6Þf2

90r
� 1447fð3Þ2f2

180r2

� 1223f00fð4Þf2

90r2
� 589f0fð5Þf2

90r2
þ 17fð6Þf2

45r2
þ 173f00fð3Þf2

9r3
þ 44f0fð4Þf2

9r3
þ 37fð5Þf2

45r3
þ 362f002f2

15r4
þ 2081f0fð3Þf2

45r4

� 143fð4Þf2

15r4
� 706f0f00f2

3r5
þ 1328fð3Þf2

45r5
þ 3301f02f2

15r6
� 152f00f2

15r6
� 716f0f2

5r7
� 1864f2

45r8
� 1

10
f00fð3Þ2f

� 1

20
f002fð4Þf� f0fð3Þfð4Þfþ 1

2
f02fð6Þf� 91f0fð3Þ2f

20r
� 179f002fð3Þf

180r
� 229f0f00fð4Þf

45r
þ 38f02fð5Þf

45r
� 3f003f

4r2

� 9fð3Þ2f
20r2

� 649f0f00fð3Þf
30r2

� 596f02fð4Þf
45r2

þ 19f00fð4Þf
90r2

þ 119f0fð5Þf
90r2

þ 1367f0f002f
30r3

þ 1463f02fð3Þf
45r3

� 40f00fð3Þf
9r3

� 2f0fð4Þf
15r3

� 151f002f
10r4

þ 17f02f00f
r4

� 437f0fð3Þf
15r4

þ 32fð4Þf
45r4

� 1493f03f
15r5

þ 656f0f00f
5r5

� 1187f02f
15r6

� 409f00f
15r6

þ 1010f0f
9r7

� 742f

45r8
� f004

40
� f02fð3Þ2

8
þ 1

10
f0f002fð3Þ � 1

10
f02f00fð4Þ þ f03fð5Þ

10
þ f0f003

15r
� 67f02f00fð3Þ

90r
� 11f03fð4Þ

45r

þ 11f003

90r2
� 2f02f002

5r2
� 167f03fð3Þ

90r2
� 11f0f00fð3Þ

30r2
þ 17f02fð4Þ

45r2
þ 41f03f00

5r3
� 8f02fð3Þ

9r3
� 37f04

10r4
� 8f002

45r4
� 5f02f00

r4

þ 16f0fð3Þ

45r4
þ 212f03

9r5
þ 1

4
f0f00fð5Þf� 32f0f00

45r5
� 38f02

3r6
þ 44f0

45r7
þ 2

15r8
� 18f0f3

r7
� 7fð3Þf

9r5
(10)

