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In this paper we develop a technique for determining the algebraic classification of a numerically

generated spacetime, possibly resulting from a generic black-hole-binary merger, using the Newman-

Penrose Weyl scalars. We demonstrate these techniques for a test case involving a close binary with

arbitrarily oriented spins and unequal masses. We find that, postmerger, the spacetime quickly approaches

Petrov type II, and only approaches type D on much longer time scales. These techniques, in combination

with techniques for evaluating acceleration and Newman-Unti-Tamburino parameters, allow us to begin to

explore the validity of the ‘‘no-hair theorem’’ for generic merging-black-hole spacetimes.
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I. INTRODUCTION

The recent breakthroughs in numerical relativity [1–3]
that allowed for stable evolutions of black-hole-binary
spacetimes led to many advancements in our understand-
ing of black-hole physics, and it is now possible to accu-
rately simulate the merger process and examine its effects
in this highly nonlinear regime [4–18]. Black-hole binaries
radiate between 2% and 8% of their total mass and up to
40% of their angular momenta in the last few orbits,
depending on the magnitude and direction of the spin
components, during the merger [4–6] (ultrarelativistic
head-on black-hole mergers can radiate up to �14% of
their mass [19]). In addition, the radiation of net linear
momentum by a black-hole binary leads to the recoil of the
final remnant hole [20–43], which can have astrophysically
observable important effects [20,42,42,44–53] and repre-
sents a possible strong-field test of general relativity (GR).

In addition to important astrophysical applications, the
two-body problem in GR is intrinsically interesting be-
cause it provides the framework for analyzing the behavior
of the theory in the highly nonlinear, highly dynamical,
nonsymmetrical regime. For example, the cosmic censor-
ship hypothesis, that states that singularities in the universe
should be cloaked by a horizon, is under active investiga-
tion [4–6,54,55]. In this paper we are interested in verify-
ing the ‘‘no-hair theorem,’’ which states that all black holes
eventually relax into a state that can be described by three
parameters: the mass, spin, and charge. Hence, the final
merger remnants from astrophysical multi-black-hole
mergers [56,57] should be Kerr black holes [58].

The problem of determining the geometry of the final
stage of a black-hole binary merger arises as a practical
question in perturbative techniques, such as in the Lazarus
approach [59,60], which used a combined numerical and
perturbative approach to simulate the waveforms from a
binary merger. In the context of the Lazarus approach, it is
crucial to determine when the transition from numerical to
perturbative evolutions is possible, i.e. when the full nu-

merical simulation could be approximated by (relatively
small) perturbations of a Kerr-rotating black hole, and a
diagnostic, the S invariant [61]

S ¼ 27J2=I3; (1)

that is identically 1 for a Kerr spacetime, was developed to
measure the closeness of the spacetime to an algebraically
special type II. However, the S invariant by itself is not
sufficient to demonstrate that the spacetime is near Kerr
because it does not distinguish between type II and type D
spacetimes, nor does it imply that the acceleration and
Newman-Unti-Tamburino (NUT) parameters vanish.
More recently, with the availability of new long term

evolutions, one of the consistency tests performed is the
agreement of the total angular momentum of the remnant
system when computed in three different ways: by mea-
suring the angular momentum (and mass) of the remnant
black hole [5,6,22] using the isolated horizon formulas
[62], by measuring the total energy and angular momentum
radiated [63,64] and subtracting it from the total initial
values, and by looking at the quasinormal frequencies of
the late-time waveforms and associate them with those of a
rotating Kerr hole with massM and angular momentum per
mass a [23]. The rough agreement of those values repre-
sents indirect evidence that the final black hole is of the
Kerr type. Furthermore, in Ref. [65], where the authors of
that paper presented very-high-accuracy waveforms from
the merger of an equal-mass black-hole binary, it was
shown that the minimum and maximum values of the
scalar curvature on the remnant horizon agreed with the
Kerr values.
No-hair theorems assume a stationary Killing vector

[58] as characterizations of the Kerr geometry [66,67].
While one can classify spacetimes based on their symme-
try properties, here we will use a classification method
based on the algebraic properties of generic spacetimes
without a priori assumptions about symmetries.
Demonstrating that the remnant of a black-hole merger

approaches Kerr asymptotically (in time) would also help
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answer open questions about the stability of Kerr under
arbitrary perturbations. The stability of the Kerr spacetime
under linear perturbations has only been proven mode by
mode [68], and the interior of the hole may even be
unstable [69]. Hence a study of the invariant geometrical
properties of the black-hole merger, which would yield a
highly nontrivial perturbation of the ‘‘Kerr’’ background,
may answer many open questions.

