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Next-to-leading term of the renormalized stress-energy tensor of the quantized massive scalar
field in Schwarzschild spacetime. The back reaction
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The next-to-leading term of the renormalized stress-energy tensor of the quantized massive field with an
arbitrary curvature coupling in the spacetime of the Schwarzschild black hole is constructed. It is achieved
by functional differentiation of the DeWitt-Schwinger effective action involving coincidence limit of the
Hadamard-Minakshisundaram-DeWitt-Seely coefficients a3 and a,. It is shown, by comparison with the
existing numerical results, that inclusion of the second-order term leads to substantial improvement of the
approximation of the exact stress-energy tensor even in the closest vicinity of the event horizon. The back
reaction of the quantized field upon the Schwarzschild black hole is briefly discussed.
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I. INTRODUCTION

If the Compton length, A, = h/mc, associated with a
quantized massive field is much smaller than a character-
istic radius of curvature, L, (where the latter means, as
usual, any length scale of the background geometry) then
the nonlocal contribution to the renormalized effective
action, Wy, can be neglected and its series expansion in
m~2 can be constructed using the DeWitt-Schwinger
method. Since in the renormalization prescription one
has to absorb the first three terms of the expansion into
the classical action of the quadratic gravity with the cos-
mological term, the lowest nonvanishing term of the Wy, is
to be constructed from the (integrated) coincidence limit of
the fourth Hadamard-Minakshisundaram-DeWitt-Seely
coefficient, [a3], whereas the next-to-leading term is con-
structed form [ay]. Generally one has

WR = 1 ( 2),, 2 jd4x\/_[an] (1)

For the technical details of this approach the reader is
referred, for example, to Refs. [1,2] and the references
cited therein.

It is a well known fact that the complexity of [a,]
increases rapidly with n making calculations of the coef-
ficients for n > 2 a highly nontrivial task. It is expected
therefore that the applicability of the series (1), truncated at
some definite n, will be limited to the simplest geometries
with symmetries. On the other hand, however, as the co-
efficients depend on the background geometry, and, possi-
bly, on a “potential”” term, they can be used to construct the
renormalized stress-energy tensor, T, by functional dif-
ferentiation of W5 with respect to the metric. Such a tensor
can be defined in a wide class of geometries, and, by
construction, it gives a unique opportunity to study the
back reaction on the metric in a self-consistent way. Of
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course, the results of such calculations should be inter-
preted with care as the particle creation, which is a non-
local process, is ignored.

The coefficient [a,] has been calculated by DeWitt [3]
whereas [a3] has been obtained by Sakai and Gilkey [4,5];
the fifth coefficient [a4] has been calculated in Refs. [6-8].
The results for [a4] are rather hard to compare as there are
various simplification strategies that can be employed, and,
unfortunately, some of the results contain not only typo-
graphical errors. Moreover, a compact or even tricky no-
tation is of little help in situations when the main task is to
calculate the stress-energy tensor in a specific spacetime.
Therefore, in order to construct the approximation to the
renormalized stress-energy tensor we have independently
calculated [a4] for a massive scalar field with an arbitrary
curvature coupling satisfying the equation

(—O+ éR + m?)¢p =0, )

where ¢ is the parameter describing the curvature coupling
and R is the curvature scalar, using the fully covariant
method of DeWitt [3] and checked the calculations con-
structing [a4] in the Riemann normal coordinates [9]. The
thus calculated coefficients have been compared among
themselves and with their known values in concrete ge-
ometries. For example, when specialized to n =4 the
coefficient [a4] precisely reproduces the coefficient ob-
tained from Dowker’s general formula for [a,] in the
de Sitter (dS) spacetime [10]
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where B,; are Bernoulli numbers and a is the radius of the
curvature. It is zero in the optical version of the Nariai
metric, as expected. Moreover, as an additional partial
check, we have also calculated the basic ingredient of the
DeWitt method [[(’o] in two different ways, where the
biscalar o(x, x’) is half the square of the geodetic distance
between points x and x’. Subsequently, making use of the
standard formula

© 2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.79.084017

JERZY MATYJASEK AND DARIUSZ TRYNIECKI
par_ 2 OWi
\/E 6g ab

we have constructed the next-to-leading (i.e., m~*) term of
the renormalized stress-energy tensor in a general space-
time. To the best of our knowledge it is the first attempt to
go beyond the first order (i.e., m~2) in the calculations of
this type.