T ð3Þt
t ¼ 932f4

9r8
þ 2fð6Þf3

3r2
þ 4fð5Þf3

3r3
� 44fð4Þf3

3r4
þ 124fð3Þf3

3r5
þ 12f00f3

r6
� 2632f0f3

9r7
� 1352f3

9r8
þ 2fð4Þ2f2

3
þ 1

3
f00fð6Þf2

þ 38fð3Þfð4Þf2

3r
þ 20f00fð5Þf2

3r
þ 4f0fð6Þf2

3r
þ 71fð3Þ2f2

6r2
þ 21f00fð4Þf2

r2
þ 11f0fð5Þf2

r2
� 2fð6Þf2

3r2
� 158f00fð3Þf2

3r3

� 56f0fð4Þf2

3r3
� 4fð5Þf2

3r3
� 82f002f2

3r4
� 166f0fð3Þf2

3r4
þ 52fð4Þf2

3r4
þ 1100f0f00f2

3r5
� 136fð3Þf2

3r5
� 226f02f2

r6
� 88f00f2

r6

þ 1744f0f2

3r7
� 32f2

3r8
� 1

3
f00fð3Þ2fþ 1

6
f002fð4Þfþ 8

3
f0fð3Þfð4Þfþ 7

6
f0f00fð5Þf� 11f002fð3Þf

3r
þ 16f0f00fð4Þf

r

þ 14f02fð5Þf
3r

� 113f003f
9r2

þ 13fð3Þ2f
6r2

� 28f0f00fð3Þf
3r2

þ 14f02fð4Þf
r2

þ f00fð4Þf
r2

� 7f0fð5Þf
3r2

� 124f0f002f
r3

� 88f02fð3Þf
r3

þ 70f00fð3Þf
3r3

þ 20f0fð4Þf
3r3

þ 80f002f
3r4

þ 176f02f00f
3r4

þ 154f0fð3Þf
3r4

� 8fð4Þf
3r4

þ 1378f03f
9r5

� 868f0f00f
3r5

þ 4fð3Þf
r5

þ 102f02f
r6

þ 76f00f
r6

� 856f0f
3r7

þ 520f

9r8
þ f004

12
þ f02fð3Þ2

4
� 1

3
f0f002fð3Þ þ 1

3
f02f00fð4Þ � 2f0f003

9r
þ 2f02f00fð3Þ

3r

þ 4f03fð4Þ

3r
� 4f003

9r2
� 8f02f002

3r2
� f03fð3Þ

r2
þ 4f0f00fð3Þ

3r2
� 2f02fð4Þ

3r2
� 52f03f00

3r3
þ 14f02fð3Þ

3r3
þ 169f04

9r4
þ 2f002

3r4

þ 16f02f00

3r4
� 4f0fð3Þ

3r4
� 532f03

9r5
þ 8f0f00

3r5
þ 36f02

r6
� 32f0

9r7
� 4

9r8
þ fð3Þfð5Þf2 þ 53f0fð3Þ2f

6r
(11)
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T ð4Þt
t ¼ 242f4

3r8
þ 704f3f0

3r7
� 72f3f00

r6
� 8f3fð3Þ

r5
þ 4f3fð4Þ

r4
� 728f3

3r8
þ 108f2f02

r6
� 244f2f0f00

r5
þ 18f2f0fð3Þ

r4
� 464f2f0

r7

þ 11f2f002

r4
þ 40f2f00fð3Þ

r3
þ 4f2f00fð4Þ

r2
þ 144f2f00

r6
þ 4f2fð3Þ2

r2
þ 16f2fð3Þ

r5
� 8f2fð4Þ

r4
þ 244f2

r8
� 272ff03

3r5

� 124ff02f00

r4
þ 72ff02fð3Þ

r3
þ 16ff02fð4Þ

r2
� 72ff02

r6
þ 108ff0f002

r3
þ 106ff0f00fð3Þ

r2
þ 8ff0f00fð4Þ

r
þ 248ff0f00

r5

þ 8ff0fð3Þ2

r
� 20ff0fð3Þ

r4
� 16ff0fð4Þ

r3
þ 224ff0

r7
þ 100ff003

3r2
þ 22ff002fð3Þ

r
þ ff002fð4Þ þ 2ff00fð3Þ2 � 40ff00fð3Þ

r3

� 4ff00fð4Þ

r2
� 72ff00

r6
� 4ffð3Þ2

r2
� 8ffð3Þ

r5
þ 4ffð4Þ

r4
� 248f

3r8
� 80f04

3r4
þ 8f03f00

r3
þ 176f03

3r5
þ 7f02f002

r2
þ 4f02f00fð3Þ

r

þ 4f02f00

r4
� 8f02fð3Þ

r3
� 36f02

r6
þ f0f003

3r
þ 1

2
f0f002fð3Þ þ 16f2f0fð4Þ

r3
� 2f0f00fð3Þ

r2
� 4f0f00

r5
þ 2f0fð3Þ

r4
þ 16f0

3r7
� f004

8

þ 2f003

3r2
� f002

r4
þ 2

3r8
þ 8f03fð3Þ

r2
� 10ff002

r4
(12)