II. MATHEMATICAL TECHNIQUES

In the following sections we will use the convention that
Latin indices range over the spatial coordinates [i.e. a ¼
ð1; 2; 3Þ] and Greek indices range over all four coordinates.

A. Petrov type

The Petrov classification of a generic spacetime is re-
lated to the number of distinct principal null directions
(PNDs) of the Weyl tensor. A generic spacetime will have
four linearly independent null vectors k� (i.e. PNDs) at all
points that satisfy

k�k�k½�C����½�k�� ¼ 0: (2)

Type I spacetimes have four distinct PNDs, type II have
three distinct PNDs (one pair of identical PNDs and two
distinct PNDs), type III have two distinct PNDs with one
PND of multiplicity three, type D spacetimes have two
distinct PNDs consisting of two pairs of PNDs of multi-
plicity two, type N spacetimes have a single PND of multi-
plicity four, and type O spacetimes have C���� ¼ 0.

If the tetrad is chosen such that la is a PND, then the
Weyl scalar c 0 ¼ C����l

�m�l�m� vanishes, and simi-

larly, if c 0 ¼ 0, then la is a PND. Hence the algebraic
classification of the spacetime can be obtained by finding
the number of distinct choices of la for which c 0 ¼ 0. This
amounts to finding the roots (and multiplicity of the roots)
of the quartic equation [see Ref. [70], Eq. (9.5)]

c 0 þ 4�c 1 þ 6�2c 2 þ 4�3c 3 þ �4c 4 ¼ 0; (3)

where c 0; . . . ; c 4 are the Weyl scalars in an arbitrary
tetrad, restricted only by the condition c 4 � 0. This is
equivalent to finding a tetrad rotation such that c 0 ¼ 0,
and if the root is repeated, then in this tetrad, c 1 ¼ 0
(similarly if the multiplicity of the root is 3 or 4, then c 2 ¼
0 and c 3 ¼ 0, respectively). If, as in type D spacetimes,
there are two pairs of repeated PNDs, then we can choose a
tetrad where the only nonvanishing Weyl scalar is c 2. It is
important to note that the algebraic classification is done
pointwise. A spacetime, as a whole, is of a particular type,
if at every point the algebraic classification is of that type.

In order to determine if the numerical spacetime is
algebraically special (within the numerical errors) we fol-
low [70,71], Chap. 4. We start by defining the scalar
invariants [72]

I ¼ 1
2
~C�	
�

~C�	
� and J ¼ �1
6
~C�	
�

~C
�
��

~C���	;

(4)

where ~C�	
� ¼ 1
4 ðC�	
� þ i

2 ��	��C
��


�Þ (i.e. 1=2 the

conjugate of the self-dual part of the Weyl tensor C�	
�).

If a spacetime has repeated principal null directions, it is
algebraically special. If this is the case, Eq. (3) has at least
two repeated roots. In any case, Eq. (3) can be transformed
into a depressed quartic [see Eq. (9) below] that, in turn,
can be converted into a depressed nested cubic with roots y,
which satisfy the condition

y3 � Iyþ 2J ¼ 0: (5)

Algebraic specialty then implies

I3 ¼ 27J2; (6)

i.e. S ¼ 1 in Eq. (1). For types II and D the invariants I and
J are nontrivial, while for types III, N, and O they vanish
identically.
For practical applications, it is convenient to write the

invariants in terms of Weyl scalars in an arbitrary null
tetrad

I ¼ 3c 2
2 � 4c 1c 3 þ c 4c 0; (7)

J ¼ �c 3
2 þ c 0c 4c 2 þ 2c 1c 3c 2 � c 4c

2
1 � c 0c

2
3:

(8)

In order to completely determine the algebraic type we
reduce Eq. (3), by changing to the variable x ¼ �c 4 þ c 3

[73], to the form

x4 þ 6Lx2 þ 4Kxþ N ¼ 0; (9)

where

K ¼ c 1c
2
4 � 3c 4c 3c 2 þ 2c 3

3; (10)

L ¼ c 2c 4 � c 2
3; (11)

N ¼ c 2
4I� 3L2

¼ c 4
3c 0 � 4c 4

2c 1c 3 þ 6c 4c 2c 3
2 � 3c 3

4 (12)