There are several reasons of carrying out the second-
order calculations (besides natural curiosity as this is a
practically unexplored region of the quantum field theory
in curved background). First, it should be emphasized that
although the m 2 expansion is used, it does not mean that
the second-order term is negligible. Indeed, it may com-
prise a considerable fraction of the first-order term, lead-
ing, as we shall show in this paper, to improvement of the
approximation. Further, the higher order terms may dra-
matically change the type of the solutions of the semiclas-
sical Einstein field equations. An interesting example in
this regard is given by the Bertotti-Robinson geometry. It
can be shown that although the Bertotti-Robinson geome-
try is a self-consistent solution of the semiclassical
Einstein field equations with the source term given solely
by the leading term of the renormalized stress-energy
tensor [11] it does not remain so when the next-to-leading
term is taken into account. Finally, let us observe that the
coincidence limits of a,(x, x') appear naturally in the for-
mulas for the field fluctuation in both the massive and
massless case.

The DeWitt method is easily programmable, and the
number of terms that appear at intermediate stages of
calculations can be reduced significantly by a carefully
chosen simplification strategy. On the other hand, the
calculations carried out in the Riemann normal coordinates
are extremely fast [12]. The calculations of the coefficient
[a4] and its functional derivatives with respect to the metric
tensor have been carried out with the aid of FORM [13] and
its multithread version TFORM [14].

The thus obtained approximate stress-energy tensor can
be applied in any spacetime provided the temporal changes
of the geometry are small and A./L < 1. The effective
action approach that we employ in this paper requires the
metric to be positively defined. Consequently, the stress-
energy tensor can be obtained by analytic continuation of
its Euclidean counterpart at the final stage of calculations.

The first-order (i.e., m~2) approximation to the renor-
malized stress-energy tensor of the massive scalar, spinor,
and vector field in the general spacetime has been con-
structed in Refs. [15,16]. These results generalize the
analogous results obtained earlier by Frolov and
Zel'nikov [2,17,18] for the vacuum type-D metrics as
well as the analytic approximation obtained by
Anderson, Hiscock, and Samuel for the massive scalar
field in a general static and spherically-symmetric geome-
tries [19]; see also Popov’s paper [20]. The Anderson,
Hiscock, and Samuel approximation is equivalent to the
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Schwinger-DeWitt expansion; to obtain the lowest (i.e.,
m~?) terms, one has to use the sixth-order WKB expansion
of the mode functions.

The range of applicability of such a stress-energy tensor
is dictated by the limitations of the validity of the renor-
malized effective action. Numerical calculations reported
in Refs. [19,21] confirm that the Schwinger-DeWitt
method provides a good approximation of the renormal-
ized stress-energy tensor of the massive scalar field with an
arbitrary curvature coupling as long as the mass of the field
remains sufficiently large.

The stress-energy tensors constructed in
Refs. [15,16,19] have been applied in a number of physi-
cally interesting cases, such as various black holes
[15,16,21-24], their interiors [25], and wormholes [26].
In this paper, we shall calculate the renormalized stress-
energy tensor of the massive scalar field (in a large mass
limit) with an arbitrary curvature coupling in the geometry
of the Schwarzschild black hole up to m™* terms and
explicitly demonstrate that inclusion of the next-to-leading
term leads to substantial improvement of the approxima-
tion. That means that the second-order term is not negli-
gible and should be included in any serious calculations.
We shall also analyze the back reaction problem and briefly
study the quantum-corrected Schwarzschild black hole.
Throughout the paper a natural system of units is adopted,
although in some formulas the constants %, ¢, and G have
been, for clarity, restored.

