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We compare waveforms and orbital dynamics from the first long-term, fully nonlinear, numerical

simulations of a generic black-hole binary configuration with post-Newtonian (PN) predictions. The

binary has mass ratio q� 0:8 with arbitrarily oriented spins of magnitude S1=m
2
1 � 0:6 and S2=m

2
2 � 0:4

and orbits 9 times prior to merger. The numerical simulation starts with an initial separation of r � 11M

and orbital parameters determined by 2.5 PN and 3.5 PN evolutions of a quasi-circular binary starting from

r ¼ 50M. The resulting binaries have very little eccentricity according to the 2.5 PN and 3.5 PN systems,

but show eccentricities of e� 0:01–0:02 and e� 0:002–0:005 in the respective numerical simulations,

thus demonstrating that 3.5 PN significantly reduces the eccentricity of the binary compared to 2.5 PN. We

perform three numerical evolutions from r � 11M with maximum resolutions of h ¼ M=48, M=53:3,

M=59:3, to verify numerical convergence. We observe a reasonably good agreement between the PN and

numerical waveforms, with an overlap of nearly 99% for the first six cycles of the (‘ ¼ 2, m ¼ �2)

modes, 91% for the (‘ ¼ 2, m ¼ �1) modes, and nearly 91% for the (‘ ¼ 3, m ¼ �3) modes. The phase

differences between numerical and post-Newtonian approximations appear to be independent of the ð‘;mÞ
modes considered and relatively small for the first 3–4 orbits. An advantage of the 3.5 PN model over the

2.5 PN one seems to be observed, which indicates that still higher PN order (perhaps even 4.0 PN) may

yield significantly better waveforms. In addition, we identify features in the waveforms likely related to

precession and precession-induced eccentricity.
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I. INTRODUCTION

The discoveries of quasars, AGN, and other black-hole
driven astrophysical phenomena in the 1960’s demon-
strated that the most energetic astrophysical phenomena
are powered by gravity in the strong-field regime. This, in
turn, spurred a renewed interest in classical general rela-
tivity. The second major milestone in the revival of the
theory was the realization that when astrophysical black
holes merge, they release incredible amounts of energy in
the form of gravitational radiation, making them the bright-
est objects in the Universe. During their last few orbits,
merging black-hole binaries release energy with a peak
luminosity of about 10�3c5=G, 1023 times the power out-
put of the Sun.

There are currently major experimental and theoretical
efforts underway to measure these gravitational wave sig-
nals. On the experimental side, these efforts required the
construction of kilometers long interferometers, such as
LIGO [1] and VIRGO [2], sensitive enough to measure arm
length distance changes smaller than the radius of a proton.
While on the theoretical side, these efforts required major
advancements in signal extraction techniques and the theo-
retical modeling of the gravitational wave sources.
Modeling the gravitational radiation from compact object
sources has been particularly difficult, as they require
solving the fully nonlinear Einstein equations of general
relativity on powerful supercomputers. However, even

with the rapid advancements in computer power, solving
the two-body problem in general relativity proved to be
remarkably difficult, requiring over 30 years of research
for the field to mature. Then in 2005, two complementary
and independent methods were discovered that allowed
numerical relativists to finally solve the black-hole binary
problem in full strong-field gravity [3–5].
The rapid progress and the number of new theoretical

insights that followed these breakthroughs have trans-
formed the field of numerical relativity (NR); turning it
into a very valuable tool with significant impact on astro-
physics [6–38], gravitational wave detection [39–53], and
on our theoretical understanding of black-binary space-
times [26,29,43,54–59].
One of the breakthrough methods, the ‘‘moving punc-

ture’’ approach [4,5], was adopted by a majority of the NR
groups and has proven to be accurate for the neutron-star
binary and mixed neutron-star—black-hole binary prob-
lems [60,61], as well as for black-hole configurations with
more than two black holes [62,63].
On the subject of black-hole binaries, the NR commun-

ity is in very good agreement concerning a variety of
results. Black-hole binaries will radiate between 2% and
8% of their total mass and up to 40% of their angular
momenta, depending on the magnitude and direction of
the spin components, during the last few orbits and merger
[29,41–43]. In general, these binaries will radiate net linear
momentum, causing the final remnant black hole to recoil
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[6–29]. These recoils can be very large when the black
holes in the binary have significant spin components in the
orbital plane [15,18,20,64] (up to 4000 km s�1 for astro-
physical binaries [20] and even 10 000 km s�1 for ex-
tremely close hyperbolic encounters [64]), which has
astrophysically important effects [15,27,30–33]. The ob-
servational consequences of these large recoil velocities is
an active area of current research [27,34–38].

Currently, one of the most important tasks of NR is to
assist LIGO, VIRGO, and other interferometric observato-
ries, in detecting gravitational radiation and extracting the
physical parameters of the sources. Given the demanding
resources required to generate these black-hole-binary
simulations, and the sheer volume of the seven-
dimensional space of intrinsic parameters of black-hole
binaries, we need to develop techniques to model arbitrary
binary configuration based on numerical simulations in a
carefully chosen sample of the parameters space, in com-
bination with post-Newtonian (PN) and perturbative cal-
culations. One of the most promising of these approaches
involves determining the region of common validity of the
numerical simulations and post-Newtonian expansions,
with the goal of modeling the full waveform using post-
Newtonian waveforms for the initial inspiral and numerical
waveforms for the late inspiral and merger. This method
was pioneered with the use of the Lazarus waveforms [46]
and has readily been pursued after the breakthroughs in
NR.

Comparisons of numerical simulations with post-
Newtonian ones have several benefits aside from the theo-
retical verification of PN. From a practical point of view,
one can try to parametrize deviations of the current 3.5 PN
expansions to fit the numerical results [65–69], or directly
propose a phenomenological description [70], and thus
make predictions in regions of the parameter space still
not explored by numerical simulations. Another important
application, from the theoretical point of view, is to have a
calibration of the post-Newtonian error in the last stages of
the binary merger. The first results of comparisons for
equal-mass, nonspinning binaries are encouraging
[48,49,71–73]. Recently this analysis was applied to
equal-mass, equal-spin binaries with the spins aligned
with the orbital angular momentum (and thus nonprecess-
ing) [74–76].

In this paper we compare the numerical and post-
Newtonian waveforms for the challenging problem of a
generic black-hole binary, i.e. a binary with unequal
masses and unequal, nonaligned, and precessing spins.
The goal here is to evaluate accuracy of the current order
of post-Newtonian expansions when including spins ef-
fects, as well as to develop new criteria for testing both
numerical and post-Newtonian developments.

The paper is organized as follows. In Sec. II we review
the numerical techniques used for the evolution of the
black-hole binaries. In Sec. III we present results from
the numerical evolution of two similar generic black-hole

binaries, and in IV we analyze and compare different
waveform modes as computed numerically and with the
highest available post-Newtonian approximation. Finally,
in Sec. V we present our conclusions.

II. TECHNIQUES

To compute the numerical initial data, we use the punc-
ture approach [77] along with the TWOPUNCTURES [78]
thorn. In this approach the three-metric on the initial slice
has the form �ab ¼ ðc BL þ uÞ4�ab, where c BL is the
Brill-Lindquist conformal factor, �ab is the Euclidean
metric, and u is (at least) C2 on the punctures. The Brill-
Lindquist conformal factor is given by c BL ¼
1þP

n
i¼1 m

p
i =ð2j~r� ~rijÞ, where n is the total number of

‘‘punctures,’’mp
i is the mass parameter of puncture i (mp

i is
not the horizon mass associated with puncture i), and ~ri is
the coordinate location of puncture i. We evolve these
black-hole-binary data sets using the LAZEV [79] imple-
mentation of the moving puncture approach [4,5]. In our
version of the moving puncture approach we replace the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [80–82]
conformal exponent�, which has logarithmic singularities
at the punctures, with the initially C4 field � ¼ expð�4�Þ.
This new variable, along with the other BSSN variables,
will remain finite provided that one uses a suitable choice
for the gauge. An alternative approach uses standard finite
differencing of � [5]. Recently Marronetti et al. [83]
proposed the use of W ¼ ffiffiffiffi

�
p

as an evolution variable.

For the runs presented here we use centered, eighth-order
finite differencing in space [63] and an RK4 time integrator
(note that we do not upwind the advection terms).
We use the CARPET [84] mesh refinement driver to

provide a ‘‘moving boxes’’ style mesh refinement. In this
approach refined grids of fixed size are arranged about the
coordinate centers of both holes. The CARPET code then
moves these fine grids about the computational domain by
following the trajectories of the two black holes.
We obtain accurate, convergent waveforms and horizon

parameters by evolving this system in conjunction with a
modified 1þ log lapse and a modified gamma-driver shift
condition [4,85], and an initial lapse �ðt ¼ 0Þ ¼ 2=ð1þ
c 4

BLÞ. The lapse and shift are evolved with

ð@t � �i@iÞ� ¼ �2�K; (1a)

@t�
a ¼ Ba; (1b)

@tB
a ¼ 3=4@t~�

a � �Ba: (1c)

These gauge conditions require careful treatment of �, the
inverse of the three-metric conformal factor, near the
puncture in order for the system to remain stable
[4,39,47]. In practice one sets a floor value for � equal to
one-tenth of its initial minimum value. This floor is only
needed for the first �5M of evolution. As shown in
Ref. [86], this choice of gauge leads to a strongly hyper-
bolic evolution system provided that the shift does not
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become too large. In our tests,W showed better behavior at
very early times (t < 10M) (i.e. did not require any special
treatment near the punctures), but led to evolutions with
lower effective resolution when compared to �. We chose
� ¼ 3 for the simulations presented here.

We use AHFINDERDIRECT [87] to locate apparent hori-
zons. We measure the magnitude of the horizon spin using
the isolated horizon algorithm detailed in [88]. This algo-
rithm is based on finding an approximate rotational Killing
vector (i.e. an approximate rotational symmetry) on the
horizon ’a. Given this approximate Killing vector ’a, the
spin magnitude is

S½’� ¼ 1

8�

Z
AH

ð’aRbKabÞd2V; (2)

where Kab is the extrinsic curvature of the 3D slice, d2V is
the natural volume element intrinsic to the horizon, and Ra

is the outward pointing unit vector normal to the horizon
on the 3D slice. We measure the direction of the spin by
finding the coordinate line joining the poles of this Killing
vector field using the technique introduced in [43]. Our
algorithm for finding the poles of the Killing vector field
has an accuracy of �2� (see [43] for details). Note that
once we have the horizon spin, we can calculate the
horizon mass via the Christodoulou formula

mH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

irr þ S2=ð4m2
irrÞ

q
; (3)

where mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð16�Þp

and A is the surface area of the
horizon.