T ð0Þr
r ¼ � 386f4

945r8
þ 23fð7Þf3

7560r
þ 37fð6Þf3

1512r2
� 37fð5Þf3

1260r3
� 103fð4Þf3

1260r4
þ 1121fð3Þf3

3150r5
� 3097f00f3

3150r6
þ 7823f0f3

4725r7
� fð4Þ2f2

2520

þ fð3Þfð5Þf2

1260
� f00fð6Þf2

1260
þ f0fð7Þf2

1260
þ fð3Þfð4Þf2

630r
þ f00fð5Þf2

84r
þ 29f0fð6Þf2

1260r
� fð3Þ2f2

168r2
þ 23f00fð4Þf2

252r2
þ 4f0fð5Þf2

45r2

� 183f00fð3Þf2

700r3
� 283f0fð4Þf2

1260r3
þ fð5Þf2

90r3
� 127f002f2

3150r4
þ 1441f0fð3Þf2

6300r4
þ 2fð4Þf2

45r4
þ 3937f0f00f2

3150r5
� 2fð3Þf2

9r5

� 1511f02f2

900r6
þ 4f00f2

9r6
� 4f0f2

9r7
þ f2

3r8
þ 1

210
f02fð6Þf� f0fð3Þ2f

360r
� f002fð3Þf

630r
þ f0f00fð4Þf

84r
þ 17f02fð5Þf

420r
þ 11f003f

1260r2

þ fð3Þ2f
840r2

� 13f0f00fð3Þf
1260r2

� f02fð4Þf
126r2

� f00fð4Þf
420r2

þ f0fð5Þf
420r2

� 1291f0f002f
6300r3

� 169f02fð3Þf
1260r3

þ f0fð4Þf
45r3

þ f002f
18r4

þ 1249f02f00f
2100r4

� f0fð3Þf
18r4

� 3289f03f
6300r5

� 41f0f00f
90r5

þ 7fð3Þf
450r5

þ 113f02f
180r6

þ 41f00f
450r6

� 73f0f
225r7

þ 68f

945r8
� f004

1680

� f02fð3Þ2

420
þ 1

420
f0f002fð3Þ þ f03fð5Þ

210
þ f0f003

630r
� f02f00fð3Þ

315r
þ f03fð4Þ

63r
þ f003

945r2
� 37f02f002

1260r2
� f03fð3Þ

18r2
� f0f00fð3Þ

315r2

þ f02fð4Þ

210r2
þ 23f03f00

225r3
þ 3f04

175r4
� f002

900r4
� 4f02f00

45r4
þ f0fð3Þ

450r4
þ 4f03

15r5
� f0f00

225r5
� 26f02

225r6
þ 8f0

945r7
þ 1

315r8
(13)
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T ð1Þr
r ¼ 40f4

21r8
� fð7Þf3

35r
� 8fð6Þf3

35r2
þ 71fð5Þf3

210r3
þ 191fð4Þf3

210r4
� 281fð3Þf3

63r5
þ 3277f00f3

315r6
� 134f0f3

9r7
þ 10f3

3r8
þ fð4Þ2f2

280

� 1

140
fð3Þfð5Þf2 þ 1

140
f00fð6Þf2 � 1

140
f0fð7Þf2 þ 41fð3Þfð4Þf2

1260r
� 109f00fð5Þf2

1260r
� 3f0fð6Þf2

14r
þ 118fð3Þ2f2

315r2

� 59f00fð4Þf2

140r2
� 437f0fð5Þf2

630r2
þ 1033f00fð3Þf2

315r3
þ 25f0fð4Þf2

9r3
� fð5Þf2

6r3
� 199f002f2

630r4
� 1234f0fð3Þf2

315r4
� 17fð4Þf2

30r4

� 1583f0f00f2

105r5
þ 152fð3Þf2

45r5
þ 4841f02f2

210r6
� 224f00f2

45r6
þ 44f0f2

45r7
� 188f2

45r8
� 1

420
f002fð4Þfþ 1

210
f0fð3Þfð4Þf

þ 1

420
f0f00fð5Þf� 3

70
f02fð6Þfþ 169f0fð3Þ2f

1260r
� f002fð3Þf

42r
� 11f0f00fð4Þf

630r
� 107f02fð5Þf

315r
� 71f003f

1260r2
� 23fð3Þ2f

1260r2

þ 187f0f00fð3Þf
252r2

þ 137f02fð4Þf
315r2

þ 23f00fð4Þf
630r2

� 23f0fð5Þf
630r2

þ 647f0f002f
315r3

þ 361f02fð3Þf
315r3

þ f00fð3Þf
18r3

� f0fð4Þf
3r3

� 23f002f
45r4

� 2738f02f00f
315r4

þ 107f0fð3Þf
90r4

þ 109f03f
14r5

þ 61f0f00f
9r5

� 13fð3Þf
45r5

� 71f02f
6r6

� 59f00f
45r6

þ 262f0f
45r7

� 326f

315r8

þ f004

210
þ f02fð3Þ2

40
� 2

105
f0f002fð3Þ þ 1

210
f02f00fð4Þ � 3f03fð5Þ

70
� 4f0f003

315r
þ 31f02f00fð3Þ

315r
� 5f03fð4Þ

63r
� 11f003

630r2

þ 347f02f002

1260r2
þ 787f03fð3Þ

1260r2
þ 11f0f00fð3Þ

210r2
� 23f02fð4Þ

315r2
� 53f03f00

35r3
þ f02fð3Þ

18r3
þ 137f04

1260r4
þ f002

45r4
þ 6f02f00

5r4
� 2f0fð3Þ

45r4

� 187f03

45r5
þ 4f0f00

45r5
þ 88f02

45r6
� 44f0

315r7
� 8

315r8
(14)