II. THE STRESS-ENERGY TENSOR

Now let us return to Eq. (1) and retain only the first two
terms. The approximate stress-energy tensor constructed
from the coefficients [a3] and [a4] is, therefore, given by

1 2 0 1 2
e 128 e 12
3272 m* \Jg 68ap xglas] 32mm* \fg
1)
X5 [ drfglag] =T + 72, 5)
ab

Since the coefficients [a3] and [ay4] are, respectively, the
operators of dimension six and eight constructed from the
Riemann tensor, its covariant derivatives up to some pre-
scribed order and contractions, the result of the functional
differentiation of the effective action with respect to the
metric tensor is rather complicated. Moreover, one expects
that any attempt to employ the thus obtained results for a
concrete line element would be, computationally, a real
challenge [27]. For example, for a general static and
spherically-symmetric geometry described by a line ele-
ment of the form

ds®> = —f(r)dt* + h(r)dr* + r*(d6* + sin>0d$?), (6)

the expression describing the next-to-leading term of the
stress-energy tensor, when fully expanded, consists of 2582
primitive terms for T,(Zt), 2026 for T ", and 2066 for Téz) .
This can be contrasted with the number of the primitive
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terms in the tensor Tgl)h:61 5 for Tt(l)’, 463 for Tﬁ D7 and 634 The stress-energy tensor can be written in the form
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and f'(r), f"(r), fO(r) denote the first, second, and ith W M? 4A8M 32 VM 1
LU . . . . B T,/ = - Zn-—=—+=| Q0
derivative, respectively. To avoid proliferation of ex 3 memr® 5r 5 45r 3
tremely long formulas we display only the time and radial
and

components of the stress-energy tensor as the angular
component can be calculated from V,T? = 0, which in
the case on hand gives

1f 1
7’ =13 =~ J%(sz)’ =T 4 ST+ T
(18)

Making use of the first-order approximation of the

stress-energy tensor in the Schwarzschild geometry, one
easily obtains [17]

M? 176 M 19 626M
(Dr _

7/'"=—16——— )y — —+ —|
! 3272 m? 8 [( S5r )77 21 315r]

19)

T = 74

M? [ ( 224M 96)
—_ +_

734M
= J,— —
3272 m? 8 S5r 5 jl’

315r
(21)

where n = £ — 1/6.

Now, let us consider the second term of the Eq. (5). The
second-order calculations are, of course, more involved.
Fortunately, there are massive simplifications for the Ricci-
flat geometry and the final result in the Schwarzschild
geometry is quite simple. Tedious but routine calculations
give
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M? 752M  6596M*
(2 _
T, = ——+——|(144 — +
! 327 mArl0 [( r 7r? )77

44 22664M 27 166M2] 22)
5 525r 52572
7O _ M? [(_@ _ 1164M? N 1208M)
: 327 m* 10 7 7r? Tr n
12 776M  5506M°
+ —— A 23
5 75r 525¢2 ] 23)
and
TR = 79
M? [ (776OM2 6084M 1 152)
= - +
3272 m*rt0 72 Tr 7
1304M  35698M2 48
+ - - — 24
25r 52572 5 ] 24

The constructed tensor is covariantly conserved, regular
and it can easily by checked that at the event horizon one

has Tl(z)' = Tﬁz)r. Moreover, it should be noted that
although the general expression describing [a4] involves
the terms up to &, the final result is linear in £. Although,
generally speaking, there are no limitations placed on the
parameter &, two of its values are particularly appealing,
namely, 7 = 0 and n = —1/6 which lead to the conformal
and minimal couplings, respectively.

