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Based on a unified quantum field theory of spinors assumed to describe all matter fields and their

interactions we construct the space-time structure of general relativity according to a general connection

within the corresponding spinor space. The tetrad field and the corresponding metric field are composed

from a space-time dependent basis of spinors within the internal space of the fundamental matter field.

Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature

of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The

equivalence principle and the property of background independence arise from the fact that all elementary

fields are composed from the fundamental spinor field. This means that the structure of space-time

according to general relativity seems to be a consequence of a fundamental theory of matter fields and not

a presupposition as in the usual setting of relativistic quantum field theories.
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I. INTRODUCTION

One of the central problems in contemporary theoretical
physics is the unification of quantum theory with general
relativity. This problem becomes manifest with respect to
the question of the relation between relativistic quantum
field theories being formulated on a given Minkowski
space-time background and yielding the conceptual frame-
work of the standard model of particle physics and the
general covariant description of space-time and gravity
according to general relativity. In this paper there is
made the attempt to derive the properties of the structure
of space-time according to general relativity from a fun-
damental quantum field theory of spinors. Such a unified
quantum field theory of spinors, with a self interaction term
of the fundamental spinor field being the origin of mass
and interaction of particles, has been suggested by
Heisenberg. We will start from this theory but formulate
it in a setting being background independent in a rigorous
sense. In Heisenberg’s original setting the theory was for-
mulated on a given Minkowski background. In contrast to
Heisenberg we will not presuppose an a priori metric
structure of space-time, not even in the sense of general
relativity.

The paper is structured as following. It consists of three
parts. In the first part there is first presented the basic idea
of the unified quantum field theory of spinors according to
Heisenberg. After this a short introduction gives a descrip-
tion of the space-time metric in terms of twistors in the
sense developed by Penrose. With the help of these ideas
introduced in the first part, in the second part there is
formulated a theory where the metric structure of space-
time appears as a consequence of a symplectic structure
combined with a general connection within the abstract
space of the fundamental spinor field. The action for the

fundamental spinor field is formulated by using a metric
constructed from a basis of spinor fields corresponding to
this connection from which there is also built an action for
gravity. In the third section an attempt is made to perform a
quantization of the gravitational field described in terms of
the basis in the space of the fundamental spinor field. Thus
the quantum theoretical description of the tetrad field or the
metric field, respectively, appears as a consequence of a
quantization concerning spinors assumed to be more fun-
damental in this approach.

II. PREPARATION

A. Unified quantum field theory of spinors

In the framework of relativistic quantum field theories
elementary particles are described by irreducible represen-
tations of the Lorentz group [1,2]. The simplest represen-
tation of the Lorentz group is given within a space of
spinors representing particles of spin one half. If we refrain
from possible supersymmetric extensions, all the elemen-
tary matter fields of the standard model are described by
spinor fields. All other kinds of fields like interaction fields
with spin one can in principle be thought to be composed
from spinor fields. Therefore Heisenberg suggested a uni-
fied quantum field theory of a fundamental spinor field
describing all matter fields and their interactions [3–5]. The
masses and interactions of particles in this theory are a
consequence of a self-interaction term of the elementary
spinor field. In terms of Weyl spinors the postulated fun-
damental field equation reads

i��@�c � l2��c �c��c ¼ 0; (1)

where c denotes aWeyl spinor, �c the adjoint Weyl Spinor,
and the �� denote the Pauli matrices with the unit matrix
�0 in two dimensions included. The quantity l represents a
fundamental constant of nature having the dimension of a
length. It is important to mention that gravity was omitted*kober@th.physik.uni-frankfurt.de
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in Heisenberg’s original setting of the theory which was
founded on the postulate of symmetry with respect to the
Lorentz group and the SUð2Þ symmetry group with respect
to the weak isospin. Vector bosons of spin one mediating
the interactions within the standard model can be seen as
states composed by a spinor state describing a particle and
a spinor state describing an antiparticle. This is in accor-
dance with the representation Dð12 ; 0Þ �Dð0; 12Þ ¼
Dð12 ; 12Þ �Dð0; 0Þ of the Lorentz group. In the original

setting of Heisenberg the elementary spinor field was a
doublet under the SUð2Þ isospin symmetry group but not
under the symmetry groups SUð3Þflavor and SUð3Þcolor of
the strong interaction, which are only approximate sym-
metries according to Heisenberg’s theory. Approaches to
incorporate the symmetries of the strong interaction and
supersymmetry to the theory can be found in [6–8]. But
this topic is of no interest here, because we are just dealing
with its relation to the structure of general relativity. Thus
the spinor can be seen as a multiplet concerning any
internal degree of freedom additionally to the spin
structure.