T ð2Þr
r ¼ 10f4

r8
þ fð7Þf3

15r
þ 8fð6Þf3

15r2
� 11fð5Þf3

9r3
� 137fð4Þf3

45r4
þ 281fð3Þf3

15r5
� 473f00f3

15r6
þ 314f0f3

15r7
� 290f3

9r8
� fð4Þ2f2

120

þ 1

60
fð3Þfð5Þf2 � 1

60
f00fð6Þf2 þ 1

60
f0fð7Þf2 � 7fð3Þfð4Þf2

15r
þ f0fð6Þf2

2r
� 553fð3Þ2f2

180r2
� 173f00fð4Þf2

90r2
þ 59f0fð5Þf2

90r2

� 611f00fð3Þf2

45r3
� 518f0fð4Þf2

45r3
þ 37fð5Þf2

45r3
þ 107f002f2

15r4
þ 1061f0fð3Þf2

45r4
þ 101fð4Þf2

45r4
þ 302f0f00f2

5r5
� 88fð3Þf2

5r5

� 1741f02f2

15r6
þ 76f00f2

5r6
þ 572f0f2

15r7
þ 692f2

45r8
þ 1

20
f002fð4Þf� 1

10
f0fð3Þfð4Þf� 1

20
f0f00fð5Þfþ 1

10
f02fð6Þf

� 211f0fð3Þ2f
180r

þ 73f002fð3Þf
180r

� 34f0f00fð4Þf
45r

þ 26f02fð5Þf
45r

þ 17f003f
60r2

þ 17fð3Þ2f
180r2

� 53f0f00fð3Þf
10r2

� 161f02fð4Þf
45r2

� 17f00fð4Þf
90r2

þ 17f0fð5Þf
90r2

� 109f0f002f
30r3

� 13f02fð3Þf
45r3

� 8f00fð3Þf
9r3

þ 74f0fð4Þf
45r3

� f002f
10r4

þ 703f02f00f
15r4

� 137f0fð3Þf
15r4

� 653f03f
15r5

� 524f0f00f
15r5

þ 31fð3Þf
15r5

þ 1231f02f
15r6

þ 101f00f
15r6

� 1838f0f
45r7

þ 302f

45r8
� f004

40
� f02fð3Þ2

8
þ 1

10
f0f002fð3Þ

� 1

10
f02f00fð4Þ þ f03fð5Þ

10
þ f0f003

15r
� 67f02f00fð3Þ

90r
� 11f03fð4Þ

45r
þ 11f003

90r2
� 2f02f002

5r2
� 167f03fð3Þ

90r2
� 11f0f00fð3Þ

30r2

þ 17f02fð4Þ

45r2
þ 41f03f00

5r3
� 8f02fð3Þ

9r3
� 37f04

10r4
� 8f002

45r4
� 5f02f00

r4
þ 16f0fð3Þ

45r4
þ 212f03

9r5
� 32f0f00

45r5
� 38f02

3r6
þ 44f0

45r7

þ 2

15r8
(15)
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T ð3Þr
r ¼ � 364f4

9r8
þ 824f3f0

9r7
þ 20f3f00

r6
� 28f3fð3Þ

r5
þ 8f3fð4Þ

3r4
þ 4f3fð5Þ

3r3
þ 520f3

9r8
þ 258f2f02

r6
� 268f2f0f00

3r5

� 166f2f0fð3Þ

3r4
þ 16f2f0fð4Þ

r3
þ 3f2f0fð5Þ

r2
� 656f2f0

3r7
� 82f2f002

3r4
þ 50f2f00fð3Þ

3r3
þ 9f2f00fð4Þ

r2
þ 2f2f00fð5Þ

3r

� 8f2f00

r6
þ 41f2fð3Þ2

6r2
þ 4f2fð3Þfð4Þ

3r
þ 104f2fð3Þ

3r5
� 8f2fð4Þ

3r4
� 4f2fð5Þ

3r3
þ 16f2

3r8
þ 1018ff03

9r5
� 328ff02f00

3r4

� 56ff02fð3Þ

3r3
þ 8ff02fð4Þ

r2
þ 2ff02fð5Þ

3r
� 246ff02

r6
� 20ff0f002

r3
þ 6ff0f00fð3Þ

r2
þ 8ff0f00fð4Þ

3r
þ 1

6
ff0f00fð5Þ

þ 212ff0f00

3r5
þ 17ff0fð3Þ2

6r
þ 1

3
ff0fð3Þfð4Þ þ 30ff0fð3Þ

r4
� 8ff0fð4Þ

3r3
� ff0fð5Þ

3r2
þ 392ff0

3r7
� 23ff003

9r2
� 5ff002fð3Þ

3r

� 1

6
ff002fð4Þ þ 32ff002

3r4
þ 14ff00fð3Þ

3r3
þ ff00fð4Þ

3r2
� 12ff00

r6
� ffð3Þ2

6r2
� 20ffð3Þ

3r5
� 200f

9r8
þ 169f04

9r4
� 52f03f00

3r3

� f03fð3Þ

r2
þ 4f03fð4Þ

3r
� 532f03

9r5
� 8f02f002

3r2
þ 2f02f00fð3Þ

3r
þ 1

3
f02f00fð4Þ þ 16f02f00

3r4
þ f02fð3Þ2

4
þ 14f02fð3Þ

3r3

� 2f02fð4Þ

3r2
þ 36f02

r6
� 2f0f003

9r
� 1

3
f0f002fð3Þ þ 4f0f00fð3Þ

3r2
þ 8f0f00

3r5
� 4f0fð3Þ

3r4
� 32f0

9r7
þ f004

12
� 4f003

9r2
þ 2f002

3r4
� 4

9r8

(16)

T ð4Þr
r ¼ � 94f4

3r8
� 448f3f0

3r7
þ 8f3fð3Þ

r5
þ 280f3

3r8
� 228f2f02

r6
þ 44f2f0f00

r5
þ 34f2f0fð3Þ

r4
þ 304f2f0

r7
þ 23f2f002

r4

þ 8f2f00fð3Þ

r3
� 16f2fð3Þ

r5
� 92f2

r8
� 368ff03

3r5
þ 92ff02f00

r4
þ 40ff02fð3Þ

r3
þ 264ff02

r6
þ 60ff0f002

r3
þ 18ff0f00fð3Þ

r2

� 40ff0f00

r5
� 36ff0fð3Þ

r4
� 160ff0

r7
þ 22ff003

3r2
þ 2ff002fð3Þ

r
� 22ff002

r4
� 8ff00fð3Þ

r3
þ 8ffð3Þ

r5
þ 88f

3r8
� 80f04

3r4

þ 8f03f00

r3
þ 8f03fð3Þ

r2
þ 176f03

3r5
þ 7f02f002

r2
þ 4f02f00fð3Þ

r
þ 4f02f00

r4
� 8f02fð3Þ

r3
� 36f02

r6
þ f0f003

3r
þ 1

2
f0f002fð3Þ

� 2f0f00fð3Þ

r2
� 4f0f00

r5
þ 2f0fð3Þ

r4
þ 16f0

3r7
� f004

8
þ 2f003

3r2
� f002

r4
þ 2

3r8
; (17)