In Figs. 1-3 the run of the (rescaled) components of the
stress-energy tensor Tl(fb) as functions of z = r/M for a
few exemplary values of the coupling parameter from the
range 0 = ¢ = 1/6is displayed. Although there are strong
dependence on ¢, some general features are common for

all the curves. Indeed, the T;z)’ is negative at the event

AT
0.5F

22 2.4 2.6 2.8 3.0

-0.5

—-1.5F

FIG. 1. This graph shows the rescaled T'?" [A = (8M)*72m*]
component of the stress-energy tensor of the massive scalar field
as a function of z = r/M plotted for a few exemplary values of
the coupling parameter £. Top to bottom (at the maximum) the
curves are plotted for € = 0.2i (i =0, ..., 8) and for & = 1/6.
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//LT(Z] r
¢
25 3.0 35 40 45 50 °
—0.02}
—0.04}
~0.06}

FIG. 2. This graph shows the rescaled Tﬁz)r [A = (8M)*m*m*]
component of the stress-energy tensor of the massive scalar field
as a function of z = r/M plotted for a few exemplary values of
the coupling parameter £. Top to bottom (at the maximum) the
curves are plotted for € = 0.2i (i =0, ...,8) and for £ = 1/6.

horizon and remains so for z =< 2.1 and attains a (positive)
maximum. Subsequently it decreases when r approaches a
(negative) minimum and falls to zero. Inspection of Fig. 2
shows that T is negative at the event horizon, ap-
proaches a (positive) maximum, and fall to zero as r —

oo, Finally, the run of the angular component (Fig. 3) is
qualitatively similar to that of T,(z)'. The behavior of the
stress-energy for more exotic values of the coupling pa-
rameter can easily be inferred from the general formulas
(22)—(24). Specifically, at the event horizon one has

1
Tt(Z)t = 7O = (1250m — 53)  (25)

44 8007 m*(2M)3

AT?

3.0

FIG. 3. This graph shows the rescaled T;,m [A = (4M)®m2m*
component of the stress-energy tensor of the massive scalar field
as a function of z = r/M plotted for a few exemplary values of
the coupling parameter £. Top to bottom (at the maximum) the
curves are plotted for £ = 0.2i (i =0, ..., 8) and for £ = 1/6.
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90r2(SMY*C§
207
15
Lot
05t
r—ry
0.2 TPEF——— 06 08 10 M

FIG. 4. The curves in this figure display the conformal part of
the stress-energy tensor, Cz, for the massive scalar field with
mM = 2 in the vicinity of the Schwarzschild black hole. From
top to bottom at the event horizon (r, = 2M) the curves
correspond to the first-order approximation and the improved
approximation.

and

1
TR? — 1500m — 109). 26
2 26880772m4(2M)8( K ) (26)

It is of interest to compare our approximation with the
results of numerical calculations carried out by Anderson,
Hiscock, and Samuel and reported in Ref. [19]. They
numerically calculated conformal C% and nonconformal
DY contribution to the total stress-energy tensor

T) = C§ + (¢ — D} 27

for mM = 2, compared to the thus obtained result with the
approximation which is identical with the first-order tensor

90r2(8M)*D})
101

r—ry
0.2 0.4 0.6 0.8 1.0 M

=20+

-30

—a0t

FIG. 5. The curves in this figure display the nonconformal part
of the stress-energy tensor, Dg, for the massive scalar field with
mM = 2 in the vicinity of the Schwarzschild black hole. From
top to bottom at the event horizon (r; =2M) the curves
correspond to the improved approximation and to the first-order
approximation.

PHYSICAL REVIEW D 79, 084017 (2009)

(19)—(21) and explicitly demonstrated that the approxima-
tion is reasonable. On the other hand, inspection of Figs. 4
and 5 shows that inclusion of the next-to-leading term
substantially improves the approximation of the stress-
energy tensor even in the closest vicinity of the event
horizon. One expects that this approximation is even better
for mM > 2. A lesson that follows from this demonstration
is that the next-to-leading term plays, or at least may play,
an important role in the calculations and it can be ignored
only after careful examination.