(note the typo in the definition of N in Refs. [70,71]). For a
type II spacetime, K � 0 and N � 9L2 � 0, while for
type D and III spacetimes, K ¼ 0 and N � 9L2 ¼ 0 with
N � 0. For a type N spacetime, K ¼ 0 and L ¼ 0 (hence
N ¼ 0).
Note that the above scalar objects are not invariant under

arbitrary tetrad rotations [see Ref. [74], Chap. 1, Eqs. (342)
[note typo there], (346) and (347)]. Tetrad rotations are
classified as type I, II, and III, and have the form

l� ! l�; n� ! n� þ �am� þ a �m� þ a �al�;

m� ! m� þ al�; �m� ! �m� þ �al�;
(13)
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l� ! l� þ �bm� þ b �m� þ b �bn�; n� ! n�;

m� ! m� þ bn�; �m� ! �m� þ �bn�;
(14)

l� ! A�1l�; n� ! An�;

m� ! eim�; �m� ! e�i �m�;
(15)

for type I, II, and III, respectively, where a and b are
complex scalars and A and  are real scalars. Under these
rotations the scalars L, K, and N transform as

L ! A2e�2IL; K ! A3e�3IK; N ! A4e�4IN

(16)

for type III rotations and

L ! L; K ! K; N ! N (17)

for type II rotations. Expressions for type I rotations do not
have these simple forms, but we verified that, if as in type D
solutions, K ¼ 0 and N � 9L2 ¼ 0 in the original tetrad,
then K ¼ 0 and N � 9L2 ¼ 0 in the new rotated tetrad
(this is also obvious for type III and II transformations
above). On the other hand, L ¼ 0 is not preserved by type I
rotations.

Coming back to the roots x1, x2, x3, and x4 of Eq. (9), we
observe that, in numerically generated spacetimes, the
roots never agree exactly, even if the metric is expected
to be of a special algebraic type. Of course, the root
differences in each pair should scale with resolution and
asymptotically approach zero as h ! 0 and t ! 1 (where
h is the grid spacing).

The roots of Eq. (3) can be obtained from the roots of
Eq. (5) using the following algorithm [75]:

D ¼ J2 � ðI=3Þ3;
A ¼ ð�J þ ffiffiffiffi

D
p Þ1=3;

B ¼ ð�J � ffiffiffiffi
D

p Þ1=3;
y1 ¼ Aþ B;

y2 ¼ � 1

2
ðAþ BÞ þ i

ffiffiffi
3

p
2

ðA� BÞ;

y3 ¼ � 1

2
ðAþ BÞ � i

ffiffiffi
3

p
2

ðA� BÞ;

(18)

where the complex phases of A and B are chosen such that
AB ¼ I=3. The roots of Eq. (9) are then obtained from the
roots of the complete cubic equation for the variable z
(where z ¼ 2c 4y� 4L)

z3 þ 12Lz2 þ 4ð9L2 � NÞz� 16K ¼ 0; (19)

which has the roots

z1 ¼ 2c 4y1 � 4L; z2 ¼ 2c 4y2 � 4L;

z3 ¼ 2c 4y3 � 4L:
(20)

Finally the roots of our original equation (3) can be written

in the form [73]

�1 ¼ ½�c 3 þ 1
2ð

ffiffiffiffiffi
z1

p þ ffiffiffiffiffi
z2

p þ ffiffiffiffiffi
z3

p Þ�=c 4;

�2 ¼ ½�c 3 þ 1
2ð

ffiffiffiffiffi
z1

p � ffiffiffiffiffi
z2

p � ffiffiffiffiffi
z3

p Þ�=c 4;

�3 ¼ ½�c 3 þ 1
2ð�

ffiffiffiffiffi
z1

p þ ffiffiffiffiffi
z2

p � ffiffiffiffiffi
z3

p Þ�=c 4;

�4 ¼ ½�c 3 þ 1
2ð�

ffiffiffiffiffi
z1

p � ffiffiffiffiffi
z2

p þ ffiffiffiffiffi
z3

p Þ�=c 4;

(21)

where the signs of the
ffiffiffiffi
zi

p
are chosen such that

ð ffiffiffiffiffi
z1

p ffiffiffiffiffi
z2

p ffiffiffiffiffi
z3

p Þ ¼ �4K. We note that in a type D spacetime

�1 ¼ �2 and �3 ¼ �4.