We also use an alternative quasilocal measurement of
the spin and linear momentum of the individual black holes
in the binary that is based on the coordinate rotation and
translation vectors [26]. In this approach the spin compo-
nents of the horizon are given by

S½i� ¼ 1

8�

Z
AH

�a
½i�R

bKabd
2V; (4)

where �i
½‘� ¼ �‘j�mkr

m	ijk, and rm ¼ xm � xm0 is the co-

ordinate displacement from the centroid of the hole, while
the linear momentum is given by

P½i� ¼ 1

8�

Z
AH


a
½i�R

bðKab � K�abÞd2V; (5)

where 
i
½‘� ¼ �i

‘.

We measure radiated energy, linear momentum, and
angular momentum, in terms of c 4, using the formulas
provided in Refs. [89,90]. However, rather than using the
full c 4, we decompose it into ‘ andmmodes and solve for
the radiated linear momentum, dropping terms with ‘ � 5.
The formulas in Refs. [89,90] are valid at r ¼ 1. We
obtain highly accurate values for these quantities by solv-
ing for them on spheres of finite radius (typically r=M ¼
50; 60; � � � ; 100), fitting the results to a polynomial depen-
dence in l ¼ 1=r, and extrapolating to l ¼ 0 [5,39,71,91].

Each quantity Q has the radial dependence Q ¼
Q0 þ lQ1 þOðl2Þ, where Q0 is the asymptotic value [the
OðlÞ error arises from the OðlÞ error in rc 4]. We perform
both linear and quadratic fits of Q versus l, and take Q0

from the quadratic fit as the final value with the differences
between the linear and extrapolated Q0 as a measure of the
error in the extrapolations. We found that extrapolating the
waveform itself to r ¼ 1 introduced phase errors due to
uncertainties in the areal radius of the observers, as well as
numerical noise. Thus when comparing PN to numerical
waveforms, we use the waveform extracted at r ¼ 100M.
The extrapolations of the radiated quantities are far more
robust.
We convert the ð‘;mÞ modes of c 4 into ð‘;mÞ modes of

h ¼ hþ � ih	 by calculating the Fourier transform of each
mode, dividing by �!2 (where ! is the Fourier fre-
quency), setting the value of the resulting transform to
zero inside some specified window �!w <!<!w, as
well as chopping off the transform at frequencies larger
than 4 times the quasinormal frequency, and finally taking
the inverse transform. By setting the transform to zero in
this window, we remove the spurious constant and linear
terms from h (we also remove spurious high-frequency
noise from the waveform by truncating the transform at
�4 times the quasinormal frequency). We confirm that the
calculation is correct by taking two time derivatives of the
resulting h and measuring how much the resulting function
differs from the original c 4 (see Fig. 5 in Sec. III). We also
use an alternative waveform comparison, based on the
modes of c 4 rather than h, which does not require this
transformation.
We compute the eccentricities of the orbits using the

techniques of [92] and introduce a second technique based
on Newtonian trajectories. In [92], the eccentricity eD is
defined as

eDðtÞ ¼ rðtÞ � rcðtÞ
rcðtÞ ; (6)

where rc is obtained by fitting rðtÞ to a low-order poly-

nomial in t1=2. The actual eccentricity eD is the amplitude
of the oscillations in the resulting eDðtÞ. We also introduce
a second measurement of eccentricity er defined by

erðtÞ ¼ rðtÞ2 €rðtÞ=M: (7)

Here too, the eccentricity er is the amplitude of the oscil-
lations in erðtÞ. This formula for the eccentricity, which
is only accurate for e 
 1, arises from the Newtonian

formula for the orbital radius rðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=�23

p ð1þ
e sinð�tÞÞ þOðe2Þ. Note that in both cases, eðtÞ has sinu-
soidal oscillations and secular decay. The ellipticity is the
amplitude of the sinusoidal oscillations, while the secular
decay affects the accuracy of the ellipticity calculation
when its large. However, by differentiating rðtÞ twice
with respect to t, the secular terms are suppressed.
Equation (7) can be modified with higher PN corrections
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[93] to yield

e cosð�tÞ � ½€rðtÞ � €r0ðtÞ�=ðr�2Þ; (8)

where

�2 ¼ M

r3
½1� ð3� �ÞðM=rÞ þOðM=rÞ2�; (9)

_r 0ðtÞ ¼ � 64�

5

M3

r3

�
1� 1

336
ð1751þ 588�ÞðM=rÞ

�
;

(10)

€r 0ðtÞ ¼ 16�

105

M5

r4
½252� ð1751þ 588�ÞðM=rÞ�; (11)

and r0ðtÞ is the zero-eccentricity inspiral trajectory.

A. Initial data

To generate the initial data parameters, we used random
values for the mass ratio and spins of the binary (the ranges
for these parameters were chosen to make the evolution
practical). We then calculated approximate quasicircular
orbital parameters for a binary with these chosen parame-
ters at an initial orbital separation of 50M and evolved
using purely PN evolutions until the binary separation
decreased to 11M. The goal was to produce very low-
eccentricity orbital parameters at r ¼ 11M, as suggested
in [92]. This technique is rather different from the tech-
nique in [53], which used multiple numerical evolutions to
determine quasicircular orbital parameters. The initial bi-
nary configuration at r ¼ 50M had q ¼ m1=m2 ¼ 0:8,
~S1=m

2
1 ¼ ð�0:2;�0:14; 0:32Þ, and ~S2=m

2
2 ¼ ð�0:09; 0:48;

0:35Þ. As described in Sec. IV, we used both truncated
2.5 PN equations of motion for spinning binaries, and
equations of motions including 3.5 PN corrections (without
the HS1S2;3 PN term). Our PN evolutions use the ADM-TT

gauge which is the one closest to the numerical quasi-
isotropic coordinates (to help reduce possible gauge ambi-

guities) [94,95]. We denote the two resulting configura-
tions by G2.5 and G3.5, respectively. We then used the PN
momenta, spins, and particle locations to construct the
initial data for the numerical evolution. We fixed the punc-
ture masses by requiring that the total ADM mass be 1M
and that the mass ratio of the two holes has the specified
value. We renormalized the parameters to obtain an ADM
mass of 1M in order to aid comparison of the two configu-
rations and the analysis.
The initial data parameter are summarized in Table I. We

evolved these data using our eighth-order (in space) accu-
rate code. We evolved the G2.5 configuration using 12
levels of refinement, with a finest resolution of h ¼
M=48, M=53:33, and M=59:33, and the outer boundaries
placed at 3072M. We used the standard fifth-order Kreiss-
Oliger dissipation operator and six buffer zones at the
refinement level boundaries. For the timestep, we chose a
CFL factor of 0.5 for the inspiral phase, and then dropped
the CFL by a factor of 0.95 during the merger phase. We
reduced the CFL because otherwise the simulation proved
to be unstable during the very fast plunge phase (due to a
violation of the CFL stability condition for our evolution
system). We evolved the G3.5 configuration with the same
setup as the M=53:3 G2.5 configuration, but chose an
initial CFL factor of 0.475 (there was no evidence of any
instability with this reduced factor).

III. FULLY NONLINEAR NUMERICAL
WAVEFORMS AND TRAJECTORIES

We calculated c 4 using our original fourth-order accu-
rate extraction code, and measured the convergence rate of
the amplitude and phase of the waveform separately. In
Fig. 1, we show the (‘ ¼ 2, m ¼ 2) component of c 4 of
the G2.5 configuration for the three resolutions. Note the
excellent phase agreement until about t ¼ 1400M. The
phase error increases exponentially during the last two
orbits. In Fig. 2, we show the convergence of the amplitude
of the (‘ ¼ 2, m ¼ 2) mode. The amplitude shows be-

TABLE I. Initial data parameters for the numerical evolutions. Parameters for configuration G2.5 were obtained from a truncated
2.5 PN evolution of a binary starting with an orbital separation of r ¼ 50M, while parameters for configuration G3.5 were obtained
from an evolution with 3.5 PN nonspinning corrections. The punctures have mass parameters mp

i , horizons masses (Christodoulou)

mH
i , momenta � ~p, spins ~Si, and both configurations have a total ADM mass MADM.

G2.5 G3.5 G2.5 G3.5

mp
1=M 0.406 59 0.406 94 mp

2=M 4.123 28 0.456 072

mH
1 =M 0.448 41 0.448 33 mH

2 =M 0.560 54 0.561 06

x1=M 3.327 70 �2:572 72 x2=M �2:662 16 2.058 67

y1=M �5:154 10 �5:570 57 y2=M 4.123 28 4.456 96

z1=M 0.518 35 �0:477 58 z2=M �0:414 68 0.406 45

Sx1=M
2 0.017 896 �0:036 840 Sx2=M

2 �0:066 727 0.025 826

Sy1=M
2 0.069 204 �0:005 002 8 Sy2=M

2 �0:098 217 0.149 51

Sz1=M
2 0.034 786 0.069 584 Sz2=M

2 0.147 22 0.110 50

px=M 0.072 919 0.080 499 py=M 0.048 074 �0:036 311
103pz=M �5:4117 �0:743 105 MADM=M 1.000 00 1.000 00

CAMPANELLI, LOUSTO, NAKANO, AND ZLOCHOWER PHYSICAL REVIEW D 79, 084010 (2009)

084010-4



tween third- and fourth-order convergence as is apparent
by rescaling the amplitude differences by 1.5098 (fourth-
order) and 1.358 08 (third-order). As can be seen in Fig. 3,
the phase error converges to eighth-order for t < 1200M.
Beyond t ¼ 1200M (which is the beginning of the rapid
plunge) the convergence falls to fourth-order, as is appar-
ent from the rescaling of the phase differences by 2.305 73
(eighth-order), 1.5098 (fourth-order), and 1.358 08 (third-
order). Note a convergence order of 8 (up to t ¼ 1200M)
implies that the error in the phase for the highest resolution
run is less than 0.06 radians for t < 1200M. In Fig. 4, we
show the amplitude as a function of phase. The phase error

in the waveform converges to higher order than the ampli-
tude because it is sensitive to the phase error in the orbit,
which, in turn, is a function of the convergence of the
evolution code. The amplitude, however, appears to be
sensitive to the extraction algorithm’s numerical error.
In Table II, we show the radiated energy, angular mo-

mentum, and gravitational recoil versus resolution for the
G2.5 configuration [89,90]. Here, extrapolation errors (to
infinite radius) in the radiated energy and angular momenta
dominate the finite-difference errors, while the extrapola-
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1400 1425 1450 1475 1500 1525 1550
−0.002
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0
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FIG. 1 (color online). The (‘ ¼ 2, m ¼ 2) component of c 4

for the G2.5 configuration for the three resolutions. Note the
excellent phase agreement until about t ¼ 1400M.
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|A(M/53.3) − A(M/59.3)|*1.35808

FIG. 2 (color online). Convergence of the amplitude of the
G2.5 (‘ ¼ 2, m ¼ 2) component of c 4. The amplitude shows
between third- and fourth-order convergence (as demonstrated
by multiplying the deviations in the amplitude by 1.358 and
1.5098, respectively).