Thus far we have carried out our calculations using the
Planck units. It is of some interest to restore the constants
¢, G, and 7 in the final expressions describing the renor-
malized stress-energy tensor. Simple manipulations give

T = Ay X f2),), (28)

where Ay = G*IPM?/m?r, Ay = G*OM?/c"m*r'°,
and f{, (z) are dimensionless functions of z = GM/c?r.

Since the Schwinger-DeWitt approximation is local and
the geometry at the event horizon is regular, one expects
that the stress-energy tensor is also regular there. On the
other hand, the stress-energy tensor is regular in the physi-
cal sense if it is regular in a coordinate system which is well
behaved as r — r,. For example, the components of the
stress-energy tensor T? in a freely falling frame, denoted
here as T(O)(O)a T(O)(l)? and T(l)(l) are

YT, —T))

Toy0 = 7 - T (29)

YT, = TY)

Ty = — + 77, (30)

Wy — f(T7 - T))

Ty = — 7 , €19

where 7 is the energy per unit mass along the geodesic and
f(r) = —g,/(r). Inspection of Egs. (29)—(31) shows that if
all components of T2 and (77 — T?)/f are finite on the
horizon the stress-energy tensor in a freely falling frame is
finite as well.

Now, simple calculations show that the difference be-
tween radial and time components of the stress-energy
factors

; ; 2M\ .
T — 1" = (1 - —)F(’)(r) (32)
r
where
e M2 (7T 13
Fon = 2mA\10"7  336) (33)
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FO() — M? [(81 485 M) _ 7 1021 M]
D 2o \1a 28 7)) 20 T 1050 £t
(34)

i = 1, 2, and, consequently, both tensors are regular in a
physical sense. Moreover, using our general formula de-
scribing the stress-energy tensor it can be shown that it
remains so in any static and spherically-symmetric
spacetime.

II1. THE BACK REACTION PROBLEM

Having constructed the next-to-leading term of the re-
normalized stress-energy tensor which depends on a gen-
eral metric one can analyze the back reaction of the
quantized field upon the black hole geometry. It should
be emphasized once more that accepting the approxima-
tion (5) we ignore particle creation which is a nonlocal
effect. To simplify our discussion we shall assume that the
cosmological constant and the renormalized coupling pa-
rameters « and B in the quadratic part of the total action

Sq = fd4xv _g(acabcdcabal + BRZ)’ (35)

where C,,., is the Weyl tensor, identically vanish. The
semiclassical Einstein field equations have, therefore, a
standard form

Glbl[g] = 87T<Tab[g:|>’ (36)

where (T,,[g]) = O(h) is the renormalized stress-energy
tensor.

Since the total stress-energy tensor depends functionally
on a wide class of metrics, one can, in principle, construct
the self-consistent solution of the system (36). It should be
noted however, that since the general stress-energy tensor,

TP 'is constructed from [a4] it contains the terms up to
eight derivatives of g,;, and, consequently, there is a real
danger that the semiclassical equations may lead to physi-
cally unacceptable solutions [28]. Moreover, the tensor
(T?) is extremely complicated and it is natural that one is
forced to refer to some approximations. Here we shall treat
the right-hand side of the semiclassical Einstein field equa-
tions as perturbation. Restricting to the perturbative solu-
tions of the effective theory may be, therefore, the only one
way to obtain the (approximate) physical solutions.

For the quantized massless fields in the Schwarzschild
geometry the back reaction program has been initiated by
York [29]. Subsequently, it has been applied in numerous
papers [30-34], where various aspects of the back reaction
of the quantized fields upon the black hole geometry has
been studied using the first-order approximation to the
stress-energy tensor.