B. Vacuum

The determination of the algebraic type of the matter
fields can be done in an analogous way using the Ricci
tensor, rather than the Weyl scalars. The analogue of the
Petrov types are the Segre types and the equation to deter-
mine the multiplicities of the roots is [see [70], Eq. (9.2)]

�4 � 1
2I6�

2 � 1
3I7�þ 1

8ðI26 � 2I8Þ ¼ 0; (22)

where

I6 ¼ S�	S
	
�; (23)

I7 ¼ S�	S
	

S



�; (24)

I8 ¼ S�	S
	

S



�S

�
�; (25)

and

S�	 ¼ R�	 � 1
4g�	R; (26)

is the trace free part of the Ricci tensor.
This characterization of the matter fields does not com-

pletely determine the algebraic properties, and other addi-
tional criteria have to be used. In our numerical simulations
here, we are concerned with vacuum spacetimes.
Numerical evolutions may introduce artificial (and unphys-
ical) matter fields through violations of the Hamiltonian
and momentum constraints, and the natural way of moni-
toring the accuracy of the solution is to examine these
constraints and confirm that the induced matter fields
converge to zero with resolution and in time.

C. Determination of the Kerr solution

Once we determine that a solution is, for instance,
Petrov type D and is a vacuum solution, we still do not
uniquely single out the Kerr spacetime. One can go further
and try to determine if the spacetime has the symmetries of
Kerr (the Kerr spacetime has two commuting spacelike and
timelike Killing vectors [76]). However, one still needs to
examine the asymptotic behavior of the solutions to deter-
mine that the spacetime does not have a NUT charge l or
acceleration �.
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A general type D, vacuum black-hole solution can be
described by the metric [see [77], Eq. (17)]

ds2 ¼ 1

�2

�
Q

�2

�
dt�

�
asin2þ 4lsin2



2

�
d�

�
2 � �2

Q
dr2

� P

�2
½adt� ðr2 þ ðaþ lÞ2Þd��2 � �2

P
sin2d2

�
;

(27)

where

� ¼ 1� �ðlþ a cosÞr; (28)

�2 ¼ r2 þ ðlþ a cosÞ2; (29)

P ¼ sin2ð1� a3 cos� a4cos
2Þ; (30)

Q ¼ k� 2mrþ �r2 � 2�nr3 � �2kr4; (31)

and

a3 ¼ 2�am� 4�2alk; (32)

a4 ¼ ��2a2k (33)

with �, n and k as given a function of the more basic
parameters m, l, a, and � by

� ¼ k

a2 � l2
þ 4�lm� ða2 þ 3l2Þ�2k; (34)

n ¼ kl

a2 � l2
� �ða2 � l2Þmþ ða2 � l2Þl�2k; (35)

�
1

a2 � l2
þ 3�2l2

�
k ¼ 1þ 2�lm: (36)

If the null tetrad is aligned with the principal null direc-
tions, i.e.

l� ¼ ð1� �prÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 þ p2Þp

�
1ffiffiffiffi
Q

p ðr2@� � @�Þ �
ffiffiffiffi
Q

p
@r

�
;

n� ¼ ð1� �prÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 þ p2Þp

�
1ffiffiffiffi
Q

p ðr2@� � @�Þ þ
ffiffiffiffi
Q

p
@r

�
;

m� ¼ ð1� �prÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 þ p2Þp

�
� 1ffiffiffiffi

P
p ðp2@� þ @�Þ þ i

ffiffiffiffi
P

p
@p

�
;

(37)

then the only nonvanishing Weyl scalar is

�2 ¼ �ðmþ inÞ
�
1� �pr

rþ ip

�
3
; (38)

where p ¼ lþ a cos.
It is then natural to look at the asymptotic behavior of the

spacetime to determine if there is a NUT charge l, an
acceleration �, or if the spacetime is plain Kerr. One can
use the method of determining a quasi-Kinnersley frame
[59,78] to compute c 2 and perform the above analysis.

Alternatively, we can use the fact that, once we determined
the spacetime is type D, we can choose a tetrad where all
theWeyl scalars, but c 2, vanish. Hence the invariants I and
J must have the form

I ¼ 3c 2
2; J ¼ �c 3

2 (39)

in this special class of tetrads.
If the acceleration � � 0, then a series expansion of the

invariant I gives

I ¼ 3ðmþ ilÞ2�6p6 � 18

r
ðmþ ilÞ2�5p5ði�p2 þ 1Þ

þO
�
1

r2

�
: (40)

Note that if the acceleration � ¼ 0, then n ¼ l. An
asymptotic expansion of the I invariant for the metric
(27) then gives

I ¼ 3

r6
ðmþ ilÞ2 � 18i

r7
ðmþ ilÞ2ðlþ a cosÞ þO

�
1

r8

�
;

(41)

and, by looking at the real and imaginary parts of the I
invariant at large radii, we can determine the l parameter
via

=ðIÞ=<ðIÞ ¼
� 2ml
m2�l2

; l � 0;
�6a cos

r ; l ¼ 0:
(42)

We will use this method to determine the asymptotic
behavior of the final remnant of a black-hole-binary
merger. Note that using I and J only requires smooth
second derivatives of the metric, which has a distinct
advantage over higher-derivative methods when dealing
with numerically generated spacetimes.