0 500 1000 1500 2000
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FIG. 3 (color online). Convergence of the G2.5 phase of the
(‘ ¼ 2, m ¼ 2) component of c 4. The phase shows eighth-order
convergence up to t ¼ 1200M, decreasing to between third- and
fourth-order convergence during the plunge (as demonstrated by
multiplying the phase deviations by 2.305, 1.5098, and 1.358,
respectively).
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FIG. 4 (color online). The amplitude of the G2.5 (‘ ¼ 2, m ¼
2) component of c 4 versus the phase. Note that the phase
becomes more negative as t increases.
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tion errors in the recoil appear to be similar to the finite-
difference errors. In particular Vz

rec has a noticeable finite-
difference error. This can be understood in terms of the
sensitivity of the out-of-plane recoil to the angle that the
spin direction makes with the infall direction at merger.
Thus orbital phase errors in the plunge can lead to signifi-
cant deviations in the out-of-plane recoil [96,97].

The radiated energy, angular momentum, and the recoil
velocity for the G3.5 configuration are given in Table III.
The radiated energy and angular momenta are slightly
larger for the G3.5 configuration than the G2.5 configura-
tion. Note that for both configurations, the radiated angular
momenta in the x and y directions are too small to accu-
rately measure. It should be pointed out that the quoted
uncertainties in the radiated quantities for G3.5 are due to
extrapolation to infinity. Additional uncertainties, due to
truncation errors are not included (although results from
G2.5 indicate that the uncertainties in the radiated energy
and angular momentum due to truncation errors are small
compared to the errors due to extrapolation).

As a final point, we show that our method for calculating
h from c 4 using truncated Fourier transforms, yields a
reasonable approximation to the original c 4 after differ-

entiating twice. In Fig. 5, we show €h and c 4 of the
subleading (l ¼ 2, m ¼ 1) mode of the G2.5 configuration
(see however the discussion concerning the amplitudes of h
in Sec. IVB 1).

A. Eccentricity and precession

In Figs. 6–8, we show the orbital trajectory for the G2.5
and G3.5 configurations. With the time direction sup-
pressed, we see excellent agreement between the trajecto-
ries at the three resolutions. This is similar to the excellent
agreement in the amplitude versus phase of the (‘ ¼ 2,
m ¼ 2) mode. However, when including time, as can be
seen in Fig. 9, there is a significant difference between the
high and medium resolutions for t > 1200M. Also note, in
Fig. 9, the large eccentricity (apparent from the oscillations
in r) for the G2.5 configuration and that G3.5 has reduced,
but still large, eccentricity. Thus, assuming that the PN
series converges, we need to include still a higher-order PN
correction to obtain low-eccentricity initial data parame-
ters. The reduced eccentricity of G3.5 compared to G2.5,
lends support to the hope that a higher PN order will give
low-eccentricity data. Alternatively, to produce low-
eccentricity data, one can try to use the iterative methods
of [53], which have been shown to work well for non-
spinning binaries. Using the methods of [92], we can

TABLE II. The radiated energy, angular momentum, and gravitational recoil versus resolution for the G2.5 configuration. The
quoted uncertainties are due to extrapolation r ! 1. Note that this configuration has eccentricity eD � 0:02 and er � 0:01.

M=48 M=53:3 M=59:3

Erad=M 0:0512� 0:0039 0:0513� 0:0036 0:0514� 0:0033
Jxrad=M

2 0:018� 0:021 0:017� 0:020 0:014� 0:013
Jyrad=M

2 �0:05� 0:12 �0:05� 0:12 �0:05� 0:13
Jzrad=M

2 0:4445� 0:0081 0:4478� 0:0103 0:4466� 0:0077
Vx
rec (km s�1) �1:6� 5:7 �6:9� 6:0 �2:2� 5:5

Vy
rec (km s�1) 78:36� 6:51 75:75� 2:95 71:47� 0:24

Vz
rec (km s�1) 934� 31 1008� 24 947� 16

TABLE III. The radiated energy, angular momentum, and
gravitational recoil for the G3.5 configuration. The quoted un-
certainties are due to extrapolation r ! 1. Note that this con-
figuration has eccentricity eD � 0:005 and er � 0:002.

Erad=M 0:0522� 0:0042
Jxrad=M

2 �0:20� 0:27
Jyrad=M

2 0:051� 0:057
Jzrad=M

2 0:4551� 0:0029
Vx
rec (km s�1) 26:3� 5:2

Vy
rec (km s�1) 103:0� 5:7

Vz
rec (km s�1) 1529:9� 8:9

150 400 650 900 1150 1400
t/M

−0.0002

−0.0001
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0.0002

(l=
2,

m
=

1)
 m

od
e
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FIG. 5 (color online). A comparison of €h and c 4 for the (‘ ¼
2, m ¼ 1) mode for the G2.5 configuration. The plot demon-
strates that the windowing procedure apparently does not con-
taminate the waveform to a significant degree.
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calculate the eccentricity eDðtÞ, as shown in Fig. 10. From
the figure, we can see that the eccentricity of G2.5, which is
eD � 0:02, is more than 3.5 times as large as the eccen-
tricity of G3.5, which is �0:005. Using the formula er for
the eccentricities (see Fig. 11) yields er � 0:0088 for G2.5
and er � 0:0022 for G3.5. However, as can be seen in the
figure, the eccentricity for G2.5 decays throughout the
evolution, while the eccentricity of G3.5 (although smaller
than G2.5) remains roughly constant for t * 600M. This is
consistent with the results seen in Fig. 16 which shows that

the 3.5 PN prediction for the eccentricity does not decay
with time for sufficiently close binaries and small eccen-
tricities. In Ref. [92], they found that using PN parameters
from a PN-evolved inspiral (from r ¼ 40M to r ¼ 11M)
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 10-1.5
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 1
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FIG. 6 (color online). The trajectory difference ~x1– ~x2 for the
G2.5 configuration. Note the orbital plane precession and the
very good agreement between trajectories at the different reso-
lutions (the tracks from the different resolutions are not distin-
guishable on this scale).
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FIG. 7 (color online). An xy projection of the trajectory dif-
ference ~x1– ~x2 for the G2.5 configuration. Note the very good
agreement between trajectories at the different resolutions. The
initial orbital plane is inclined with respect to the xy plane,
making the orbit appear more eccentric.
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FIG. 8. An xy projection of the trajectory difference ~x1– ~x2 for
the G3.5 configuration. The initial orbital plane is inclined with
respect to the xy plane, making the orbit appear more eccentric.
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t/M

0
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G2.5 (M/53.3)
G2.5 (M/59.3)
G3.5 (M/53.3)

FIG. 9 (color online). The coordinate distance r ¼ j ~x1– ~x2j
between punctures versus time for the G2.5 and G3.5 configu-
rations. Note that the large eccentricity in the orbit (apparent in
the oscillation in r) is reduced by using the 3.5 PN equations to
generate the initial data. Unlike in Figs. 6 and 7, here the
differences between resolution becomes apparent during the
plunge. These differences drive the phase error. Also note that
the G3.5 configuration merges more slowly.
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reduced the eccentricity of the resulting binary from e ¼
0:01, for a quasicircular binary at r ¼ 11M, to e ¼ 0:002.
Here we see eccentricities after a PN-evolved inspiral to
r ¼ 11M between 2.5 and 10 times as big.

In Figs. 12 and 13, we show ~r ¼ ~x1 � ~x2 versus time for
the G2.5 and G3.5 configurations after performing a con-
stant rotation that maps the initial orbital motion onto the
xy plane. Orbital plane precession drives the increase in
amplitude of the z component of ~r. The precession of the

orbital plane is itself driven by the precession of the total
spin of the binary. Thus we can measure the rate of orbital
plane precession by looking at the components of the
black-hole spins as a function of time. In Fig. 14, we
show the components of the spin of the larger black hole
as a function of time for the G3.5 configuration. Note that
the precessional frequency is quite low, with the precession

350 550 750 950
t/M

−0.02

−0.01

0

0.01

0.02
e D

(t
)

G3.5
G2.5

FIG. 10 (color online). The eccentricity eDðtÞ of the G3.5 and
G2.5 configurations, as calculated using the techniques of [92].
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t/M
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e r(t
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G3.5
G2.5 (3.5PN prediction)

0 100 200 300
−0.1

0
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FIG. 11 (color online). The eccentricity erðtÞ of the G3.5 and
G2.5 configurations and the 3.5 PN prediction for the G2.5
configuration (the 3.5 PN prediction for G3.5 is a factor of 10
smaller than the NR prediction). The inset shows the ‘‘eccen-
tricity’’ at early times when gauge effects dominate the trajecto-
ries. Note that the eccentricity of G2.5 decays throughout the
evolution while the smaller eccentricity for G3.5 remains
roughly constant beyond t� 630M. At later times the eccen-
tricities of G2.5 and G3.5 begin to agree.
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FIG. 12 (color online). The coordinate displacement ~r ¼
~x1– ~x2 between punctures versus time for the G2.5 configuration
after performing a constant rotation that maps the initial orbital
plane onto the xy plane. Precession is responsible for driving the
amplitude of rz.
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FIG. 13 (color online). The coordinate displacement ~r ¼
~x1– ~x2 between punctures versus time for the G3.5 configuration
after performing a constant rotation that maps the initial orbital
plane onto the xy plane. Precession is responsible for driving the
amplitude of rz.
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occurring on a time scale of order 1000M; consistent with
the time scale in the amplitude modulation of the rotated
z1–z2 trajectory component in Figs. 12 and 13. Despite this
long time scale, precession can affect the waveform modes
on shorter time scales via mode-mixing effects. That is,
precession of the orbital plane will cause our mode decom-
position (which uses a fixed z axis) to mix different modes
(which oscillate at different frequencies). This can lead to a
beating effect that produces amplitude oscillations visible
in the waveform. In particular, when the orbital plane is
aligned with the xy axis, the m modes have a frequency of
�m!orbit. Hence if the m ¼ 2 and m ¼ 1 or m ¼ 3 modes
mix, the resulting system will have a beat frequency of
�!orbit; the same frequency as that due to eccentricity.
Thus, oscillations in the amplitude of the modes at the
orbital frequency can arise both from precession and ellip-
ticity. We will come back to this point in Sec. IVB.