Now, let us introduce the dimensionless parameter &
[35] and make the substitution (T,,[gl) — (T[]
Expanding the metric tensor as

PHYSICAL REVIEW D 79, 084017 (2009)
gar = 89 + 8gl) + O(e?), 37)

inserting it into the semiclassical equations (36) and col-
lecting the terms with the like powers of the auxiliary
parameter, one obtains

Gi[g@]=0 (38)
and
GllgM] = 8m(T"[g0] + TV [¢©]),  (39)

i.e., the modifications of the geometry caused by the stress-
energy tensor calculated in the corrected black hole space-

time, Tf,l)b[g(l)], are ignored as these additional terms
would be O(#?). In other words we are looking for O(h)
corrections to the classical solution.

From Egs. (19)—(24) one sees that the solution of the
back reaction problem reduces to elementary quadratures.
First, let us consider the issue of the integration constants
which appear in solutions of the differential equations. The
zeroth-order equations will yield two integration constants,
say, ¢; and c,, which can be set to —1 and M, respectively.

Here M is a “bare’” mass of the black hole and ¢ can be
determined from the condition gg?)g(,(ﬂ) = —1. On the other
hand, the integration constant C; appearing in the compo-
nent g(rlr) of the metric tensor can be absorbed in a process
of the finite renormalization of mass. Indeed, it can be

demonstrated that with the substitution

M= M - 1eC, (40)
the radial component of the metric tensor can be written as
2M M? M?
g (N =1-"S4 =P+ — PP
r STm*r Tmer
+ 0(&?), (41)

where T(rl)(r) and fP(,z)(r) are given, respectively, by

2M 313M 19
Wy
Oy = (222 _4)p 2220 2 o
P ( 3 )’7 756r 8a 4P
and
2833 M 11 13583 M2
PA(r) = — S e hics el
(r) 2100r 35 945072
36 1649M2  47M
—(—+ - ) @)
7 63r 2r
Similarly, for g,, to O(f) one has
8u(r) = =g, (r)expe(r)), (44)
where
o) M2 (7 13)+ M2 [20423\/1
N — 713 - [2042M
2o \15 1 504) " mmiS L 4725r
7 485M 81
_ L (ERM 0 e 4
40 ( 63r 28)’7] C 45)
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The integration constant C, can be fixed by demanding that
the time component of the metric tensor approaches its
Minkowskian value as r — oo, that is equivalent to normal-
izing the time coordinate at infinity.

As before, it is of some interest to restore the physical
constants. Putting M = GM/c?, 1p; = (h/Gc*)V/?, and
A. = h/mc in Eq. (41) the radial component of the metric
tensor can schematically be written as

AL
g =1-2z+e¢ . PLw,(z:m)
M2
et Walzm), (46)

where W, and W, are simple polynomials depending para-
metrically on 7 and their exact form can easily be inferred
from Eq. (46). A similar expression can be constructed for
&> and the result can be schematically written in the form

_2)\212
gu =142+ e——HVi(zm)
M* 212
+e r; PLy,(z;m), (47)

where V; comprise another pair of simple polynomials.
The location of the event horizon of the quantum-

corrected Schwarzschild black hole is determined by the

equation g,(ry) = 0. Putting r, = r(fr)) + sr(l) one con-

cludes that . is given by
AL 17
Pl ( 77).

o+ Atk ( _29)+— A
ry = = - = -
i 4807 M? 7504 20167rM°\1200
(48)

The Euclidean version of the line element (6) obtained with
the aid of the Wick rotation has no conical singularity
provided the “time” coordinate is periodic with a period

BB given by

. d -1
B = }B}l 47T(gttgrr)l/2(agtt) . (49)

For the quantum-corrected metric (41)—(45), the period is

_ e B 1le
30240 M3m? 151200 M3 m*

to the first order in &.