The field has to be quantized according to the quantiza-
tion procedure for fermionic fields postulating anticommu-
tation relations for the field giving rise to the exclusion
principle in the framework of quantum field theory. Thus
one is led to the following anticommutation relations for
the field:

fc �ðx; tÞ; �c �ðx0; tÞg ¼ �3ðx� x0Þ���; (2)

where fA; Bg � ABþ BA. An interaction process where
fermions exchange vector bosons, two electrons exchang-
ing a photon, for example, can be interpreted as a particle
state interacting with an antiparticle state moving back-
wards in time and building a composed state before this
state splits and there are two separated states representing
free particles again (see Fig. 1).

The question whether the fundamental constant l in (1)
plays the role of a smallest length like the Planck length
will be considered later if we will have introduced a
Lagrangian for gravity. Since the self-interaction term is
the origin of the masses and the interactions described by
the standard model, it has in each case to be connected with
the electroweak scale.

B. Spinors and the space-time metric

We consider an abstract complex two-dimensional vec-
tor space with elements of two component Weyl spinors.
The complex conjugated spinor to a spinor ’ in this space
shall be denoted with �’. An arbitrary spinor ’ can be
mapped to a vector in Minkowski space according to

k� ¼ �’��’: (3)

Let us further assume the space to be endowed with a

symplectic structure induced by a skew symmetric scalar
product which shall be denoted by ½�; ��. The property that
½�; �� is skew symmetric means that for two arbitrary spin-
ors’ and � the relation ½’;�� ¼ �½�;’� is valid. The two
forms of ½�; �� can be expressed by a matrix

��� ¼ 0 1
�1 0

� �
; (4)

implying that the skew symmetric scalar product of two
spinors ’ and � looks as follows:

½’;�� ¼ ���’
���: (5)

Thus ��� can be used to raise and lower indices of spinors.

Mapping a spinor ’� to the adjoint spinor ’� with respect
to the skew scalar product (5) means to map the contra-
variant vector in Minkowski space k� obtained from (3) to
the corresponding covariant vector k�. The group Spð2; CÞ
leaving the skew scalar product (5) invariant is isomorphic
to the SLð2;CÞ and thus to the homogeneous Lorentz group
giving rise to a relation to Minkowski space-time. From an
arbitrary basis within the spinor space consisting of two
spinors according to the two dimensions of the space, call
them ’ and �, a Minkowski space-time tetrad can be
constructed in the following way:

em0 ¼ 1

2
ð �’�m’þ ���m�Þ;

em1 ¼ 1

2
ð �’�m�þ ���m’Þ;

em2 ¼ 1

2
ið �’�m�� ���m’Þ;

em3 ¼ 1

2
ð �’�m’� ���m�Þ:

(6)

FIG. 1. Feynman graph of the self-interacting fundamental
spinor field: The horizontal double line represents a composed
state from a spinor state describing a particle and a spinor state
describing an antiparticle. At the vertices there coincide a state
of a free particle and a state of a free antiparticle moving
backwards in time.
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According to the relation

g�� ¼ em�e�m; (7)

the tetrad (6) corresponds to a metric tensor g�� with

signature ðþ;�;�;�Þ. In (7) we have used the fact that
we can get e�m from em� by using the dual spinors of ’ and

� according to (5). Note that Latin indices denote flat
indices and Greek indices denote curved indices. If we
make the following choice for the basis of spinors

’ ¼ 1
0

� �
; � ¼ 0

1

� �
; (8)

(6) and (7) yield the metric of flat Minkowski space-time
g�� ¼ ð1;�1;�1;�1Þ � 	��. According to these con-

siderations, there is a natural correspondence between a
two-dimensional spinor space endowed with a symplectic
structure and Minkowski space-time. A more elaborate
treatment of these concerns can be found in [9–11].

III. GENERAL RELATIVITYAND THE
STRUCTURE OF SPACE-TIME FROM THE

CONNECTION OFA FUNDAMENTAL SPINOR
FIELD

A. Connection of the spinor field and metric structure

According to Heisenberg we suggest that matter and its
interactions are described by a fundamental spinor field.
Heisenberg’s theory in the original setting is formulated on
a given Minkowski background. Approaches to incorpo-
rate gravity and to formulate the spinor field theory in a
general relativistic setting can be found in [12–14]. But
there the metric structure of space-time is presupposed and
the theory is just formulated on a given space-time back-
ground. A formulation of general relativity in terms of
spinors is postulated in twistor theory [15,16]. There
space-time vectors themselves are a consequence of a
postulated underlying spinor structure. In this paper an-
other aim is pursued . An attempt is made to derive the
properties of the gravitational field and thus the metric
structure of space-time from the properties of the abstract
internal space of the fundamental spinor field. At the
beginning we just assume that there exists a self-interacting
fundamental spinor field c ðx�Þ on a four-dimensional
manifold representing space-time before the introduction
of a metric structure. The corresponding spinor space shall
be endowed with a symplectic structure according to (4)
and (5). If one wants to compare two values of the spinor
field at two different space-time points, one has to define a
spin connection. Such a spin connection, call it A�

��, gives

a prescription how to do this and it represents the property
that it is possible to choose at every space-time point
another basis of spinors being equivalent to the definition
of a nontrivial connection. Since there can be chosen

arbitrary coordinates, one is led to the connection group
GLð2;CÞ. The GLð2;CÞ has the SLð2;CÞ and thus the
Lorentz group as a subgroup. According to this connection
one can define a covariant derivativer� with respect to the

spinor space

r� ¼ @�1þ iA�
��: (9)

Defining a spin connection A�
�� due to (9) is equivalent to

the definition of two independent spinor fields, call them ’
and �, depending on the space-time point, building a basis
of spinors and being constant with respect to the covariant
derivative (9) which means that they are defined by the
following relations:

r�’
� ¼ @�’

� þ iA�
��’

� ¼ 0;

r��
� ¼ @��

� þ iA�
���

� ¼ 0:
(10)

It makes no difference if we assume the connection A�
�� or

the basis of spinors consisting of ’ and � to be more
fundamental. Both representations contain the information
how to compare values of the fundamental spinor field
c ðx�Þ at different space-time points. Therefore it is also
possible to define the connection by (10) in terms of the
basis of spinors. If ’ and � are given, then the connection
A�
�� fulfilling the relations (10) has the following shape:

A�
�� ¼ �i

@��
�’� � @�’

���

�
�’

��

; (11)

where we have used the symplectic expression ��� intro-

duced in (4) defining the relation between ’� and ’�. In
this sense the covariant derivative (9) depends on ’ and �

r� ¼ @�1þ iA�
��ð’;�Þ: (12)

If we transport a spinor from one point to another, we are
according to (9) and (10) dealing with local basis trans-
formations corresponding to a transition to a new value c 0
of the spinor field c appearing in (1)

c ¼ c ’’þ c �� ! c 0 ¼ c ’’
0 þ c ��

0; (13)

which is equivalent to the old value with respect to the

nontrivial connection A��
� .

The tetrad defined above (6) leads for all spinors to a
metric being proportional to the Minkowski metric. In
order to obtain general metrics we have to define an
extended tetrad according to
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em� ¼ 1

2

’�m’þ ��m�
’�m�þ ��m’
i’�m�� i��m’
’�m’� ��m�

0
BBB@

1
CCCAþ ’�m@��� ��m@�’

"��’
���

;

(14)

where an additional term appears being equivalent to the
connection expressed with one Minkowski space index
instead of two spin indices. For the case of a constant basis
of spinor fields ’ and � corresponding to a vanishing
spinor connection the second term vanishes and the tetrad
(14) reduces to (6) leading to the special case of a flat
Minkowski metric.

According to (7) and (14) from the basis of spinors we
can construct a tetrad field em�ð’;�Þ and a metric field

g��ð’;�Þ respectively having signature ðþ;�;�;�Þ be-
cause of the assumed symplectic structure and thus are led
to a gravitational field. Since the metric is constructed from
the connection, respectively, the basis of spinor fields and
since they shall constitute the metric structure of space-
time in our theory, the general covariance principle of
general relativity is related to the arbitrary coordinate
transformations within the spinor space. In accordance
with usual general relativity our covariant derivative is
defined in such a way that it leaves the two spinor fields
(10) constant, defining an independent basis of spinors at
each space-time point. Since the spinor connection leads to
a tetrad due to (14) and to a metric with Minkowski

signature due to (7), the fact that matter is composed by
spinor fields could be seen as the reason why space-time
has a Lorentz structure and thus the covariant derivative (9)
also leaves the tetrad and the metric constant. This means
that we can say that the spinor field is the origin of the
metric structure. This hierarchy concerning the origin of
the space-time structure, where the tetrad and the metric
are derived quantities from an underlying spin structure of
a fundamental matter field, is illustrated in Fig. 2. The idea
that a connection is more fundamental than the tetrad and
the metric, respectively, is also held in Ashtekar’s new
formulation of Hamiltonian gravity [17–19] and the corre-
sponding approach for the quantization of gravity. But
there the connection is not associated with a fundamental
matter field being described by spinors.