III. NUMERICAL TECHNIQUES

To compute the numerical initial data, we use the punc-
ture approach [79] along with the TWOPUNCTURES [80]
code. In this approach the 3-metric on the initial slice has
the form 
ab ¼ ðc BL þ uÞ4�ab, where c BL is the Brill-
Lindquist conformal factor, �ab is the Euclidean metric,
and u is (at least) C2 on the punctures. The Brill-Lindquist
conformal factor is given by c BL ¼ 1þP

n
i¼1 m

p
i =ð2j~r�

~rijÞ, where n is the total number of ‘‘punctures’’, mp
i is the

mass parameter of puncture i (mp
i is not the horizon mass

associated with puncture i), and ~ri is the coordinate loca-
tion of puncture i. We evolve these black-hole-binary data
sets using the LAZEV [81] implementation of the moving
puncture approach [2,3]. In our version of the moving
puncture approach we replace the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) [82–84] conformal exponent
�, which has logarithmic singularities at the punctures,
with the initially C4 field � ¼ expð�4�Þ. This new vari-
able, along with the other BSSN variables, will remain
finite provided that one uses a suitable choice for the
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gauge. An alternative approach uses standard finite differ-
encing of � [3]. Recently Marronetti et al. [85] proposed
the use of W ¼ ffiffiffiffi

�
p

as an evolution variable. For the runs

presented here we use centered, eighth-order finite differ-
encing in space [56] and a fourth-order Runge-Kutta time
integrator (note that we do not upwind the advection
terms).

We use the CARPET [86] mesh refinement driver to
provide a ‘‘moving boxes’’ style mesh refinement. In this
approach refined grids of fixed size are arranged about the
coordinate centers of both holes. The CARPET code then
moves these fine grids about the computational domain by
following the trajectories of the two black holes.

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with a
modified 1þ log lapse and a modified Gamma-driver shift
condition [2,87], and an initial lapse �ðt ¼ 0Þ ¼ 2=ð1þ
c 4

BLÞ. The lapse and shift are evolved with

ð@t � 	i@iÞ� ¼ �2�K; (43a)

@t	
a ¼ Ba; (43b)

@tB
a ¼ 3=4@t~�

a � �Ba: (43c)

These gauge conditions require careful treatment of �, the
inverse of the 3-metric conformal factor, near the puncture
in order for the system to remain stable [2,7,8]. As shown
in Ref. [88], this choice of gauge leads to a strongly hyper-
bolic evolution system provided that the shift does not
become too large. In our tests, W showed better behavior
at very early times (t < 10M) (i.e. did not require any
special treatment near the punctures), but led to evolutions
with larger truncation errors (importantly, larger orbital
phase errors) when compared to �.

We use AHFINDERDIRECT [89] to locate apparent hori-
zons. We measure the magnitude of the horizon spin using
the isolated horizon algorithm detailed in [62]. This algo-
rithm is based on finding an approximate rotational Killing
vector (i.e. an approximate rotational symmetry) on the
horizon ’a. Given this approximate Killing vector ’a, the
spin magnitude is

S½’� ¼ 1

8�

I
AH

ð’aRbKabÞd2V; (44)

where Kab is the extrinsic curvature of the 3D slice, d2V is
the natural volume element intrinsic to the horizon, and Ra

is the outward pointing unit vector normal to the horizon
on the 3D slice. We measure the direction of the spin by
finding the coordinate line joining the poles of this Killing
vector field using the technique introduced in [6]. Our
algorithm for finding the poles of the Killing vector field
has an accuracy of�2� (see [6] for details). Note that once
we have the horizon spin, we can calculate the horizon
mass via the Christodoulou formula (which is exact for a
Kerr black hole)

mH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

irr þ S2=ð4m2
irrÞ

q
; (45)

where mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð16�Þp

and A is the surface area of the
horizon.
We also use an alternative quasilocal measurement of

the spin and linear momentum of the individual black holes
in the binary that is based on the coordinate rotation and
translation vectors [22]. In this approach the spin compo-
nents of the horizon are given by

S½i� ¼ 1

8�

I
AH

�a
½i�R

bKabd
2V; (46)

where �i
½‘� ¼ �‘j�mkr

m�ijk, �123 ¼ 1, and rm ¼ xm � xm0
is the coordinate displacement from the centroid of the
hole, while the linear momentum is given by

P½i� ¼ 1

8�

I
AH

�a
½i�R

bðKab � K
abÞd2V; (47)

where �i
½‘� ¼ �i

‘.