The surface gravity, «, which is proportional to the
temperature of the black hole can be calculated (for the
Lorentzian metric) from a simple relation

oo
2

B =87M (50)

_ 1 dgu\?
asb = —_ -1 i
K ka;bk lr=r, 4(gttgrr) (dr) |r=r+’
(51

where k¢ is a timelike Killing vector. The Hawking tem-
perature, Ty; = «/21r, is, therefore, given by

PHYSICAL REVIEW D 79, 084017 (2009)
1

|lr=r, ﬁ

48
dr

-1/2

1
Ty = 4_(_gttgrr)
T

1 € 1 11
= + + :
87M  wrm*(4M)’ (1980 9450.’]\/12m2)
(52)

It should be noted that the temperature, T, when ex-
pressed in terms of the total mass of the system as seen
by a distant observer, is independent of the coupling
constant.

On the other hand, one can express the results (41)—(45)
in terms of the horizon defined mass, My = r. /2 which,
of course, differs from the total mass of the system as seen
by a distant observer. It can be achieved, for example, by
inverting Eq. (48) and the elementary manipulations give

€ 29
M=My—— (-2
H ™ 960mm M3, (7’ 504)
e 17
- — ) 53
40327m* M3, (1200 ") (53)

Consequently, one can systematically substitute Eq. (53) in
Eqgs. (41)-(45), expand and finally linearize the thus ob-
tained results.

Equally well, one can start with a slightly different
representation of the line element putting

() = —expu)(1 - 217)
g =1- M0 (54)

expanding the functions M(r) and (r) into the power
series

k
M(r) =Y M(r)e (55)
i=0
k .
P(r) = ;& (56)
i=1

and retaining only the linear terms. Now, accepting the
boundary condition ¢, (c0) = 0, repeating the calculations
for the line element (54), with the integration constants
appearing in the solution for M(r) determined either from
My(0) = M and M (o0) = 0 or from My(r,) = r, /2 and
M,(r;) = 0, one can easily reconstruct all our previous
results.

IV. FINAL REMARKS

In this paper, we report our calculations of the next-to-
leading term of the renormalized stress-energy tensor of
the quantized massive scalar field in a large mass limit. To
achieve this, we have calculated the effective action con-
structed from the (integrated) coincidence limit of the
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coefficients as(x, x') and a4(x, x), and, subsequently, we
have calculated the approximate stress-energy tensor by
functional differentiation of the thus obtained action with
respect to the metric tensor. The obtained stress-energy
tensor can be employed in any spacetime provided the
condition Ar/L < 1 holds. The general formulas describ-
ing the stress-energy tensor are extremely complex, but,
when applied to the Schwarzschild geometry, they yield
remarkably simple results, which is the main result of this
paper. We have compared our improved approximation
with the exact stress-energy tensor of the quantized mas-
sive scalar field with mM = 2 constructed in Ref. [19]. Our
results show that inclusion of the next-to-leading term
leads to substantial improvement of the approximation.
Generally speaking, the contribution of the tensors
(8)—(17) is not negligible. Such a contribution can be
critical in numerous situations, such as near extreme

PHYSICAL REVIEW D 79, 084017 (2009)

Reissner-Nordstrom black holes or the Bertotti-Robinson
geometry. The general stress-energy tensor has been used
in the analysis of the back reaction of the quantized field
upon the geometry of the Schwarzschild black hole.

We indicate a few possible directions of investigations.
First, it would be interesting to examine the vacuum po-
larization effects in more complex backgrounds, as for
example, the spacetime of the electrically charged black
holes with or without the cosmological constant. Further,
the numeric approach to the back reaction would certainly
strengthen our understanding of the problem. Finally, it
would be interesting to include corrections produced by
gravitons. In the Schwarzschild spacetime such corrections
decay as 3 [36,37] and are expected to dominate at large
distances. This group of problems is actively investigated
and the results will be published elsewhere.