B. Matter action and relation to the gauge description
of gravity

In the usual gauge description of gravity (see [20] for
example) one begins with a Lagrangian of a matter field on
Minkowski space-time being invariant under global trans-
formations of the Poincaré group and postulates invariance
under the corresponding local transformations. In [21]
there has been suggested a spin gauge theory of gravity
with gauge group SUð2Þ �Uð1Þ. According to this ap-
proach one begins with a spinor field and postulates invari-
ance under local transformations within the space of Weyl
spinors. This leads to a spin connection and from this one
can define a field strength and thus one obtains a theory
being equivalent to the linear approximation of general
relativity. But this theory is not background independent.
It does not even suppose that there are perturbations of the
flat Minkowski metric. According to the theory in [21]
gravity is a phenomenon completely independent of the
space-time metric and is instead formulated on a
Minkowski background given a priori. Besides it does
not presuppose a unified theory of spinors and thus the
interaction with gravity of interaction fields mediated by
spin one particles is not included.
In contrast to Heisenberg’s theory [3–5] and the spin

gauge description of gravity [21] we do not assume a
Minkowski structure of space-time and no metric field at
the beginning. It is just assumed that there exists a spinor
field c ðx�Þ defined on a four-dimensional differentiable
manifold representing space-time from which all other
fields are assumed to be composed. This leads to a back-
ground independent theory of gravity in a rigorous sense,
because the gravitational field is a consequence of the spin
connection of the fundamental matter field. Since in our
theory we do not assume any a priori metric structure, we
cannot define an action and then use the gauge principle.
We first have to define the general metric structure with the
help of the properties of the spinor space and then we can
build the action. Thus the fundamental action correspond-
ing to a general relativistic setting of (1) has directly to be

FIG. 2. Hierarchy of space-time structure: At the beginning
there is only assumed the structure of a differential manifold. On
this manifold representing space-time there is defined a spinor
field and the metric properties of space-time are derived from the
properties of this abstract space of the spinor field.
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formulated with incorporation of the covariant derivative
(9) containing the connection of the spinor field and on a
background e

�
mð’;�Þ respectively g��ð’;�Þ derived from

this connection, respectively, from the fields ’ and �
directly related to the connection (9). Thus we assume
the action for the spinor field to look as follows:

Sm ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð’;�Þ

q �
i �c�me

�
mð’;�Þr�c

� l2

2
�c��c �c��c

�
; (15)

where gð’;�Þ ¼ det½g��ð’;�Þ� and thus
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gð’;�Þp ¼

det½e�mð’;�Þ�. Note that according to (12) like e�mð’;�Þ
and g��ð’;�Þ the connection A�

��ð’;�Þ within the cova-

riant derivative r� also depends on ’ and �. This action

and the corresponding Lagrangian are invariant under
GLð2;CÞ transformations.

C. Action of the gravitational field

The action of the gravitational field has to be composed
from the spin connection or the corresponding couple of
spinor fields. In analogy to usual general relativity we can

define a field strength tensor F��
�� ð’;�Þ (corresponding to

the Riemann tensor) as the commutator of the covariant
derivatives

F��
�� ð’;�Þ ¼ �i½r�;r��

¼ @�A
��
� ð’;�Þ � @�A

��
� ð’;�Þ

þ iA�

� ð’;�ÞA
�

� ð’;�Þ
� iA�


� ð’;�ÞA
�
� ð’;�Þ; (16)

where ½A; B� � AB� BA. Note that the connection A��
�

appearing within the field strength tensor is defined by (10)
and (11). From this we can define a gravity action corre-
sponding to the action formulated within the spin gauge
theory of gravity [21]. As already mentioned this theory is
not background independent and it does not contain a self-
interacting spinor field assumed to be fundamental.
However, we will use its dynamics in our approach which
is shown to be equivalent to Einstein gravity with respect to
the linearized approximation in [21]. This leads to the
following gravity action:

Sg ¼ 1

g

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð’;�Þ

q
g��ð’;�Þg��ð’;�ÞF��

�� ð’;�Þ
� F����ð’;�Þ; (17)

where g is a fundamental constant describing the strength
of gravity and being proportional to the usual gravitational
constant G according to the relation

g ¼ 32�G: (18)

As in the matter action there appear the spinor basis fields

’ and � from the connection in the gravity action, which
build a basis in the space of the fundamental matter field
and define the tetrad field and the metric field. Using (16)
in (17), the gravity action can be written more elaborately