A. Numerical tetrad and root finder

We calculate c 0 . . . c 4 using the tetrad

l� ¼ ðt� þ r�Þ= ffiffiffi
2

p
; (48)

n� ¼ ðt� � r�Þ= ffiffiffi
2

p
; (49)

m� ¼ ð� þ i��Þ= ffiffiffi
2

p
; (50)

where t� is the unit normal to the t ¼ const slices and
fr�; �;�mug are unit spacelike vectors (with the time
component equal to zero) constructed as follows [60].
We start with the unit vector

�a ¼ ~̂�
a
; (51)

where ~�a ¼ f�y; x; 0g, v̂a ¼ va=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vavb
ab

p
, and 
ab is the

spatial metric. We then find the unit vector in the radial
direction perpendicular to �a

ra ¼ ~̂ra; (52)

where

~r a ¼ �ra � �ra�b
ab; (53)

and �ra ¼ fx; y; zg. Finally, we obtain
a ¼ ~̂

a
; (54)

where

~ a ¼ 
ab�bcd�
crd: (55)

With this choice of tetrad c 0 . . . c 4 are all nonvanishing
for Kerr spacetimes when the specific spin a is
nonvanishing.
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B. Initial data

To generate the initial data parameters, we used random
values for the mass ratio and spins of the binary (the ranges
for these parameters were chosen to make the evolution
practical). We then calculated approximate quasicircular
orbital parameters for a binary with these chosen parame-
ters at an initial orbital separation of 50M and evolved
using purely post-Newtonian evolutions until the binary
separation decreased to 2:3M. The goal was to produce a
binary that had no particular symmetries, so that we can
draw general conclusions from the results, while also
merging very quickly (within 15M of the start of the
simulation), to reduce the computational expense. The
initial binary configuration at r ¼ 50M was chosen such

that q ¼ m1=m2 ¼ 0:8, ~S1=m
2
1 ¼ ð�0:2;�0:14; 0:32Þ, and

~S2=m
2
2 ¼ ð�0:09;

0:48; 0:35Þ. This is the same basic configuration that we
used in [90]. We summarize the initial data parameters in
Table I.

IV. RESULTS

We ran the binary configuration using 9 levels of refine-
ment with an outer grid of resolution h ¼ 3:2M extending
to �416M. The resolution on the finest grid was h ¼
M=80. We analyze the Weyl scalars in the region r &
5M where we had a resolution of h � M=20. This calcu-
lation is nontrivial because the magnitudes of the Weyl
scalars can be quite small (we need to analyze these scalars
at very late times when the waveform amplitudes are
quite small), requiring very-high overall simulation accu-
racy. We found that the isolated horizon formulas and the
radiated energy and angular momentum both predict simi-
lar remnant masses and spins, with the isolated horizon

formulas Eqs. (44)–(46) giving Mrem ¼ 0:9859, ~Srem ¼
f0:001 60� 0:000 05; 0:0407� 0:0004; 0:7173� 0:0001g
and the radiation giving Mrem ¼ 0:9861� 0:0001, ~Srem¼
f0:00153�0:00001;0:04078�0:00002;0:7179�0:0001g.
A fit to the quasinormal profile � expð��tÞ sinð!tÞ gives