and f0ðrÞ, f00ðrÞ, fðiÞðrÞ denote the first, second, and ith
derivative, respectively. To avoid proliferation of ex-
tremely long formulas we display only the time and radial
components of the stress-energy tensor as the angular
component can be calculated from rbT

b
a ¼ 0, which in

the case on hand gives

Tð2Þ�
� ¼ Tð2Þ�

� ¼ � 1

4

f0

f
ðTð2Þt

t � Tð2Þr
r Þ þ 1

2
Tð2Þr0
r rþ Tð2Þr

r :

(18)

Making use of the first-order approximation of the
stress-energy tensor in the Schwarzschild geometry, one
easily obtains [17]

Tð1Þt
t ¼ M2

32�2m2r8

��
16� 176M

5r

�
�� 19

21
þ 626M

315r

�
;

(19)

Tð1Þr
r ¼ M2

32�2m2r8

��
48M

5r
� 32

5

�
�� 22M

45r
þ 1

3

�
; (20)

and

Tð1Þ�
� ¼ Tð1Þ�

�

¼ M2

32�2m2r8

��
� 224M

5r
þ 96

5

�
�þ 734M

315r
� 1

�
;

(21)

where � ¼ �� 1=6.
Now, let us consider the second term of the Eq. (5). The

second-order calculations are, of course, more involved.
Fortunately, there are massive simplifications for the Ricci-
flat geometry and the final result in the Schwarzschild
geometry is quite simple. Tedious but routine calculations
give
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Tð2Þt
t ¼ M2

32�2m4r10

��
144� 752M

r
þ 6596M2

7r2

�
�

� 44

5
þ 22 664M

525r
� 27 166M2

525r2

�
; (22)

Tð2Þr
r ¼ M2

32�2m4r10

��
� 288

7
� 1164M2

7r2
þ 1208M

7r

�
�

þ 12

5
� 776M

75r
þ 5506M2

525r2

�
; (23)

and

Tð2Þ�
� ¼ Tð2Þ�

�

¼ M2

32�2m4r10

��
7760M2

7r2
� 6084M

7r
þ 1152

7

�
�

þ 1304M

25r
� 35 698M2

525r2
� 48

5

�
: (24)

The constructed tensor is covariantly conserved, regular
and it can easily by checked that at the event horizon one

has Tð2Þt
t ¼ Tð2Þr

r . Moreover, it should be noted that
although the general expression describing ½a4� involves
the terms up to �5, the final result is linear in �. Although,
generally speaking, there are no limitations placed on the
parameter �, two of its values are particularly appealing,
namely,� ¼ 0 and� ¼ �1=6which lead to the conformal
and minimal couplings, respectively.

In Figs. 1–3 the run of the (rescaled) components of the

stress-energy tensor Tð2bÞ
b as functions of z ¼ r=M for a

few exemplary values of the coupling parameter from the
range 0 � � � 1=6 is displayed. Although there are strong
dependence on �, some general features are common for

all the curves. Indeed, the Tð2Þt
t is negative at the event

horizon and remains so for z & 2:1 and attains a (positive)
maximum. Subsequently it decreases when r approaches a
(negative) minimum and falls to zero. Inspection of Fig. 2

shows that Tð2Þr
r is negative at the event horizon, ap-

proaches a (positive) maximum, and fall to zero as r !
1. Finally, the run of the angular component (Fig. 3) is

qualitatively similar to that of Tð2Þt
t . The behavior of the

stress-energy for more exotic values of the coupling pa-
rameter can easily be inferred from the general formulas
(22)–(24). Specifically, at the event horizon one has

Tð2Þt
t ¼ Tð2Þr

r ¼ 1

44 800�2m4ð2MÞ8 ð1250�� 53Þ (25)

2.2 2.4 2.6 2.8 3.0
z

1.5

1.0

0.5

0.5

λTt
2 t

FIG. 1. This graph shows the rescaled Tð2Þt
t [� ¼ ð8MÞ4�2m4]

component of the stress-energy tensor of the massive scalar field
as a function of z ¼ r=M plotted for a few exemplary values of
the coupling parameter �. Top to bottom (at the maximum) the
curves are plotted for � ¼ 0:2i ði ¼ 0; . . . ; 8Þ and for � ¼ 1=6.

2.5 3.0 3.5 4.0 4.5 5.0
z

0.06

0.04

0.02

λTr
2 r

FIG. 2. This graph shows the rescaled Tð2Þr
r [� ¼ ð8MÞ4�2m4]

component of the stress-energy tensor of the massive scalar field
as a function of z ¼ r=M plotted for a few exemplary values of
the coupling parameter �. Top to bottom (at the maximum) the
curves are plotted for � ¼ 0:2i ði ¼ 0; . . . ; 8Þ and for � ¼ 1=6.