Sg ¼ 1

g

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð’;�Þ

q
g��ð’;�Þg��ð’;�Þ

� ð2@½�A��
�� ð’;�Þ@�A���ð’;�Þ

þ 4i@½�A
��
�� ð’;�ÞA��
ð’;�ÞA�
�ð’;�Þ

� 2A�

½� ð’;�ÞA
�

�� ð’;�ÞA���ð’;�ÞA���ð’;�ÞÞ:
(19)

The brackets ½��� ¼ ��� �� denote antisymmetriza-
tion with respect to � and �. The dynamical behavior of
the tetrad field e

�
mð’;�Þ and the metric field g��ð’;�Þ is

also completely determined by (17), since they are defined
by ’ and �. If we want to consider the interaction of the
gravitational field with matter described by the fundamen-
tal spinor field according to our approach, we have to
include the corresponding Lagrangian (15). Thus the com-
plete action appears as the sum of the matter action of the
fundamental spinor field (15) and the gravity action (17)
related to the connection and the basis of spinor fields,
respectively. With this assumption the fundamental action
of nature reads

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð’;�Þ

q �
1

g
g��ð’;�Þg��ð’;�ÞF��

�� ð’;�Þ
� F����ð’;�Þ þ i �c�me

�
mð’;�Þr�c

� l2

2
�c��c �c��c

�
: (20)

It is obvious that besides the fundamental constants of
special relativity and quantum theory, the speed of light c
and Planck’s constant h, which are set equal to one as
usual, the constant l and the constant g, defining a hier-
archy between the action of the fundamental matter field c
and the action of the gravitational field represented by ’
and �, appear as the only fundamental constants in this
theory. Thus the hierarchy between the electroweak and the
Planck scale has to be a consequence of the relation
between l and g, where l seems to play the role of a
fundamental mass scale and g is related to the usual
gravitational constant G by (18). Since the metric structure
of space-time is a consequence of the properties of the
spinor space of matter, the fact that the action (20) is
invariant under arbitrary transformations of the GLð2;CÞ
reflects the general covariance of the matter and the gravity
action. Variation of (20) with respect to �c leads to the
fundamental field equation for matter

i�me�mð’;�Þr�c � l2��c �c��c ¼ 0 (21)

and variation with respect to �’ and �� leads to the funda-
mental equations for the gravitational field corresponding
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to Einstein’s equation

�
2g��ð’;�Þg��ð’;�Þ @F

��
�� ð’;�Þ
@ �’

F’���ð’;�Þ þ 2
@g��ð’;�Þ

@’
g��ð’;�ÞF��

��F����ð’;�Þ

� en�ð’;�Þ@e
n�ð’;�Þ
@ �’

g��ð’;�Þg��F��
�� ð’;�ÞF����ð’;�Þ

�

¼ g

�
�i �c�m @e

�
mð’;�Þ
@ �’

r�c þ en�ð’;�Þ@e
n�ð’;�Þ
@ �’

� ½i �c�me
�
mð’;�Þr�c � l2 �c��c �c��c �

�
;

�
2g��ð’;�Þg��ð’;�Þ @F

��
�� ð’;�Þ
@ ��

F����ð’;�Þ þ 2
@g��ð’;�Þ

@�
g��ð’;�ÞF��

��F����ð’;�Þ

� en�ð’;�Þ@e
n�ð’;�Þ
@ ��

g��ð’;�Þg��F��
�� ð’;�ÞF����ð’;�Þ

�

¼ g

�
�i �c�m @e�mð’;�Þ

@ ��
r�c þ en�ð’;�Þ@e

n�ð’;�Þ
@ ��

� ½i �c�me
�
mð’;�Þr�c � l2 �c��c �c��c �

�
: (22)

Here we have used that �
ffiffiffiffiffiffiffi�g

p ¼ � det½e�m� ¼
� det½e�m�e�n�e�n and

� �’e
�
mð’;�Þ ¼ @e�mð’;�Þ

@ �’
� �’;

� ��e
�
mð’;�Þ ¼ @e�mð’;�Þ

@ ��
� ��;

(23)

where � �’ denotes variation with respect to �’ and � ��

denotes variation with respect to ��. The terms arising
from the matter action are written on the right-hand sides
of Eqs. (22). Thus the sum of their right-hand sides,
�Smatter

� �’ þ �Smatter

� �� , can be seen as the analogue to the
energy-momentum tensor appearing in Einstein’s equa-
tions. The dynamical behavior of e�mð’;�Þ and g��ð’;�Þ
is indirectly determined by the above equations for’ and�
leading to

@
e
�
mð’;�Þ ¼ @e�mð’;�Þ

@’
@
’þ @e�mð’;�Þ

@�
@
�; (24)