IV. POST-NEWTONIAN EQUATIONS OF MOTION
AND WAVEFORMS

In order to calculate PN waveforms, we need to calculate
the orbital motion of the binaries. We use the ADM-TT
gauge, which is the closest to our quasi-isotropic numerical
initial data coordinates [94,95]. In this paper, we use two
different approximate PN equations of motion (EOM)
based on [98–100]. To construct the EOM we use the
Hamiltonian provided in [98], with the additional terms
provided in [99,100], and the radiation-reaction force pro-
vided in [98]. We then use the standard techniques of the
Hamiltonian formulation to construct EOM for the particle
locations, momenta, and spins. In the first approximate

EOM, we included the purely orbital Hamiltonian up to
2 PN order, spin-orbit coupling up to 2.5 PN order, and
spin-spin coupling up to 2 PN order (for the conservative
part). That is to say, we use the Hamiltonian

HR ¼ HO;Newt þHO;1 PN þHO;2 PN þHSO;1:5 PN

þHSO;2:5 PN þHSS;2 PN: (12)

Here we only include the leading order radiation-reaction
(dissipative) effect. We refer to the above EOM as the
‘‘truncated’’ 2.5 PN EOM because there are terms up to
2.5 PN order. For the second approximate EOM, we in-
cluded the 3 PN orbital Hamiltonian and 3 PN spin(1)–spin
(2) coupling in the ADM-TT gauge [100], i.e., we use the
Hamiltonian

HF ¼ HR þHO;3 PN þHS1S2;3 PN (13)

(the HS1S2;3 PN term was also computed in [101–103] in a

different gauge). For the dissipative part, we added the
3.5 PN (nonspinning) radiation-reaction terms, as well as
the leading spin-orbit and spin-spin coupling to the radia-
tion reaction [98]. In the radiation-reaction terms, we use
the Taylor series of the flux [104,105]. We refer to this
second EOM as the 3.5 PN EOM (in practice the 3.5 PN
radiation-reaction terms contribute to the orbital EOM at
6 PN order).
We then use the following procedure to construct hybrid

waveforms from the orbital motion. First we use the 1 PN
accurate waveforms derived by Wagoner and Will [106]
(WWwaveforms) for a generic orbit. By using these wave-
forms, we can introduce effects due to eccentricity and
effects due to black-hole spins, including the precession of
the orbital plane. On the other hand, Blanchet et al. [107]
recently obtained the 3 PN waveforms (B waveforms) for
nonspinning circular orbits. We combine these two wave-
forms to produce a hybrid waveform that includes the
known higher-order corrections to the waveform. Note
that, in the comparisons mentioned below, the truncated
2.5 PN waveforms and the 3.5 PN waveforms were con-
structed from the same WW and B expressions.
Differences only arise because the truncated 2.5 PN wave-
forms are based on particle trajectories obtained from the
truncated 2.5 PN EOM.
In order to combine the WWand B waveforms, we need

to take into account differences in the definitions of polar-
ization states and the angular coordinates. [See Eqs. (73)–
(75) of [106] for the definition of the WW polarization
states and Sec. 8 of [107] for the definition of the B
polarization states.] The WW waveforms use the standard
definition of GW polarization states, which are the same as
those derived from the Weyl scalar, but the B waveforms
use an alternate definition; leading to a difference in sign
for all the (‘,m) modes of h. The angular coordinates in the
B waveforms in [107] are derived from circular orbits in
the equatorial (xy) plane. To directly compare the NR and
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FIG. 14 (color online). The components of the spin for the
more massive black hole in configuration G3.5 as a function of
time. The precession of the spin drive the orbital plane preces-
sion. Here the precession time scale is of order 1000M.

COMPARISON OF NUMERICAL AND POST-NEWTONIAN . . . PHYSICAL REVIEW D 79, 084010 (2009)

084010-9



PN waveforms, we must add an inclination to the B wave-
forms because in the generic case the orbital planes are
inclined (with a time dependent inclination angle) with
respect to the xy plane. Hence we need to use the procedure
developed in [73,108] to transform the ð‘;mÞ modes of B
waveforms into modes with respect to our rotated spin
basis (we provide a simple derivation of these transforma-
tions in Appendix A). The following is an outline of the

procedure. Let ~L ¼ ~r	 ~p be the instantaneous orbital
angular momentum, where

~L ¼ Lðsin�L cos�L; sin�L sin�L; cos�LÞ; (14)

~r ¼ rðsin�r cos�r; sin�r cos�r; cos�rÞ; (15)

~p ¼ pðsin�p cos�p; sin�p cos�p; cos�pÞ; (16)

and L, r, p,�L,�L,�r,�r,�p,�p are functions of time.

The first step is to rotate the orbital plane onto the xy plane.
Let Rð�;�; �Þ be a general rotation defined by the Euler
angles �, �, and �, where we first perform a rotation
through angle � about the z axis, followed by a rotation
through angle � about the y axis, and finally a rotation
through angle � about the z axis (in practice, we never need
to perform this final rotation). Thus a rotation

Rð��LðtÞ;��LðtÞ; 0Þ transforms ~L and ~r into ~L0 and ~r0,
where

~L 0 ¼ Lð0; 0; 1Þ; (17)

~r 0 ¼ rðcos�BðtÞ; sin�BðtÞ; 0Þ: (18)

The ð‘;mÞ modes of the B waveform, in a frame where the
orbital plane is the xy plane, can be written in terms of
cos�BðtÞ, sin�BðtÞ, r, and !orbit. In order to calculate the
ð‘;mÞmodes of hwith respect to the numerical coordinates
(where the orbital plane is inclined), we use the results of
[73,108]. As was shown in [108], the spin-weighted s
spherical harmonics in the numerical coordinates are re-
lated to those in the rotated coordinates (where the orbital
plane is the xy plane) by

Ys
‘mð�Þ ¼ eis�

X
m0
e�im0�K‘s

m0mð��Þe�im�Ys
‘m0 ð�0Þ; (19)

where �, �, and � are the rotation angles described above
(note � ¼ 0), and the phase factor eis� arises from the
transformation of spin-weighted function under a change
of spin basis. In [73] it was shown that K‘s

m0m is independent

of s (see Appendix A for an alternative proof), and is thus
given by [108]

K‘s
m0mð��Þ ¼ d‘m0mð��Þ; (20)

where d‘m0mð�Þ is the Wigner d matrix given by

d‘m0mð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞ!ð‘�mÞ!ð‘þm0Þ!ð‘�m0Þ!

p X
k

ð�1Þkþm0�m

k!ð‘þm� kÞ!ð‘�m0 � kÞ!ðm0 �mþ kÞ!

	
�
sin

�

2

�
2kþm0�m

�
cos

�

2

�
2‘�2k�m0þm

; (21)

where the sum over k is such that the factorials are non-negative. Since h ¼ h0e�2i�, we have

h‘m ¼
Z

h �Y�2
‘md� ¼ X

m0

Z
h0eim0�d‘m0mð��Þh0 �Y�2

‘m0 ð�0Þd�0 ¼ X
m0
eim

0�d‘m0mð��Þh0‘m0 ¼
X
m0
e�im0�Ld‘m0mð�LÞh0‘m0 : (22)

The remaining complication arises from the fact that
both the WW and B waveforms contain terms for a non-
spinning circular orbit. To avoid adding the common terms
twice, we subtract them from the B waveforms. First, using
the 1 PN WW formulas, we obtain the waveforms from
nonspinning circular orbits in the equatorial plane. We do
this by applying the 3 PN EOM for circular orbits to the
WW waveform formulas. We then rewrite the waveforms
in terms of the gauge invariant variable x, which is the
normalized frequency. The B waveforms are given in terms
of x, so we can identify those terms in the WW waveforms
also present in B waveforms in a unique way. We then
remove these terms from the B waveforms. For our generic
case, we rotate the subtracted B waveforms modes and add
them to the modes of the WW waveforms to obtain the
hybrid waveform. Note that there are no significant gauge

ambiguities arising from combining the WW and B wave-
forms in this way because at 1 PN order the harmonic and
ADM gauges are equivalent (and hence the WW wave-
forms are the same in the two gauges) and the B waveforms
are given in terms of gauge invariant variables.
Note that we calculate the spin contribution to the

waveform through its effect on the orbital motion directly
in the WW waveforms and indirectly in B waveforms
through the inclination of the orbital plane. Other effects
of spin and orbital plane precession on the waveforms are
currently not known.
Note that the above procedure for determining the PN

waveforms does not contain any arbitrary phase factors or
time translations. It was our goal to use a procedure that,
given a unique initial configuration, produces a unique
waveform. Thus, when comparing the PN and numerical
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waveforms we only need to take into account the observer
location (i.e. an observers at 100M and 200M will see
waveforms with a time translation of �100M and
�200M, respectively). To take the observer location into
account, we consider the matching of the PN and numeri-
cal waveforms over a range of 100M in the early part of the
waveform (see Sec. IVB3). We determine the time trans-
lation �t in the PN waveform that yields a local maximum
in the matching closest to �t ¼ robserver (here robserver ¼
100M, which is unrelated to the 100M integration time).
The observed ambiguities in �t due to gauge effects (both
PN and numerical) is of order 5M (see Sec. IVB 3).

A. Orbital motion and initial parameters

Following the procedure detailed in [92], extended to
spinning particles, we used purely post-Newtonian evolu-
tions of a nearly quasicircular binary with initial orbital
separation r ¼ 50M to obtain the positions, momenta, and
spins for a noneccentric binary with separation r� 11M.
The idea behind this procedure is that one can specify
quasicircular parameters with very low eccentricity for
binaries with large separations using the conservative
part of the Hamiltonian (i.e. solve for circular orbits).
The subsequent PN evolution then provides the PN pa-
rameters (including radial momentum) of a closer binary
with similar (but lower) eccentricity. The initial quasicir-
cular binary configuration at r ¼ 50M had PN parameters

q ¼ m1=m2 ¼ 0:8, ~S1=m
2
1 ¼ ð�0:2;�0:14; 0:32Þ, and

~S2=m
2
2 ¼ ð�0:09; 0:48; 0:35Þ. We refer to the binary con-

figurations obtained using the truncated 2.5 PN and 3.5 PN
EOM as G2.5 and G3.5, respectively. It turns out that the
order of the PN evolution is critical for producing low-
eccentricity binaries. The eccentricity of the G2.5 configu-
ration, as measured by a subsequent 2.5 PN evolution is
quite small. However, both the numerical and 3.5 PN simu-
lations, show that the eccentricity for G2.5 is actually
relatively large. Similarly, the eccentricity of the G3.5
configuration, as determined from the full numerical simu-
lation, while smaller than the G2.5 configuration, is still
relatively large. We used these r� 11M parameters in our
numerical and subsequent PN evolutions.