2.2 2.4 2.6 2.8 3.0
z

3

2

1

λ T 2

FIG. 3. This graph shows the rescaled Tð2Þ�
� [� ¼ ð4MÞ8�2m4]

component of the stress-energy tensor of the massive scalar field
as a function of z ¼ r=M plotted for a few exemplary values of
the coupling parameter �. Top to bottom (at the maximum) the
curves are plotted for � ¼ 0:2i ði ¼ 0; . . . ; 8Þ and for � ¼ 1=6.
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and

Tð2Þ�
� ¼ 1

26 880�2m4ð2MÞ8 ð1500�� 109Þ: (26)

It is of interest to compare our approximation with the
results of numerical calculations carried out by Anderson,
Hiscock, and Samuel and reported in Ref. [19]. They
numerically calculated conformal C�

� and nonconformal

D�
� contribution to the total stress-energy tensor

T�
� ¼ C�

� þ ð�� 1
6ÞD�

� (27)

for mM ¼ 2, compared to the thus obtained result with the
approximation which is identical with the first-order tensor

(19)–(21) and explicitly demonstrated that the approxima-
tion is reasonable. On the other hand, inspection of Figs. 4
and 5 shows that inclusion of the next-to-leading term
substantially improves the approximation of the stress-
energy tensor even in the closest vicinity of the event
horizon. One expects that this approximation is even better
formM> 2. A lesson that follows from this demonstration
is that the next-to-leading term plays, or at least may play,
an important role in the calculations and it can be ignored
only after careful examination.
Thus far we have carried out our calculations using the

Planck units. It is of some interest to restore the constants
c, G, and @ in the final expressions describing the renor-
malized stress-energy tensor. Simple manipulations give

TðiÞb
a ¼ AðiÞ � fbðiÞaðzÞ; (28)

where Að1Þ ¼ G2
@
3M2=c5m2r8, Að2Þ ¼ G2

@
5M2=c7m4r10,

and fbðiÞaðzÞ are dimensionless functions of z ¼ GM=c2r.

Since the Schwinger-DeWitt approximation is local and
the geometry at the event horizon is regular, one expects
that the stress-energy tensor is also regular there. On the
other hand, the stress-energy tensor is regular in the physi-
cal sense if it is regular in a coordinate system which is well
behaved as r ! rþ. For example, the components of the
stress-energy tensor Tb

a in a freely falling frame, denoted
here as Tð0Þð0Þ, Tð0Þð1Þ, and Tð1Þð1Þ are

Tð0Þð0Þ ¼ 	2ðTr
r � Tt

tÞ
f

� Tr
r ; (29)

Tð1Þð1Þ ¼ 	2ðTr
r � Tt

tÞ
f

þ Tr
r ; (30)

Tð0Þð1Þ ¼ �	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � f

p ðTr
r � Tt

tÞ
f

; (31)

where 	 is the energy per unit mass along the geodesic and
fðrÞ ¼ �gttðrÞ. Inspection of Eqs. (29)–(31) shows that if
all components of Tb

a and ðTr
r � Tt

tÞ=f are finite on the
horizon the stress-energy tensor in a freely falling frame is
finite as well.
Now, simple calculations show that the difference be-

tween radial and time components of the stress-energy
factors

TðiÞt
t � TðiÞr

r ¼
�
1� 2M

r

�
FðiÞðrÞ (32)

where

Fð1ÞðrÞ ¼ M2

�2m2r8

�
7

10
�� 13

336

�
; (33)

0.2 0.4 0.6 0.8 1.0

r r

M

40

30

20

10

10

90 2 8M 4D

FIG. 5. The curves in this figure display the nonconformal part
of the stress-energy tensor, D�

�, for the massive scalar field with

mM ¼ 2 in the vicinity of the Schwarzschild black hole. From
top to bottom at the event horizon (rþ ¼ 2M) the curves
correspond to the improved approximation and to the first-order
approximation.

0.2 0.4 0.6 0.8 1.0

r r

M

0.5

1.0

1.5

2.0

90 2 8M 4C

FIG. 4. The curves in this figure display the conformal part of
the stress-energy tensor, C�

�, for the massive scalar field with

mM ¼ 2 in the vicinity of the Schwarzschild black hole. From
top to bottom at the event horizon (rþ ¼ 2M) the curves
correspond to the first-order approximation and the improved
approximation.
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Fð2ÞðrÞ ¼ M2

�2m4r10

��
81

14
� 485

28

M

r

�
�� 7

20
þ 1021

1050

M

r

�
;

(34)

i ¼ 1, 2, and, consequently, both tensors are regular in a
physical sense. Moreover, using our general formula de-
scribing the stress-energy tensor it can be shown that it
remains so in any static and spherically-symmetric
spacetime.

III. THE BACK REACTION PROBLEM

Having constructed the next-to-leading term of the re-
normalized stress-energy tensor which depends on a gen-
eral metric one can analyze the back reaction of the
quantized field upon the black hole geometry. It should
be emphasized once more that accepting the approxima-
tion (5) we ignore particle creation which is a nonlocal
effect. To simplify our discussion we shall assume that the
cosmological constant and the renormalized coupling pa-
rameters 
 and � in the quadratic part of the total action

Sq ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ð
CabcdC
abcd þ �R2Þ; (35)

where Cabcd is the Weyl tensor, identically vanish. The
semiclassical Einstein field equations have, therefore, a
standard form

Gb
a½g� ¼ 8�hTab½g�i; (36)

where hTab½g�i ¼ Oð@Þ is the renormalized stress-energy
tensor.