@
g
��ð’;�Þ ¼ @g��ð’;�Þ

@’
@
’þ @g��ð’;�Þ

@�
@
�: (25)

D. Interpretation and conceptual issues

From a conceptual or philosophical point of view back-
ground independence being connected to diffeomorphism
invariance is the decisive property of general relativity. It is
one of the central tasks of the search for a quantum theory
of gravity to find a general relativistic setting of quantum
field theories making allowance for this central principle.
This topic is discussed elaborately in [22,23] for example.
The gravity theory supposed here is background indepen-
dent in an even more rigorous sense. In the usual setting of
general relativity the metric structure of space-time is not
an absolute structure anymore like in special relativity. It
becomes a dynamical entity itself. Since all matter fields

live on space-time, they all couple to gravity in the same
manner. This is the origin of the equivalence principle. But
conceptually they are separated from the gravitational field
anyhow. There are in principle conceivable arbitrary types
of fields interacting in arbitrary ways defined on space-
time which structure is described by general relativity.
Space-time connections are defined by the metric field
representing gravity and defining its interaction with mat-
ter but being conceptually independent. In the theory sug-
gested here there is only the fundamental spinor field at the
beginning. The connection of this matter field, respec-
tively, the corresponding basis of spinor fields are the
origin of the tetrad and thus the metric and not a metric
field defined a priori. This is the reason why the principle
of background independence seems to appear in an even
more rigorous sense. The metric structure of space-time
reflects the properties of elementary matter and is not just
dynamically related to it due to the field equations for the
metric field. This gives rise to a relationalistic attitude
concerning the nature of space-time, especially its metric
structure. Thus gravity can be seen as a gauge theory with
respect to the fundamental spinor field of matter not pre-
supposing a metric structure of space-time but being the
origin of it. As already mentioned this is in contrast to the
usual gauge theoretic descriptions of gravity.
According to (17) like matter the gravitational field itself

can be described as a theory of spinors on a fundamental
level in our theory. Therefore not only matter but also
gravity itself has its origin in a spinor formulation. This
leads to a unification in a very radical sense which extends
Heisenberg’s theory which does not refer to gravity in the
original setting. In the sense of (7) and (14) the tetrad
description of the gravitational field although a conse-
quence of an even more fundamental spinor description
can be seen as more fundamental than the metric descrip-
tion anyhow.
Independent of these considerations the structure of

space-time as a four-dimensional manifold has to be
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taken as a basic assumption in the approach presented in
this paper. As already mentioned in the twistor approach of
Penrose the structure of space-time as a ð3þ
1Þ-dimensional manifold is itself connected to an
underlying spin structure. But there the question of a
unified description of matter fields is omitted. In
von Weizsaecker’s reconstruction of physics [24,25] there
is even derived the existence of a ð3þ 1Þ-dimensional
space-time from the quantum theory of binary alternatives
leading to spinors also. It has its origin in deep philosoph-
ical reflections about the meaning of quantum theory as a
fundamental theory of nature not presupposing the struc-
ture of space-time as a ð3þ 1Þ-dimensional manifold but
having it as a consequence.

IV. APPROACH FOR A QUANTIZATION
OF GRAVITY

A. Program for a quantization of the fundamental
spinor fields describing gravity

In the framework of the canonical quantization of grav-
ity (see [26–28] for example) there is performed a foliation
of space-time ��R by choosing a spacelike hypersur-
face � and thus separating a timelike direction R. Then
there is introduced an induced metric hab on the three-
dimensional submanifold�, where a and b describe spatial
coordinates. The definition of the time coordinate allows
one to define a canonical conjugated momentum �ab cor-
responding to hab by referring to the usual Einstein-Hilbert
action expressed in terms of the new variables and thus one
is led to a Hamiltonian H for gravity formulated in terms
of hab and �ab. In the approach of quantum geometrody-
namics based on these quantities there are postulated com-
mutation relations between hab and �ab and thus hab and
�ab become operators acting on quantum states �½habðxÞ�
depending on habðxÞ. After this quantization procedure
there have to be implemented constraints to the states
�½habðxÞ� to get the space of real physical states. In the
sense suggested by Dirac, the constraints are implemented
as conditions on the states �½habðxÞ�. Since in our ap-
proach the spin connection of the fundamental matter field
is assumed to be fundamental for gravity and the tetrad and
the metric, respectively, are a consequence of the combi-
nation of the spinors representing a basis within the spinor
space, the quantization of the tetrad field and the metric
field have to be a consequence of the quantization of the
more fundamental spinor connection structure connected
to the spinor fields ’ and �. In contrast to the quantization
according to quantum geometrodynamics it makes no
sense to consider an induced metric referring to the sub-
manifold describing the spatial part of space-time after a
splitting of space-time. The reason is that the fields’ and�
determine the complete metric whereas the component of
the metric with the positive sign refers to the chosen time
direction. Therefore there can be specified a time direction
t without a splitting of the metric. Thus the quantization

conditions of ’ and � and the corresponding canonical
momenta will imply quantum theoretical properties refer-
ring to the complete metric. The canonical conjugated
momenta have to be defined according to (17) in the usual
way with respect to the chosen time coordinate