[1] A.O. Barvinsky and G. A. Vilkovisky, Phys. Rep. 119, 1
(1985).
[2] V.P. Frolov and A.I. Zel’nikov, Phys. Rev. D 29, 1057
(1984).
[3] B.S. DeWitt, Dynamical Theory of Groups and Fields
(Gordon and Breach, New York, 1965).
[4] T. Sakai, Tohoku Math. J. 23, 589 (1971).
[5] P.B. Gilkey, J. Diff. Geom. 10, 601 (1975).
[6] I.G. Avramidi, Theor. Math. Phys. 79, 494 (1989).
[71 P. Amsterdamski, A.L. Berkin, and D.J. O’Connor,
Classical Quantum Gravity 6, 1981 (1989).
[8] A.E.M. van de Ven, Classical Quantum Gravity 15, 2311
(1998).
[9] L. Parker, in Recent Developments in Gravitation
(Cargese, 1978) (Academic Press, New York, 1979).
[10] M. Brown, Classical Quantum Gravity 2, 535 (1985).
[11] L.A. Kofman and V. Sahni, Phys. Lett. 127B, 197 (1983).
[12] It takes a few minutes to calculate [a4] and construct the
stress-energy tensor using the covariant in the DeWitt
method. The analogous calculations in the Riemann nor-
mal coordinates can easily be executed within 1 min.
[13] J. A.M. Vermaseren, arXiv:math-ph/0010025.
[14] M. Tentyukov and J.A.M. Vermaseren, arXiv:hep-ph/
0702279.
[15] J. Matyjasek, Phys. Rev. D 61, 124019 (2000).
[16] J. Matyjasek, Phys. Rev. D 63, 084004 (2001).
[17] V.P. Frolov and A.l. Zel’nikov, Phys. Lett. 115B, 372
(1982).
[18] V.P. Frolov and A.I. Zel’'nikov, Phys. Lett. 123B, 197
(1983).
[19] P.R. Anderson, W. A. Hiscock, and D. A. Samuel, Phys.
Rev. D 51, 4337 (1995).

[20] A.A. Popov, Phys. Rev. D 67, 044021 (2003).

[21] B.E. Taylor, W. A. Hiscock, and P.R. Anderson, Phys.
Rev. D 61, 084021 (2000).

[22] W. Berej and J. Matyjasek, Phys. Rev. D 66, 024022
(2002).

[23] J. Matyjasek, Phys. Rev. D 74, 104030 (2006).

[24] J. Matyjasek, Phys. Rev. D 76, 084003 (2007).

[25] W.A. Hiscock, S.L. Larson, and P.R. Anderson, Phys.
Rev. D 56, 3571 (1997).

[26] B.E. Taylor, W.A. Hiscock, and P.R. Anderson, Phys.
Rev. D 55, 6116 (1997).

[27] The total time needed to calculate components of the
stress-energy tensor for a general, static, and spherically-
symmetric line element was 15 hours.

[28] L. Parker and J.Z. Simon, Phys. Rev. D 47, 1339 (1993).

[29] J.W. York, Phys. Rev. D 31, 775 (1985).

[30] C.O. Lousto and N.G. Sanchez, Phys. Lett. B 212, 411
(1988).

[31] D. Hochberg, T. W. Kephart, and J. W. York, Phys. Rev. D
48, 479 (1993).

[32] D. Hochberg and T. W. Kephart, Phys. Rev. D 47, 1465
(1993).

[33] D. Hochberg, T. W. Kephart, and J. W. York, Phys. Rev. D
49, 5257 (1994).

[34] P.R. Anderson, W.A. Hiscock, J. Whitesell, and J. W.
York, Phys. Rev. D 50, 6427 (1994).

[35] C.M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers. (Springer-Verlag,
New York, 1999).

[36] J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994).

[37] D.A.R. Dalvit and F. D. Mazzitelli, Phys. Rev. D 50, 1001
(1994).

084017-12