It is interesting to note that in the generic case, the
eccentricity, according to 3.5 PN does not decrease with
time at smaller radii. To demonstrate this, we show the
eccentricity, calculated using the formula erðtÞ ¼ r2 €r=M,
where the magnitude of the oscillations in erðtÞ is the
eccentricity. In Fig. 15, we show the eccentricity versus
time for a configuration with the same spin magnitudes and
mass ratio as our generic case, but with the spins aligned
with the orbital angular momentum. As can be seen, the
eccentricity decreases with radius. However, in Fig. 16,
we show the eccentricity calculated for our configuration,
and one slightly modified to give an even lower initial
eccentricity, versus time. Here we see that the eccentricity
decreases to about e� 0:0005 and then remains

constant. On the other hand, for the low-eccentricity
data, the eccentricity actually increases until reaching e�
0:0005. From the figures is apparent that precession affects
induce an apparent ellipticity to the binary’s motion that is
not radiated away (at least to this order in the PN
expansion).
For the G2.5 configuration we used a truncated 2.5 PN

evolution, which began at r ¼ 50M, to obtain the PN
parameters provided in Table IV. The specific spins of
the two holes are S1=m

2
1 ¼ 0:394 588 393 1 and S2=m

2
2 ¼

0:600 832 755 4, respectively. The 2.5 PN ADM
mass, MADM ¼ m1 þm2 þHR, for these parameters

25155
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FIG. 16 (color online). er versus radius for the G3.5 configu-
ration and a very similar binary, with parameters chosen to
reduce the (PN) initial eccentricity. Note that the eccentricity
at r < 10 is constant and roughly the same for both configura-
tions.
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FIG. 15. er versus radius for a binary with spins aligned with
the angular momentum. Here the eccentricity decreases with r
for all radii.
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is MADM=M ¼ 0:992 568 273 6, where HR is given by
Eq. (12).

When using these parameters in the numerical evolution,
and subsequent PN evolutions starting from r=MADM ¼
11:082 361 08, we normalized the PN parameters by the
ADM mass (i.e. we use the parameters ~r ! ~r=MADM, ~p !
~p=MADM, and ~S ! ~S=M2

ADM). This renormalization is
helpful because we choose to normalize our numerical
simulations such that the total ADM mass is 1. However,
due to the spurious radiation on the initial slice, the nu-
merical black-hole masses change with time, and eventu-
ally equilibrate to a mass ratio of q ¼ 0:7993 (the
uncertainty in the numerical masses of the two holes was
�m� 0:000 03 at the highest resolutions). Thus in order to
compare the PN and numerical waveforms, we need to
account for this change in mass ratio. To do this, we
modified our choices of m1 and m2 such that MADM=M ¼
1 and q ¼ m1=m2 ¼ 0:7993. However, because our two
PN evolutions systems have different Hamiltonians, we
needed to use slightly different values of m1=MADM and
m2=MADM in each case. Note that the spin angular mo-
mentum is not affected by the spurious radiation to a
significant level because the spurious radiation is nearly
axially symmetric about the two holes. For the truncated
2.5 PN evolutions we used

m1=MADM ¼ 0:448 627 492 8;

m2=MADM ¼ 0:561 275 482 1;
(23)

i.e. from the equation MADM ¼ 1 ¼ ðqþ 1Þm2 þ
HRðq;m2Þ, while for the 3.5 PN evolutions we used

m1=MADM ¼ 0:448 663 505 8;

m2=MADM ¼ 0:561 320 537 7;
(24)

i.e. MADM ¼ 1 ¼ ðqþ 1Þm2 þHFðq;m2Þ. We verified
that these changes in the masses have a negligible effect
on the eccentricity and waveforms according to the PN
evolutions. We then used both the truncated 2.5 PN and
3.5 PN equations of motion to evolve this modified con-
figuration from r � 11M. We made one additional change
in the truncated 2.5 PN evolution of G2.5. In our original
truncated 2.5 PN evolution from r ¼ 50M, we used a
simpler form of the radiation-reaction term based on PN
expansion in the orbital parameters r and ~p. While in the
subsequent evolution, we used a new expression (consis-
tent with the old expression to 2.5 PN order in the Taylor
expansion of the PN orbital parameters) based on an ex-
pansion in the orbital frequency [98]. However, because we
changed the EOM, the truncated 2.5 PN evolution of the
G2.5 configuration, which according to the original system
had very low eccentricity, now has a small residual eccen-
tricity (see Fig. 17). The radiation-reaction terms are di-
rectly related to the radial motion of the binary. Therefore,
the radiation-reaction force is very important to determine
the quasicircular configuration, and differences in the force
have a strong effect on the motion. This is an indication
that 2.5 PN is not accurate enough to model the binary’s
motion in the r ¼ 50M to r ¼ 11M range.
For the G3.5 configuration, we used a 3.5 PN evolution

(that did not include the HS1S2;3 PN term) from r ¼ 50M to

TABLE IV. PN orbital parameters for the G2.5 and G3.5
configuration at an orbital separation of r� 11M, as calculated
directly from PN simulations starting at r ¼ 50M. m1 and m2

denote the masses, x, y, and z denote the components of ~r ¼
~x1– ~x2, pi (i ¼ x, y, z) denotes the linear momentum, and S1i and
S2i denote the spin angular momenta.

G2.5 G3.5

m1=M 0.445 511 564 0 0.445 511 564 0

m2=M 0.556 889 455 1 0.556 889 455 1

x=M 5.945 345 051 3 �4:597 648 827 1
y=M �9:208 432 077 0 �9:954 469 474 6
z=M 0.926 094 439 6 �0:877 589 187 3
px=M 0.072 376 673 7 0.079 912 054 4

py=M 0.047 716 913 1 �0:036 046 899 4
pz=M �0:005 371 518 4 �0:000 737 691 38
S1x=M

2 0.017 630 835 7 �0:036 571 185 1
S1y=M

2 0.068 178 851 7 �0:004 966 401 2
S1z=M

2 0.034 271 360 7 0.069 076 853 1

S2x=M
2 �0:065 739 327 8 0.025 637 642 8

S2y=M
2 �0:096 762 497 6 0.148 422 875 9

S2z=M
2 0.145 036 673 6 0.109 697 940 0
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FIG. 17 (color online). The evolution of the orbital radius for
the G2.5 configuration from the numerical, 2.5 PN, and 3.5 PN
simulations. The residual eccentricity in the 2.5 PN evolution is
due to our using a different 2.5 PN radiation-reaction term from
that used in the original evolution beginning at r ¼ 50M. Note
that both 3.5 PN and the numerical simulation indicate that this
configuration has relatively large eccentricity.
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r ¼ 11M to obtain the orbital parameters provided in
Table IV. The 3.5 PN ADM mass of this system is
MADM=M ¼ 0:9927145092, and, once again, we renor-
malized the PN parameters by the ADM mass. When
evolving this system numerically, we used slightly altered
values of the spin

S1x=M
2
ADM ¼ �0:036 839 579 5;

S1y=M
2
ADM ¼ �0:005 002 849 4;

S1z=M
2
ADM ¼ 0:069 583 805 2;

S2x=M
2
ADM ¼ 0:025 825 796 4;

S2y=M
2
ADM ¼ 0:149 512 145 3;

S2z=M
2
ADM ¼ 0:110 503 008 7;

(25)

which introduced negligible changes in the waveforms and
eccentricity. Here too, we find that the black holes
absorb spurious radiation arising from the initial data that
changes the mass ratio to 0.799 37. To model this change in
the 3.5 PN evolution, we changed the m1 and m2 PN
masses to m1=MADM ¼ 0:448 582 981 5 and m2=MADM ¼
0:561 170 648 8. Here too, the changes to the masses do not
affect the motion or eccentricity of the binary according to
the 3.5 PN evolution. Thus, one should use an iterative
procedure, like those in Refs. [49,91], to reduce the eccen-
tricity. (We note that the spin of the black holes did not
change significantly due to the absorption of the initial
burst of radiation. We found that the spin of the smaller
black hole changed by �0:03% and the larger black-hole
spin changed by �0:001% after between t ¼ 0 and t ¼

25M. These changes are smaller than the accuracy with
which the spin itself can be measured.)
According to the truncated 2.5 PN evolution (with the

new radiation-reaction term based on the orbital frequency
discussed above), the G2.5 configuration has a relatively
small eccentricity, as is apparent in the small oscillations of
the time dependence of the 2.5 PN orbital radius displayed
in Fig. 17. However, both a subsequent 3.5 PN evolution
and the numerical evolution showed that these data were
highly eccentric. In Fig. 17, we see that both the 3.5 PN and
numerical simulations produce similar, large orbital radius
oscillations (which are due to eccentricity). The G3.5
configurations, which has very low eccentricity according
to 3.5 PN, as is apparent in the nonoscillatory behavior of
the 3.5 PN orbital radius seen in Fig. 18, still shows
relatively large oscillations in the orbital radius of the
numerical simulation. Thus, using the 3.5 PN equations
of motion to generate low-eccentricity initial data reduces
the eccentricity, but not nearly to the extent seen in non-
spinning binaries [92].

B. Comparison of NR and PN waveforms

We produced both 3.5 PN and 2.5 truncated PN wave-
forms for the G2.5 configuration and 3.5 PN waveforms for
the G3.5 configuration. In Figs. 19 and 20, we show the real
part of the (‘ ¼ 2, m ¼ 2) mode of the strain h for G2.5
and G3.5, respectively. Note the reasonable agreement of
the numerical and 3.5 PN waveforms for 700M in both
configurations. The differences between the PN and nu-
merical waveforms are larger than the numerical waveform
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FIG. 18 (color online). The evolutions of the orbital radius for
the G3.5 configuration from the numerical and 3.5 PN simula-
tions. Here the numerical simulations shows that the eccentricity
was reduced, but is still relatively large, while the 3.5 PN
evolution indicates that the binary is noneccentric.
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FIG. 19 (color online). The real part of the (‘ ¼ 2, m ¼ 2)
mode of h for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. Note that the
3.5 PN prediction is closer to the numerical waveform and that
3.5 PN predicts an early merger while 2.5 PN predicts a late
merger (as is evident by the amplitude of the mode versus time).
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errors at this time. Also note that the 3.5 PN waveform
shows evidence of an early merger and has a higher fre-
quency than the numerical waveform, while 2.5 PN wave-
form shows the opposite behavior. In Figs. 21 and 22, we
show the real part of the (‘ ¼ 2,m ¼ 1) mode of h for G2.5
and G3.5, respectively. Again, the agreement is fairly good
at earlier times and 3.5 PN is more accurate than 2.5 PN.
Also, note the interesting oscillatory behavior of the am-
plitude of the real part of the (‘ ¼ 2,m ¼ 1) mode for both
configurations. Here the amplitude (of the real part) oscil-

lates at about the precessional frequency (see Fig. 14). For
the (‘ ¼ 3, m ¼ 3) mode, we obtained results similar to
the (‘ ¼ 2, m ¼ 2) mode, as seen in Figs. 23 and 24.
However, for this mode, oscillations in the amplitude are
more pronounced.