Since the total stress-energy tensor depends functionally
on a wide class of metrics, one can, in principle, construct
the self-consistent solution of the system (36). It should be
noted however, that since the general stress-energy tensor,

Tð2Þb
a , is constructed from ½a4� it contains the terms up to

eight derivatives of gab, and, consequently, there is a real
danger that the semiclassical equations may lead to physi-
cally unacceptable solutions [28]. Moreover, the tensor
hTb

a i is extremely complicated and it is natural that one is
forced to refer to some approximations. Here we shall treat
the right-hand side of the semiclassical Einstein field equa-
tions as perturbation. Restricting to the perturbative solu-
tions of the effective theory may be, therefore, the only one
way to obtain the (approximate) physical solutions.

For the quantized massless fields in the Schwarzschild
geometry the back reaction program has been initiated by
York [29]. Subsequently, it has been applied in numerous
papers [30–34], where various aspects of the back reaction
of the quantized fields upon the black hole geometry has
been studied using the first-order approximation to the
stress-energy tensor.

Now, let us introduce the dimensionless parameter "
[35] and make the substitution hTab½g�i ! "hTab½g�i.
Expanding the metric tensor as

gab ¼ gð0Þab þ "gð1Þab þOð"2Þ; (37)

inserting it into the semiclassical equations (36) and col-
lecting the terms with the like powers of the auxiliary
parameter, one obtains

Gb
a½gð0Þ� ¼ 0 (38)

and

Gb
a½gð1Þ� ¼ 8�ðTð1Þb

a ½gð0Þ� þ Tð2Þb
a ½gð0Þ�Þ; (39)

i.e., the modifications of the geometry caused by the stress-
energy tensor calculated in the corrected black hole space-

time, Tð1Þb
a ½gð1Þ�, are ignored as these additional terms

would be Oð@2Þ. In other words we are looking for Oð@Þ
corrections to the classical solution.
From Eqs. (19)–(24) one sees that the solution of the

back reaction problem reduces to elementary quadratures.
First, let us consider the issue of the integration constants
which appear in solutions of the differential equations. The
zeroth-order equations will yield two integration constants,
say, c1 and c2, which can be set to�1 andM, respectively.
Here M is a ‘‘bare’’ mass of the black hole and c1 can be

determined from the condition gð0Þtt g
ð0Þ
rr ¼ �1. On the other

hand, the integration constant C1 appearing in the compo-

nent gð1Þrr of the metric tensor can be absorbed in a process
of the finite renormalization of mass. Indeed, it can be
demonstrated that with the substitution

M ¼ M� 1
2"C1 (40)

the radial component of the metric tensor can be written as

g�1
rr ðrÞ ¼ 1� 2M

r
þ M2

5�m2r6
P ð1Þ

r ðrÞ þ M2

�m4r8
P ð2Þ

r ðrÞ
þOð"2Þ; (41)

where P ð1Þ
r ðrÞ and P ð2Þ

r ðrÞ are given, respectively, by

P ð1Þ
r ðrÞ ¼

�
22M
3r

� 4

�
�� 313M

756r
þ 19

84
(42)

and

P ð2Þ
r ðrÞ ¼ � 2833M

2100r
þ 11

35
þ 13 583M2

9450r2

�
�
36

7
þ 1649M2

63r2
� 47M

2r

�
�: (43)

Similarly, for gtt to Oð@Þ one has
gttðrÞ ¼ �g�1

rr ðrÞ expð2"c ðrÞÞ; (44)

where

c ðrÞ ¼ M2

�m2r6

�
7

15
�� 13

504

�
þ M2

�m4r8

�
2042M
4725r

� 7

40
�

�
485M
63r

� 81

28

�
�

�
þ C2: (45)
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The integration constantC2 can be fixed by demanding that
the time component of the metric tensor approaches its
Minkowskian value as r ! 1, that is equivalent to normal-
izing the time coordinate at infinity.

As before, it is of some interest to restore the physical

constants. Putting �M ¼ GM=c2, lPl ¼ ð@=Gc3Þ1=2, and
�c ¼ @=mc in Eq. (41) the radial component of the metric
tensor can schematically be written as

g�1
rr ¼ 1� 2zþ "

�M2�2
cl

2
Pl

r6
W1ðz;�Þ

þ "
�M2�4

cl
2
Pl

r8
W2ðz;�Þ; (46)

whereW1 andW2 are simple polynomials depending para-
metrically on � and their exact form can easily be inferred
from Eq. (46). A similar expression can be constructed for
gtt, and the result can be schematically written in the form

gtt ¼ �1þ 2zþ "
�M2�2

cl
2
Pl

r6
V1ðz;�Þ

þ "
�M2�4

cl
2
Pl

r8
V2ðz;�Þ; (47)

where Vi comprise another pair of simple polynomials.
The location of the event horizon of the quantum-

corrected Schwarzschild black hole is determined by the

equation gttðrþÞ ¼ 0. Putting rþ ¼ rð0Þþ þ "rð1Þþ one con-
cludes that rþ is given by

rþ ¼ 2 �Mþ �2
cl

2
Pl

480� �M3

�
�� 29

504

�
þ �4

cl
2
Pl

2016� �M5

�
17

1200
��

�
:

(48)

The Euclidean version of the line element (6) obtained with
the aid of the Wick rotation has no conical singularity
provided the ‘‘time’’ coordinate is periodic with a period
� given by

� ¼ lim
r!rþ

4�ðgttgrrÞ1=2
�
d

dr
gtt

��1
: (49)

For the quantum-corrected metric (41)–(45), the period is

� ¼ 8�M� "

30 240M3m2
� 11"

151 200M5m4
(50)

to the first order in ".
The surface gravity, �, which is proportional to the

temperature of the black hole can be calculated (for the
Lorentzian metric) from a simple relation

�2 ¼ � 1

2
ka;bk

a;b
jr¼rþ

¼ � 1

4
ðgttgrrÞ�1

�
dgtt
dr

�
2

jr¼rþ
;

(51)

where ka is a timelike Killing vector. The Hawking tem-
perature, TH ¼ �=2�, is, therefore, given by

TH ¼ 1

4�
ð�gttgrrÞ�1=2

��������
dgtt
dr

��������jr¼rþ
¼ 1

�

¼ 1

8�M
þ "

�2m2ð4MÞ5
�

1

1980
þ 11

9450M2m2

�
:

(52)

It should be noted that the temperature, TH, when ex-
pressed in terms of the total mass of the system as seen
by a distant observer, is independent of the coupling
constant.
On the other hand, one can express the results (41)–(45)

in terms of the horizon defined mass, MH ¼ rþ=2 which,
of course, differs from the total mass of the system as seen
by a distant observer. It can be achieved, for example, by
inverting Eq. (48) and the elementary manipulations give

M ¼ MH � "

960�m2M3
H

�
�� 29

504

�

� "

4032�m4M5
H

�
17

1200
� �

�
: (53)

Consequently, one can systematically substitute Eq. (53) in
Eqs. (41)–(45), expand and finally linearize the thus ob-
tained results.
Equally well, one can start with a slightly different

representation of the line element putting

gttðrÞ ¼ � expð2c ðrÞÞ
�
1� 2MðrÞ

r

�
;

grr ¼ 1� 2MðrÞ
r

(54)

expanding the functions MðrÞ and c ðrÞ into the power
series

MðrÞ ¼ Xk
i¼0

MiðrÞ"i (55)

c ðrÞ ¼ Xk
i¼1

c i"
i (56)

and retaining only the linear terms. Now, accepting the
boundary condition c 1ð1Þ ¼ 0, repeating the calculations
for the line element (54), with the integration constants
appearing in the solution for MðrÞ determined either from
M0ð1Þ ¼ M andM1ð1Þ ¼ 0 or fromM0ðrþÞ ¼ rþ=2 and
M1ðrþÞ ¼ 0, one can easily reconstruct all our previous
results.

IV. FINAL REMARKS

In this paper, we report our calculations of the next-to-
leading term of the renormalized stress-energy tensor of
the quantized massive scalar field in a large mass limit. To
achieve this, we have calculated the effective action con-
structed from the (integrated) coincidence limit of the
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coefficients a3ðx; x0Þ and a4ðx; x0Þ, and, subsequently, we
have calculated the approximate stress-energy tensor by
functional differentiation of the thus obtained action with
respect to the metric tensor. The obtained stress-energy
tensor can be employed in any spacetime provided the
condition �C=L � 1 holds. The general formulas describ-
ing the stress-energy tensor are extremely complex, but,
when applied to the Schwarzschild geometry, they yield
remarkably simple results, which is the main result of this
paper. We have compared our improved approximation
with the exact stress-energy tensor of the quantized mas-
sive scalar field withmM ¼ 2 constructed in Ref. [19]. Our
results show that inclusion of the next-to-leading term
leads to substantial improvement of the approximation.
Generally speaking, the contribution of the tensors
(8)–(17) is not negligible. Such a contribution can be
critical in numerous situations, such as near extreme

Reissner-Nordström black holes or the Bertotti-Robinson
geometry. The general stress-energy tensor has been used
in the analysis of the back reaction of the quantized field
upon the geometry of the Schwarzschild black hole.
We indicate a few possible directions of investigations.

First, it would be interesting to examine the vacuum po-
larization effects in more complex backgrounds, as for
example, the spacetime of the electrically charged black
holes with or without the cosmological constant. Further,
the numeric approach to the back reaction would certainly
strengthen our understanding of the problem. Finally, it
would be interesting to include corrections produced by
gravitons. In the Schwarzschild spacetime such corrections
decay as r�3 [36,37] and are expected to dominate at large
distances. This group of problems is actively investigated
and the results will be published elsewhere.
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