� ¼ 0:079 97� 0:0013 and ! ¼ 0:5603� 0:0025, where
the values quoted are the average from fits to the real and
imaginary parts of the (‘ ¼ 2, m ¼ 2) component of c 4

extracted at r ¼ 100M over the domain (160M< t <
200M). The resulting values of Mrem and a=Mrem [91]
are 0:9876� 0:0079 and 0:743� 0:013, respectively.
Note that the isolated horizon and radiated energy/momen-
tum formulas predict that the final specific spin is
a=Mrem ¼ 0:739 31� 0:000 16. This agreement is consis-
tent with the final remnant being a Kerr hole (note that this
consistency is not a proof that the remnant is Kerr).
If the spacetime is algebraically special, then the roots

y2 and y3 of Eq. (5) are equal. To measure how far the
spacetime is from being algebraically special we plot the
magnitude jðy3 � y2Þ=y1j (here y1 provides a natural nor-
malization) and the invariant S� 1 at the point (x ¼ 5M,
y ¼ z ¼ 0) (see Figs. 1 and 2) [59,60,92]. From the figures
we can see that the deviation of the spacetime from being
algebraically special decreases exponentially (with an
e-folding time of �20M for y1 � y2 and �10M for S�
1) with time until t� 150M. The oscillation seen after this
time may be due to reflections off of the refinement
boundaries (this, in turn, provides a sensitive test to im-
prove the numerical techniques).
In Figs. 3–7 we show the unnormalized magnitudes of

the root-pair differences j�1 � �2j and j�3 � �4j both as a
function of t at a fixed ðx; y; zÞ ¼ ð5; 0; 0Þ and along the x
axis at several times. Both pairs show a general decrease in
the magnitudes of the differences with time, but with a
pronounced oscillatory behavior. Note that j�1 � �2j sepa-
ration is much smaller than the j�3 � �4j separation, in-
dicating that the spacetime first approaches type II (and
hence is algebraically special with S� 1� 0) before set-

TABLE I. Initial data parameters for the numerical evolution.
The punctures have mass parameters mp

i , horizons masses mH
i ,

momenta � ~p, spins ~Si, and the configuration has a total
Arnowitt-Deser-Misner (ADM) mass MADM ¼ 1:000 000 4M.

mp
1=M 0.377 52 mp

2=M 0.424 52

mH
1 =M 0.462 98 mH

2 =M 0.578 72

x1=M �0:750 23 x2=M 0.580 04

y1=M 1.116 79 y2=M �0:894 49
z1=M �0:160 93 z2=M 0.203 38

Sx1=M
2 �0:020 765 Sx2=M

2 0.121 06

Sy1=M
2 0.065 806 Sy2=M

2 �0:055 32
Sz1=M

2 0.0546 97 Sz2=M
2 0.161 78

px=M �0:134 735 py=M �0:213 76
pz=M �0:012 323
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y 2)
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FIG. 1 (color online). The magnitude jðy3 � y2Þ=y1j versus
time at the point x ¼ 5M, y ¼ 0, z ¼ 0. The spacetime is
algebraically special if jðy3 � y2Þ=y1j ¼ 0. Note the initial ex-
ponential decrease in the root difference.
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tling to type D. In Fig. 8 we plot the values of the pairs
ð�1; �2Þ and ð�3; �4Þ on the complex plane at the point
ð5; 0; 0Þ for times t ¼ 57; . . . ; 166:25 in steps of 0.593 75.
From the plots we can see how each of the two roots in the
root pairs approach each other. In Fig. 5 we plot the
magnitude of the root separations normalized by the dif-
ference between the average value of the roots in each pair
(note that j�2 � �3j has an e-folding time of �30M). It
takes about 80M of evolution, or 65M postmerger, until the
larger normalized root separation falls below 1. Finally, in
Fig. 6 we show the L2 norm of the root separations along
the x and y axes restricted to 2M< jxj; jyj< 5M and
2M< jxj; jyj< 10M (the restriction to jxj; jyj> 2M is

such that the black-hole interior is not included in the
norm). The poorer convergence of the norm over the larger
domain is due to numerical errors in the more coarsely
resolved regions.
In Fig. 9 we plot rjIj versus r=M along the þy axis and