1. Amplitudes

We are concerned with exploring two different effects,
eccentricity and precession. Long-term precessional ef-
fects, which modulate the amplitude of the waveform
over many cycles, are more readily apparent in h because
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FIG. 20 (color online). The real part of the (‘ ¼ 2, m ¼ 2)
mode of h for the G3.5 configuration from the numerical and
3.5 PN simulations. Here too, 3.5 PN predicts an early merger (as
is evident by the amplitude of the mode versus time).
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FIG. 21 (color online). The real part of the (‘ ¼ 2, m ¼ 1)
mode of h for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. Note the precession-
induced modulation in the amplitude of the oscillations.
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FIG. 22 (color online). The real part of the (‘ ¼ 2, m ¼ 1)
mode of h for the G3.5 configuration from the numerical and
3.5 PN simulations. Note the precession-induced modulation in
the amplitude of the oscillations.
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FIG. 23 (color online). The real part of the (‘ ¼ 3, m ¼ 3)
mode of h for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. Note the relatively
high-frequency oscillations in the amplitude (roughly corre-
sponding to the orbital period).
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differentiating h twice (to obtain c 4) suppresses low-
frequency oscillations in comparison to higher frequencies.
As the binary inspirals, the frequency of the oscillations
increases with the orbital frequency. Thus there is a large
ramp-up in the amplitude of c 4 near merger. This can
mask other effects as we observe below. On the other
hand, the transformation from c 4 to h can induce both
high-frequency and low-frequency distortions in h (i.e.
numerical errors due to the windowing procedure in the
Fourier transform). Thus it is advantageous to compare

both c 4 and h between the PN and numerical simulations.
Here we calculate the post-Newtonian ð‘;mÞ modes of
c 4ðtÞ by taking two time derivatives of the ð‘;mÞ modes
of hðtÞ.
In order to analyze the behavior of the ð‘;mÞ modes of

the waveform, we decompose the modes into amplitudes
and phases. In Fig. 25, we show the amplitude of the (‘ ¼
2, m ¼ 2) mode of h for the G2.5 configuration. Here the
2.5 PN waveforms appear to capture the overall amplitude
behavior to better accuracy, while the 3.5 PN waveforms
capture the oscillations in the amplitude. These oscillations
occur at roughly the orbital frequency and are due mainly
to eccentricity and, to a lesser extent, precession. As dis-
cussed above, precession can induce an oscillation in the
(‘ ¼ 2, m ¼ 2) mode at the orbital frequency by mixing
the (‘ ¼ 2, m ¼ 2) and (‘ ¼ 2, m ¼ �1) modes (and
since the m modes have frequency �jmj!orbit, where
!orbit is the orbital frequency, the resulting modes will
show a beating effect at the orbital frequency). A similar
plot for the G3.5 configuration, Fig. 26, shows that 3.5 PN
predicts very small amplitude oscillations, which seem to
confirm that the oscillations seen in G2.5 are mainly due to
eccentricity. Note that in Fig. 26 the amplitude of the
numerical (‘ ¼ 2, m ¼ 2) mode oscillates at about the
orbital frequency with a significantly larger amplitude
than the 3.5 PN prediction; indicating that these oscilla-
tions are due to eccentricity (which is consistent with the
relatively large oscillations in the numerical orbital radius).
Since the transformation from c 4 to h can induce artifacts
into the waveforms, it is also important to compare the PN
predictions for c 4 with the numerical waveforms. In
Figs. 27 and 28, we show the amplitude of the (‘ ¼ 2,
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FIG. 24 (color online). The real part of the (‘ ¼ 3, m ¼ 3)
mode of h for the G3.5 configuration from the numerical and
3.5 PN simulations. Note the relatively high-frequency oscilla-
tions in the amplitude (roughly corresponding to the orbital
period).
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FIG. 25 (color online). The amplitude of the (‘ ¼ 2, m ¼ 2)
mode of h for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. The oscillations in
the amplitude are much more pronounced in the numerical and
3.5 PN simulations, indicating that these oscillations are likely
due to eccentricity.

0 500 1000 1500

t/M

0

0.1

0.2

0.3

|h
2 

2|

Num
3.5PN

FIG. 26 (color online). The amplitude of the (‘ ¼ 2, m ¼ 2)
mode of h for the G3.5 configuration from the numerical and
3.5 PN simulations. The amplitude oscillations in the numerical
waveform are much larger than those in the 3.5 PN waveform,
indicating that they are likely due to eccentricity.
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m ¼ 2) of c 4 for the G2.5 and G3.5 configurations, re-
spectively. Note that, for c 4, 3.5 PN gives a clearly better
fit to the G2.5 waveform than truncated 2.5 PN. Note also
that the agreement between the 3.5 PN and numerical c 4

appears to be significantly better than the agreement in h.
Thus it appears that the windowing procedure has induced
a very low-frequency mode into h that yielded a net change
in the amplitude of the waveform.

The effects of precession become apparent in the sub-
leading modes h (and to a lesser extent, in the subleading
modes of c 4). However, numerical errors in the lower
amplitude modes are also more pronounced. In Fig. 29
and 30 we show the amplitudes of the (‘ ¼ 2, m ¼ 1)

mode of h for the G2.5 and G3.5 configurations, respec-
tively. Here both 2.5 PN and 3.5 PN capture the secular
behavior in the amplitude nicely. Unlike for the (‘ ¼ 2,
m ¼ 2) mode, here the PN amplitudes oscillate much more
strongly than the numerical amplitudes for the G2.5 con-
figuration, while 3.5 PN seems to capture both the short
(orbital frequency) time scale oscillations and the longer
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FIG. 27 (color online). The amplitude of the (‘ ¼ 2, m ¼ 2)
mode of c 4 for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. Note the very good
agreement between the 3.5 PN and numerical waveforms.
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FIG. 28 (color online). The amplitude of the (‘ ¼ 2, m ¼ 2)
mode of c 4 for the G3.5 configuration from the numerical and
3.5 PN simulations.
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FIG. 29 (color online). The amplitude of the (‘ ¼ 2, m ¼ 1)
mode of h for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. The secular oscillation
in the numerical amplitude occurs at roughly the precessional
frequency. Here the shorter time scale oscillations apparent in
the PN waveforms are much smaller in the numerical waveform.
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FIG. 30 (color online). The amplitude of the (‘ ¼ 2, m ¼ 1)
mode of h for the G3.5 configuration from the numerical and
3.5 PN simulations. The secular oscillation in the numerical
amplitude occurs at roughly the precessional frequency. Here
the shorter time scale oscillations (corresponding roughly to the
orbital period) are present in both waveforms with very similar
amplitudes.
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(precessional) frequency oscillation (until t� 1000M) for
the G3.5 configuration. The damping of the numerical
oscillations for the G2.5 configuration are likely a conse-
quence of the windowing procedure (which acts as a high-
frequency and low-frequency filter), as a similar damping
is not apparent in c 4 (see Figs. 30 and 32). Although the
G3.5 configuration has very low eccentricity (according to
3.5 PN), the effects of eccentricity can increase as the
binary separation falls below 15M (see Fig. 16). This effect
appears to be related to precession because the eccentricity
of nonprecessing binaries (see Fig. 15) decreases uni-
formly with binary separation. In addition, mode-mixing
effects may also be partially responsible for these oscilla-

tions in the amplitude of the (‘ ¼ 2, m ¼ 1) mode at the
orbital frequency. The secular oscillation in the amplitude
of the (‘ ¼ 2, m ¼ 1) mode matches the precessional
frequency (see Figs. 13 and 30), and is thus likely a direct
consequence of precession [the amplitude of the (‘ ¼ 2,
m ¼ 1) mode contains significant contributions from the
spins; see Eq. (3) in [109]].
The (‘ ¼ 2, m ¼ 1) mode of c 4, as seen in Figs. 31 and

32 again shows that the 3.5 PN waveforms are clearly more
accurate than the truncated 2.5 PN waveforms. The agree-
ment of the 3.5 PN waveforms for the G2.5 configuration is
remarkable. Note that the long time scale oscillation seen
in the (‘ ¼ 2, m ¼ 1) mode of h, which is likely due to
precession, is not apparent in c 4 of the G3.5 configuration.
However, as this effect is smaller in G3.5 (as seen by
comparing Figs. 31 and 32), it may be hidden in c 4 by
the ramp-up in amplitude of c 4 near merger.
Finally, in Fig. 33 and 34, we show the amplitudes of the

(‘ ¼ 3, m ¼ 3) mode of h for the G2.5 and G3.5 configu-
rations, respectively. An interesting feature of these modes
is that the late-time amplitude oscillations, which are
roughly at the orbital frequency, increase with time, indi-
cating that they are due to the precession-induced late-time
eccentricity apparent in Fig. 16. For the G2.5 configuration,
3.5 PN produces a remarkably good fit, capturing all os-
cillations in the amplitude until t� 1400M. On the other
hand, 3.5 PN does not capture the early-time oscillations in
the G3.5 configuration. A possible explanation for this
result is that, as seen in Figs. 17 and 18, both 3.5 PN and
the numerical simulation show similar eccentricities for the
G2.5 configuration, but 3.5 PN shows much lower eccen-
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FIG. 31 (color online). The amplitude of the (‘ ¼ 2, m ¼ 1)
mode of c 4 for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. Note the very good
agreement between the 3.5 PN and numerical waveforms.
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FIG. 32 (color online). The amplitude of the (‘ ¼ 2, m ¼ 1)
mode of c 4 for the G3.5 configuration from the numerical and
3.5 PN simulations.
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FIG. 33 (color online). The amplitude of the (‘ ¼ 3, m ¼ 3)
mode of h for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. Note the very good
agreement between the 3.5 PN and numerical waveforms. Also
note that the short time scale oscillations (orbital period) grow
with time at later times, indicating that, at least at later times,
they are due mainly to precession.
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tricity for the G3.5 configuration. This eccentricity leads to
the early-time oscillation in the amplitude of the (‘ ¼ 3,
m ¼ 3) mode that are not captured by 3.5 PN. However, as
the binary evolves, the effects of precession-induced ec-
centricity in the PN EOM increase and eventually domi-
nate. This causes the amplitude of the oscillations in the
3.5 PN waveform to increase and eventually become larger
than the numerical amplitude oscillations. In Figs. 35 and
36, we show the amplitude of the (‘ ¼ 3, m ¼ 3) mode of

c 4 for the G2.5 and G3.5 configurations. Here too 3.5 PN
gives a remarkably good estimation for the amplitude of
the mode. Note that the orbital-frequency oscillations seen
in Fig. 34 are not readily apparent in Fig. 36 (even in the
PN waveforms). This shows one advantage of analyzing h
over c 4; eccentricity and precessional effects are more
apparent in h.
From the amplitudes of each mode, we see that preces-

sion and eccentricity impart signatures on the modes of the
waveform at the orbital frequency. However, the long-time
oscillations in the amplitudes, here apparent only in the
(‘ ¼ 2, m ¼ �1) modes, seem to be due purely to preces-
sion, and occur at the precessional frequency.