�’ ¼ �Sg
�@t’

; �� ¼ �Sg
�@t�

: (26)

The choice of the time coordinate can be performed ac-
cording to the usual formulation of Hamiltonian gravity
because the fields ’ and � representing the connection of
the spinor field have a metric structure as a consequence
with respect to which there can be performed a foliation
into a spacelike hypersurface and a time direction. Note
that the time coordinate has no absolute meaning in this
context. It corresponds to this foliation of space-time into
Cauchy hypersurfaces. The covariance of general relativity
is maintained because of the equal status of all possible
foliations of this kind (see [26] for example).
There arises the question of how the fields ’ and � have

to be quantized, with commutation or with anticommuta-
tion relations. If we remember that ’ and � represent a
spinor basis of the matter field c in (1) implying that c can
be expressed as a linear combination of them according to
(13), one has to postulate anticommutation relations to
maintain the validity of the anticommutation relations of
the matter field (2). Thus the quantization rules read

f’�ðx; tÞ; ’�ðx0; tÞg ¼ f��
’ðx; tÞ;��

’ðx0; tÞg ¼ 0;

f’�ðx; tÞ;��
’ðx0; tÞg ¼ i����3ðx� x0Þ;

f��ðx; tÞ; ��ðx0; tÞg ¼ f��
�ðx; tÞ;��

�ðx0; tÞg ¼ 0;

f��ðx; tÞ;��
�ðx0; tÞg ¼ i����3ðx� x0Þ;

f’�ðx; tÞ; ��ðx0; tÞg ¼ f’�ðx; tÞ;��
�ðx0; tÞg

¼ f��
’ðx; tÞ; ��ðx0; tÞg

¼ f��
�ðx; tÞ;��

’ðx0; tÞg ¼ 0:

(27)

This implies quantum states�½’ðxÞ; �ðxÞ� depending on’
and � on which ’ and � as well as the canonical con-
jugated momenta �’ and �� are acting as operators. The

Hamiltonian constraints can be specified by defining a
Hamiltonian for ’ and � from (17)

H ð’;�Þ ¼ �’@t’þ��@t��Lð’;�Þ; (28)

with the Lagrangian defined by (17) according to Sg ¼R
d4xL and looking as follows:

Lð’;�Þ ¼ 1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð’;�Þ

q
g��ð’;�Þg��ð’;�ÞF��

�� ð’;�Þ
� F����ð’;�Þ: (29)

From (28) one can formulate the dynamical constraints
(see [2] for example) according to the Heisenberg picture
of the dynamics of quantum theory described by the com-
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mutator of the field operators with the Hamiltonian

@t’ ¼ i½H ; ’�; @t� ¼ i½H ; ��: (30)

The dynamics of the tetrad field and the metric field being
composed from’ and � is also determined by the relations
(30) and thus by the Hamiltonian (28). This leads to the
equations

@te
�
mð’;�Þ ¼ i½H ; e�mð’;�Þ�; (31)

@tg
��ð’;�Þ ¼ i½H ; g��ð’;�Þ�: (32)

The quantum theoretical behavior of the operators describ-
ing the tetrad field e�mð’;�Þ and the metric field g��ð’;�Þ
respectively have to be considered as derived from the
quantization rules of ’ and �.

B. Linearized approximation

The full gravity action expressed in terms of’ and� and
the corresponding canonical momenta have a very compli-
cated mathematical structure. Therefore there will be con-
sidered the case of a linear approximation, where the fields

’ and � are assumed to be roughly free fields without self-
coupling. In such a linear approximation of gravity one can
assume the fundamental spinor fields � and ’ to be
roughly constant. In appropriate coordinates this means

’ 	 1
0

� �
¼ const; � 	 0

1

� �
¼ const: (33)

With this assumption one can also consider g��ð’;�Þ ¼
em�ð’;�Þe�mð’;�Þ to be roughly constant and thus in (17)

one can set g��ð’;�Þ 	 	��. The Lagrangian in terms of

the connection A��
� appearing in (19) corresponding to (29)

reads in such a linear approximation

L ð’;�Þ ¼ 2

g
@�A

��
� ð’;�Þ@½�A��

��ð’;�Þ: (34)