along the line (x ¼ 0, y ¼ z). The leading-order term if
� � 0 is proportional to ð�pÞ6, where p ¼ lþ a cos [see
Eq. (27)]. If l ¼ 0, then p ¼ a cos, and along the y axis,
p6 � 10�9 (the remnant spin is slightly misaligned with
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FIG. 2. The magnitude jS� 1j versus time at the point x ¼
5M, y ¼ 0, z ¼ 0. The spacetime is algebraically special if S ¼
1. Note the initial exponential decrease in S� 1.
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FIG. 3 (color online). The magnitude of the root-pair separa-
tion j�1 � �2j versus time for the two roots close to � ¼ 0 at the
point x ¼ 5M, y ¼ 0, z ¼ 0.
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FIG. 4 (color online). The magnitude of the root-pair separa-
tion j�3 � �4j versus time for the two roots furthest from � ¼ 0
at the point x ¼ 5M, y ¼ 0, z ¼ 0. Note that there is no rapid
decrease in the j�3 � �4j which indicates that the spacetime is
not approaching type D as fast as it is approaching type II.
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FIG. 5 (color online). The magnitude of the two root-pair
separations normalized by the magnitude of the differences of
the average value of the roots in each pair j�ð1;2Þ � �ð3;4Þj, where
�ð1;2Þ ¼ ð�1 þ �2Þ=2 and �ð3;4Þ ¼ ð�3 þ �4Þ=2.
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the z axis), but along the line (x ¼ 0, y ¼ z), p6 � 0:028.
From the data on the y axis we can only conclude that �l is
very small. However, along the diagonal, p6 � 0:028þ
0:30l, which provides evidence that both � and l are small.
In Fig. 10 we plot the function r=ðIÞ=<ðIÞ versus M=x
along the þx axis for various times from t� 100 to t�
350M. It is clear from the plot that this function does not
tend to 1 at larger r, which indicates that the NUT charge
of the space time vanishes (i.e. given that we already found

that � vanishes). Hence we can see good evidence that the
spacetime is approaching type D with zero NUT charge
and zero acceleration, and hence is approaching a Kerr
spacetime.
We have confirmed that the constraints converge to zero

for our code outside of the horizons. For this simulation the
constraint violations where of order 10�4 at the horizons,
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FIG. 9 (color online). rjIj as a function of r=M along the y axis
and the diagonal line (x ¼ 0, y ¼ z). Note that the behavior
indicates that rjIj ! 0 as r ! 1, which indicates that the
acceleration � vanishes.
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FIG. 6 (color online). The L2 norm of the root separations
versus time along the x and y axis for 2< jxj; jyj< 5 and 2<
jxj; jyj< 10. The region containing the black hole itself was
excluded from the norm.
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FIG. 7 (color online). The magnitude of the root-pair separa-
tion j�3 � �4j along the x axis for several values of t. At first the
root separation decreases significantly with time, but eventually
stabilizes as numerical errors due to reflections off the refine-
ment boundaries and other numerical sources of error begin to
dominate.
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FIG. 8 (color online). The locations on the complex plane of
the roots �1; . . . ; �4 for t ¼ 57; 57:593 75; . . . ; 166:25 at the point
(x ¼ 5, y ¼ 0, z ¼ 0). The insets shows the last 107 points. Note
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limit at late times.
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and dropped off steeply with radius. Convergence of the
constraints is important to show that the spacetime remains
a vacuum spacetime outside of the remnant horizons.

V. CONCLUSION

We have provided a method to classify numerically
generated spacetimes according to their algebraic proper-
ties. This is based on the use of the coincidence of the
principal null directions for algebraically special space-
times. In particular, we focus on the final remnant of a
generic-black-hole-binary merger, that, according to the
no-hair theorem, is expected to produce a Kerr black
hole, and hence be of algebraic (Petrov) type D (i.e. that
the four principal null directions agree in pairs). We give a
measure of the agreement by normalizing the numerical
differences between two nearby roots of Eq. (3) with the
average separation to the other root pair in the complex
plane.

We have been able to verify this agreement to order 10�4

and 10�2 for the two pairs, respectively. We find that the
agreement of the two roots in each pair improves with
evolution time and only appears to be limited by unphys-
ical boundary effects (from the refinement and outer
boundaries). The late-time behavior of these two root pairs
implies that the spacetime near the remnant first ap-
proaches an algebraically special type II (with one pair
of roots and two distinct roots) and over longer time scales
approaches type D. We also analyze the invariant asymp-
totic behavior of the spacetime and do not find evidence for
nonzero acceleration or NUT parameters. Thus, our simu-
lations would suggest that the spacetime indeed ap-
proaches Kerr, which incidentally, is also a strong test of
the stability of the Kerr solution under large, generic
perturbations within the time scales of the simulation.
These results represent the first such tests for generic

binary mergers using modest computational resources.
This naturally suggests that further studies, perhaps also
involving other numerical evolution methods, such as
pseudospectral [93,94] and multipatch, multiblock
[95,96], be used to test the algebraic structure of the
remnants of binary mergers. Finally, the algebraic structure
of the remnants from the merger of more than two black
holes (e.g. close encounters [56,57] of multiple black
holes), while expected to have the same structure as the
remnants of binaries, could conceivably have different
algebraic structures. Thus it would be interesting to use
these techniques to examine those remnants.
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