2. Phases

In Figs. 37 and 38, we show the phase differences
between the 3.5 PN and numerical waveforms for the (‘ ¼
2, m ¼ 1), (‘ ¼ 2, m ¼ 2), and (‘ ¼ 3, m ¼ 3) modes.
Note that we calculate the phase of the PN and numerical
waveforms directly from the appropriate ð‘;mÞ mode and
do not add any additional phase factors (see Sec. IV). In all
cases we normalized the phase differences by dividing by
‘�. Note that we renormalize by ‘�, rather thanm�. If the
orbital plane were to lie along the xy plane, or equivalently,
we chose spherical coordinates such that the � ¼ 0 corre-
sponds to direction of normal to the orbital plane, then we
would expect the ð‘;mÞ modes to have frequency ! �
m!orbit, and an error in the orbital phase of ��orbit would
lead to an error in the phase of the ð‘;mÞ modes of
m��orbit. However, in that case the (‘ ¼ 2, m ¼ 1) mode
would be very small. Consequently, in our nonaligned spin
basis, the (‘ ¼ 2, m ¼ 1) mode is actually dominated by
contributions from the (‘ ¼ 2, m ¼ �2) modes (of the
aligned spin basis). Thus, in our configurations, the
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FIG. 34 (color online). The amplitude of the (‘ ¼ 3, m ¼ 3)
mode of h for the G3.5 configuration from the numerical and
3.5 PN simulations. Note that the short time scale oscillation at
later times grow with time, indicating that these later-time
oscillations are due to precession. The early-time oscillations
in the numerical waveform (at the same frequency) are likely due
to eccentricity.
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FIG. 35 (color online). The amplitude of the (‘ ¼ 3, m ¼ 3)
mode of c 4 for the G2.5 configuration from the numerical,
truncated 2.5 PN, and 3.5 PN simulations. Note the very good
agreement between the 3.5 PN and numerical waveforms.
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FIG. 36 (color online). The amplitude of the (‘ ¼ 3, m ¼ 3)
mode of c 4 for the G3.5 configuration from the numerical and
3.5 PN simulations.
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(‘ ¼ 2,m ¼ 1) mode has frequency 2!orbit and the error in
the phase scales like 2��orbit. Note that the renormalized
phase differences are qualitatively independent of the
mode. We therefore focus on the (‘ ¼ 2, m ¼ 2) mode.
In Fig. 39, we show the phase difference between the
numerical, 2.5 PN, and 3.5 PN (‘ ¼ 2, m ¼ 2) mode of h
for the G2.5 configuration. From the plot we see that the
phase difference improves with the higher PN order and
changes sign. It thus appears that still higher-order PN
corrections may make the waveform phases agree. As
seen in Figs. 19, 21, and 23, the truncated 2.5 PN phase
evolution is slower than that of the NR and 3.5 PN, and thus
its phase lags behind the other two. The 3.5 PN evolution
merges too quickly (but is still closer to the numerical
evolution) and thus its phase leads the numerical one.

3. Matching

In order to quantitatively compare the modes of the
truncated 2.5 PN and 3.5 PN waveforms with the numerical
waveforms we define the overlap, or matching criterion,
for the real and imaginary parts of each mode as

M<
‘m ¼ hRNum

‘m ; RPN
‘miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hRNum
‘m ; RNum

‘m ihRPN
‘m; R

PN
‘mi

q ; (26)

M=
‘m ¼ hINum‘m ; IPN‘miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hINum‘m ; INum‘m ihIPN‘m; IPN‘mi
q ; (27)

where R‘m ¼ Reðh‘mÞ, I‘m ¼ Imðh‘mÞ, and
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FIG. 38 (color online). The phase differences in h between the
numerical and 3.5 PN simulations for the G3.5 configuration in
the (‘ ¼ 2, m ¼ 1), (‘ ¼ 2, m ¼ 2), and (‘ ¼ 3, m ¼ 3) modes.
We multiplied the phase differences in the modes by a factor of
1=ð‘�Þ. Note that the normalized phase differences are qualita-
tively independent of the mode and arise from the orbital phase
error in the PN approximation. We divide by ‘�, rather thanm�,
because the (‘ ¼ 2, m ¼ 1) mode is dominated by mode mixing
from the (‘ ¼ 2,m ¼ �2) modes (see text for more details). The
vertical lines show the times when the (‘ ¼ 2, m ¼ 2) frequency
is M! ¼ 0:05 (t� 360M), M! ¼ 0:075 (t� 1252M), and
M! ¼ 0:1 (t� 1493M).
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FIG. 37 (color online). The phase differences in h between the
numerical and 3.5 PN simulations for the G2.5 configuration in
the (‘ ¼ 2, m ¼ 1), (‘ ¼ 2, m ¼ 2), and (‘ ¼ 3, m ¼ 3) modes.
We multiplied the phase differences in the modes by a factor of
1=ð‘�Þ. We divide by ‘�, rather than m�, because the (‘ ¼ 2,
m ¼ 1) mode is dominated by mode mixing from the (‘ ¼ 2,
m ¼ �2) modes (see text for more details). The vertical lines
shows the times when the (‘ ¼ 2, m ¼ 2) frequency is M! ¼
0:05 (t� 323M) and M! ¼ 0:075 (t� 1075M).
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FIG. 39 (color online). The phase difference in the (‘ ¼ 2,
m� 2) mode of h between the NR and PN waveforms for the
G2.5 configuration. The vertical axis denotes the number of
orbital rotations derived from GW cycle. Note that the normal-
ized phase differences are qualitatively independent of the mode
and arise from the orbital phase error in the PN approximation.
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hf; gi ¼
Z t2

t1

fðtÞgðtÞdt: (28)

Hence, M<
‘m ¼ M=

‘m ¼ 1 indicates that the given PN and

numerical mode agree. To compare PN and numerical
waveforms, we need to determine the time translation �t
between the numerical time and the corresponding point on
the PN trajectory. That is to say, the time it takes for the
signal to reach the extraction sphere (here r ¼ 100M). We
determine this time translation by finding the time trans-
lation near �t ¼ 100M that maximizes the agreement of
the early-time waveforms in the (‘ ¼ 2, m ¼ �2), (‘ ¼ 2,
m ¼ �1), and (‘ ¼ 3, m ¼ �3) simultaneously (in prac-
tice we look at the matching over the first 100M after the
spurious radiation has left the system). We find �t� 112,
in good agreement with the expectation for our observer at
r ¼ 100M. We also determine an alternate time transla-
tion, one full wavelength in the (‘ ¼ 2, m ¼ 2) mode
longer, that increases the matching of the (‘ ¼ 2, m ¼ 2)
mode over longer integration periods. On the other hand,
this new time translation, �t ¼ 233, causes the (‘ ¼ 3)
modes to be out of phase, leading to negative overlaps.
Thus by looking at the (‘ ¼ 2) and (‘ ¼ 3) modes simul-
taneously, we can reject this false match. The results of
these matching studies are summarized in Tables Vand VI.

As seen in the tables, the matching of the 3.5 PN and
numerical waveforms are significantly better than the
matching of the 2.5 PN and numerical waveforms for all
modes. Similarly, all PN modes match the numerical wave-
forms better over the shorter integration times. This is
consistent with the qualitative agreements in the wave-
forms seen in Figs. 19–24. Note that the 3.5 PN and
numerical waveform matches for all modes are signifi-
cantly better for the G3.5 configuration than the G2.5

TABLE V. The overlap (matching) of the real and imaginary
parts of the modes of h of the G2.5 configuration for the
truncated 2.5 PN and 3.5 PN waveforms and the numerical
waveforms for various integration times and PN time translation
�t. In all cases, we start the integration just after the numerical
initial data (spurious radiation) pulse leaves the system.

Integration Time 600 800 1000

Truncated 2.5 PN (�t ¼ 112:2)
Re (‘ ¼ 2, m ¼ 2) 0.789 0.615 0.365

Re (‘ ¼ 2, m ¼ 1) 0.705 0.501 0.292

Re (‘ ¼ 3, m ¼ 3) 0.596 0.286 �0:038

3.5 PN (�t ¼ 112:2)
Re (‘ ¼ 2, m ¼ 2) 0.975 0.922 0.693

Im (‘ ¼ 2, m ¼ 2) 0.976 0.924 0.723

Re (‘ ¼ 2, m ¼ �2) 0.975 0.922 0.693

Im (‘ ¼ 2, m ¼ �2) 0.978 0.926 0.723

Re (‘ ¼ 2, m ¼ 1) 0.982 0.938 0.687

Im (‘ ¼ 2, m ¼ 1) 0.977 0.924 0.699

Re (‘ ¼ 2, m ¼ �1) 0.984 0.939 0.707

Im (‘ ¼ 2, m ¼ �1) 0.980 0.933 0.711

Re (‘ ¼ 3, m ¼ 3) 0.908 0.794 0.418

Im (‘ ¼ 3, m ¼ 3) 0.916 0.795 0.435

Re (‘ ¼ 3, m ¼ �3) 0.909 0.782 0.403

Im (‘ ¼ 3, m ¼ �3) 0.912 0.794 0.426

3.5 PN (�t ¼ 233:3)
Re (‘ ¼ 2, m ¼ 2) 0.928 0.803 0.746

Re (‘ ¼ 2, m ¼ 1) 0.918 0.800 0.774

Re (‘ ¼ 3, m ¼ 3) �0:850 �0:602 �0:492

TABLE VI. The overlap of the real and imaginary parts of the
modes of h of the G3.5 configuration for the 3.5 PN waveforms
and the numerical waveforms. In all cases, we start the integra-
tion just after the numerical initial data (junk radiation) pulse
leaves the system.

Integration Time 600 800 1000

3.5 PN (�t ¼ 112:5)
Re (‘ ¼ 2, m ¼ 2) 0.986 0.964 0.895

Im (‘ ¼ 2, m ¼ 2) 0.987 0.962 0.900

Re (‘ ¼ 2, m ¼ �2) 0.986 0.964 0.895

Im (‘ ¼ 2, m ¼ �2) 0.987 0.962 0.901

Re (‘ ¼ 2, m ¼ 1) 0.904 0.912 0.843

Im (‘ ¼ 2, m ¼ 1) 0.916 0.901 0.820

Re (‘ ¼ 2, m ¼ �1) 0.920 0.908 0.833

Im (‘ ¼ 2, m ¼ �1) 0.917 0.903 0.816

Re (‘ ¼ 3, m ¼ 3) 0.938 0.891 0.738

Im (‘ ¼ 3, m ¼ 3) 0.919 0.868 0.721

Re (‘ ¼ 3, m ¼ �3) 0.931 0.880 0.733

Im (‘ ¼ 3, m ¼ �3) 0.906 0.857 0.721

TABLE VII. The overlap (matching) of the real and imaginary
parts of the modes of c 4 of the G2.5 configuration for the
truncated 2.5 PN and 3.5 PN waveforms and the numerical
waveforms for various integration times with the PN time trans-
lation �t ¼ 106:5 for the truncated 2.5 PN and �t ¼ 113:0 for
the 3.5 PN. In all cases, we start the integration after t ¼ 180.
The integration time means that the end of integration is the
same as that used in the overlap of h.

Integration Time 600 800 1000

Truncated 2.5 PN (�t ¼ 106:5)
Re (‘ ¼ 2, m ¼ 2) 0.900 0.744 0.435

Im (‘ ¼ 2, m ¼ 2) 0.898 0.717 0.469

Re (‘ ¼ 2, m ¼ 1) 0.824 0.654 0.408

Im (‘ ¼ 2, m ¼ 1) 0.851 0.675 0.431

Re (‘ ¼ 3, m ¼ 3) 0.767 0.472 0.00578

Im (‘ ¼ 3, m ¼ 3) 0.776 0.477 0.0102

3.5 PN (�t ¼ 113:0)
Re (‘ ¼ 2, m ¼ 2) 0.980 0.909 0.519

Im (‘ ¼ 2, m ¼ 2) 0.984 0.916 0.563

Re (‘ ¼ 2, m ¼ 1) 0.982 0.936 0.544

Im (‘ ¼ 2, m ¼ 1) 0.976 0.921 0.594

Re (‘ ¼ 3, m ¼ 3) 0.906 0.759 0.150

Im (‘ ¼ 3, m ¼ 3) 0.906 0.754 0.140
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configuration for the longer t ¼ 1000M integration time
[the differences between the matches are most striking for
(‘ ¼ 3, m ¼ �3) modes, where the matching is �0:7 for
G3.5 and �0:4 for G2.5]. The only place where the
matches for the G2.5 configuration are consistently better
than the matches for the G3.5 configuration is the is the
(‘ ¼ 2, m ¼ �1) modes for the shorter integration times.
Thus, it appears that the 3.5 PN waveforms, in general,
produce superior results for the more circular G3.5 con-
figuration, which is likely due to the fact that the higher PN
order B waveforms are accurate for quasicircular, rather
than eccentric, binaries.

In Tables VII and VIII we show the matching of the
modes of c 4 between 2.5 PN, 3.5 PN, and the numerical
c 4. Here we find a better match when we use a slightly
altered time offset. Note that matching is generally worse
than that observed with h, especially for the longer inte-
gration times. This is consistent with the observation that
the amplitude of c 4 increases more rapidly in time than h
(due to the effects of increasing frequency and the two time
derivatives). Thus a matching of c 4 emphasizes the dis-
agreement between the PN and numerical waveforms at
later times. Interestingly, the matching in G3.5 is signifi-
cantly better than G2.5 for the 1000M integration time,
particularly in the (‘ ¼ 3, m ¼ 3) mode, where the match-
ing between the 3.5 PN and numerical c 4 is 65% for G3.5
and only 14% for G2.5.

V. CONCLUSION

We analyzed the first long-term generic waveform pro-
duced by the merger of unequal mass, unequal spins,
precessing black-hole binaries (a shorter simulation of
this kind, which led to the discovery of the very large recoil
configuration, was reported in [15]). We demonstrated
eighth-order convergence of the waveform phase and
fourth-order convergence of the amplitude (consistent
with the order of accuracy of the extraction routine) in
the numerical results. These waveforms clearly show the
effects of eccentricity and precession on the amplitude in

the subleading (‘ ¼ 2, m ¼ 1) and (‘ ¼ 3, m ¼ 3) modes.
In particular, analyzing the (‘ ¼ 2, m ¼ 1) mode provides
a way of detecting precessional effects in the observed
waveforms. We have also found that there are two sources
of eccentricity for a generic binary. Residual eccentricity,
due to a nonideal choice of initial data parameters that
tends to damp out as the binary separation decreases, and
precession-induced eccentricity that grows as the orbital
separation falls below �15M (this increase in eccentricity
at later times is apparent in the (‘ ¼ 3, m ¼ 3) mode of h
in both the PN and numerical waveforms).
We have compared these waveforms with the truncated

2.5 post-Newtonian waveforms, as well as the waveforms
with the nonspinning 3.0 PN conservative and 3.5 PN
radiative corrections. We find a good initial agreement of
waveforms for the first six cycles, with overlaps of over
97% for the (‘ ¼ 2, m ¼ �2) modes, 90%–98% for the
(‘ ¼ 2, m ¼ �1), and over 90% for the (‘ ¼ 3, m ¼ �3)
modes. This provides a natural way to match numerical
waveforms to the post-Newtonian ones with a time trans-
lation (the same for all modes) motivated by the physical
location of the observer (see Fig. 20, for instance). The
agreement degrades as we approach the more dynamical
region of the late merger and plunge. The disagreement
begins in a region where the numerical waveform is
still very accurate. Thus it appears that the disagreement
is mainly due to errors introduced by truncating the PN
series. Hence the overlap should be improved significantly
by including 3.0 PN and higher-order conservative
and radiative corrections, including spin terms
[100,102,103,110,111].
In fact, our results indicate that higher-order PN correc-

tions to the orbital motion may further increase the accu-
racy of the PN waveforms. Although, the PN expansion has
not yet been shown to converge, we do find remarkably
better agreement in c 4 between the PN and numerical
waveforms when moving from a 2.5 PN EOM to a 3.5
EOM. This would appear to underscore the need for
higher-order post-Newtonian calculations of both spin-
orbit and spin-spin terms (especially in the EOM). Spin
effects first appear at 1.5 PN order, producing the spin-orbit
hang up effect [29,41]. Other spin effects, such as those due
to precession, generate more subtle effects in the wave-
forms, and require higher-order PN corrections to accu-
rately model (while subtle, these effects are also
responsible for the very large kicks seen in spinning bi-
naries with the spins oriented in the orbital plane). Our
results seem to indicate that calculating these higher-order
correction may prove to be invaluable for generating wave-
form templates from generic black-binary configurations.
As a final point, we note that in this paper we have begun
the exploration of the comparison PN and NR waveforms
for generic black-hole-binary configurations, and other
effects may yet be discovered that demonstrate further
differences in the predictions of PN and NR waveforms

TABLE VIII. The overlap of the real and imaginary parts of
the modes of c 4 of the G3.5 configuration for the 3.5 PN
waveforms and the numerical waveforms with �t ¼ 113:5. In
all cases, we start the integration after t ¼ 180. The integration
time means that the end of integration is the same as that used in
the overlap of h.

Integration Time 600 800 1000

3.5 PN (�t ¼ 113:5)
Re (‘ ¼ 2, m ¼ 2) 0.981 0.962 0.860

Im (‘ ¼ 2, m ¼ 2) 0.983 0.958 0.876

Re (‘ ¼ 2, m ¼ 1) 0.882 0.927 0.850

Im (‘ ¼ 2, m ¼ 1) 0.853 0.893 0.811

Re (‘ ¼ 3, m ¼ 3) 0.869 0.841 0.640

Im (‘ ¼ 3, m ¼ 3) 0.868 0.834 0.649
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in other regions of the vast black-hole-binary parameter
space.
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APPENDIX A: TRANSFORMATION OF THE ð‘;mÞ
MODES OF SPIN-WEIGHTED FIELDS UNDER

ARBITRARY ROTATIONS

Here we consider the spin-weighted spherical harmonics
in two different angular coordinate systems, ð�;�Þ and
ð�0; �0Þ, related to each other by a simple rotation. For
convenience, we will use � to denote the coordinates
ð�;�Þ and d� ¼ sin�d�d� to denote the volume element
on the unit sphere. To construct spin-weighted functions,
we need to define a null dyad qA on the unit sphere obeying
qAqA ¼ 0 and qA �qA ¼ 2 (indices are raised and lowered
with the unit sphere metric). Here we will use qA ¼ @� þ
i= sin�@� (see [112] for a review of the subject). Any two

choices for the dyad qA and q0A can differ by at most a
phase factor, i.e. q0A ¼ ei�qA. A spin-weight s field J
transforms as J ! J0 ¼ eis�J under this change in spin
basis. Of relevance here are the two dyads qA ¼
@� þ i= sin�@� and q0A ¼ @�0 þ i= sin�0@�0 . The choice

of qA fixes the ð operator on spin-weighted fields.
The spin-weighted spherical harmonics are constructed

as follows [108],

Ys
‘mð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘� jsjÞ!
ð‘þ jsjÞ!

s � ð�1ÞsðsY‘mð�Þ if s > 0
�ðjsjY‘mð�Þ if s < 0

; (A1)

where

ðf ¼ @�fþ i

sin�
@�f� sf cot�;

�ðf ¼ @�f� i

sin�
@�fþ sf cot�;

(A2)

for a function f of spin-weight s. In the�0 coordinates and
the corresponding q0A spin basis. Equations (A1) and (A2)
take on an identical form, but with the � coordinates
replaced with the�0 coordinates. Let J be a spin-weighted
s field of arbitrary spin weight that can be decomposed into
spin-weighted spherical harmonics. That is,

J ¼ X1
‘¼jsj

X‘
m¼�‘

J‘mY
s
‘mð�Þ: (A3)

We define a spin-zero potential j, such that

j ¼ X1
‘¼jsj

X‘
m¼�‘

j‘mY‘mð�Þ; (A4)

where

j‘m ¼ J‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘� jsjÞ!
ð‘þ jsjÞ!

s
p; (A5)

and p ¼ ð�1Þs if s > 0 and p ¼ 1 otherwise. Hence

J ¼
�
ðsj if s > 0
�ðjsjj if s < 0

: (A6)

Under a change of spin basis, J ! J0 ¼ eis�J but j ! j0 ¼
j. Thus

J0 ¼
�
ð0sj if s > 0
�ð0jsjj if s < 0

; (A7)

and

J0 ¼ X1
‘¼jsj

X‘
m¼�‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ jsjÞ!
ð‘� jsjÞ!

s
pj0‘mY

0s
‘mð�0Þ; (A8)

where

j0‘m ¼
Z

jY0
‘mð�0Þd�0: (A9)

Thus

J‘m ¼ j‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ jsjÞ!
ð‘� jsjÞ!

s
p; J0‘m ¼ j0‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ jsjÞ!
ð‘� jsjÞ!

s
p;

(A10)

where

J0‘m ¼
Z

J0Y0s
‘mð�0Þd�0; (A11)

and hence we can determine how the modes of J mix under
a rotation of the coordinates by looking at the modes of j.
It was shown in [108] that the relationship between the

spherical harmonic modes Y‘mð�Þ and Y0
‘mð�0Þ, where the

�0 coordinates are obtained from the � coordinates by a
rotation described by the Euler angles �, �, � in Sec. IV, is
given by

Y‘mð�Þ ¼ X‘
m0¼�‘

e�iðm0�þm�Þd‘m0mð��ÞY0
‘m0 ð�0Þ; (A12)

and hence
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j‘m ¼
Z

jY‘mð�Þd� ¼
Z

jY‘mð�Þd�0

¼
Z

j
X‘

m0¼�‘

eiðm0�þm�Þd‘m0mð��ÞY0
‘m0 ð�0Þd�0

¼ X‘
m0¼�‘

eiðm0�þm�Þd‘m0mð��Þj0‘m0 : (A13)

Finally, using Eq. (A10) we get

J‘m ¼ X‘
m0¼�‘

eiðm0�þm�Þd‘m0mð��ÞJ0‘m; (A14)

which is independent of the spin weight of J.
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