To calculate the canonical momenta, we have to use the
explicit expression of the gravity action in terms of ’ and
�. We obtain this expression by using (11) in (34). This
leads to the following expression for the gravity
Lagrangian in terms of ’ and �:

1

g
F��
�� ð’;�ÞF��

��ð’;�Þ ¼
2

g

�
@��

�@½���@�’
�@��’� � @��

�@½���@�’
�@��’�

’��
� � @�ð’
�


Þ@½�ð’��
�Þ@���@��’�

ð’��
�Þ3

� @½�ð’
�

Þð@���@�’

�@����’� þ @�’
�@��

�@��’���Þ
ð’��

�Þ3

þ @½�ð’
�

Þð@���@�’

�@������ þ @�’
�@��

�@��’�’�Þ
ð’��

�Þ3
�
: (35)

From this we can get the canonical momenta �’ and �� (26)

��
’ ¼ 2

g

�
4��’ð’��

�Þ2 � 2!’�
� � @�ð’
�


Þ@½�ð’��
�Þ@0���

ð’��
�Þ3

þ��ð��’�� þ ���’� � ��’’� � �����Þ
ð’��

�Þ3

� þ
’ð�� � ’�Þ þ 2!��
’ ð’� � ��Þ

ð’��
�Þ3

�
;

��
� ¼ 2

g

�
4���ð’��

�Þ2 � 2!�’
� � @�ð’
�


Þ@½�ð’��
�Þ@0�’�

ð’��
�Þ3

þ’�ð��’�� þ ���’� � ��’’� � �����Þ
ð’��

�Þ3

� þ
�ð’� � ��Þ þ 2!��
� ð�� � ’�Þ

ð’��
�Þ3

�
;

(36)

where we have defined the following quantities:

!��
’ � @½�ð’
�


Þ@���@0�’�; !��
� � @½�ð’
�


Þ@�’�@0���; !’ � @½0ð’
�

Þ@���@��’�;

!� � @½0ð’
�

Þ@�’�@����; ��’ � @��

�@½���@
0�’�; ��� � @�’

�@½�’�@
0���;


’ � @½0ð’��
�Þ@���@����; 
� � @½0ð’��

�Þ@�’�@��’�:

(37)

Using these canonical momenta in (27) leads to the quantization rules of the linear approximation. The corresponding
Hamiltonian can be obtained by inserting (35) and (36) in (28) and reads
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H ¼ 2

g

�
4��’ð’��

�Þ2 � 2!’�
� � @�ð’
�


Þ@½�ð’��
�Þ@0���

ð’��
�Þ3

þ��ð��’�� þ ���’� � ��’’� � �����Þ
ð’��

�Þ3

�þ
’ð�� � ’�Þ þ 2!��
’ ð’� � ��Þ

ð’��
�Þ3

�
@0’�

þ 2

g

�
4���ð’��

�Þ2 � 2!�’
� � @�ð’
�


Þ@½�ð’��
�Þ@0�’�

ð’��
�Þ3

þ’�ð��’�� þ ���’� � ��’’� � �����Þ
ð’��

�Þ3

�þ
�ð’� � ��Þ þ 2!��
� ð�� � ’�Þ

ð’��
�Þ3

�
@0��

� 2

g

�
@��

�@½���@�’
�@��’� � @��

�@½���@�’
�@��’�

’��
� � @�ð’
�


Þ@½�ð’��
�Þ@���@��’�

ð’��
�Þ3

� @½�ð’
�

Þð@���@�’

�@����’� þ @�’
�@��

�@��’���Þ
ð’��

�Þ3

þ @½�ð’
�

Þð@���@�’

�@������ þ @�’
�@��

�@��’�’�Þ
ð’��

�Þ3
�
: (38)

This quantization procedure gives also rise to (anti)com-
mutation relations for the tetrad field ½em�ðx; tÞ; en�ðx0; tÞ� �
0 and the metric field ½g��ðx; tÞg��ðx0; tÞ� � 0 respectively
and thus to a quantum state depending on the metric
�½g��ðxÞ� ¼ �½g��ð’ðxÞ; �ðxÞÞ�. This means that the
quantum theoretical description of the gravitational field
is related to the quantization of the fundamental spinor
field.

V. SUMMARY

We have suggested that the space-time structure of
general relativity could be the consequence of a connection
of a fundamental self-interacting spinor field defined on a
four-dimensional differential manifold representing space-
time before the introduction of gravity and a corresponding
metric structure. In such a description background inde-
pendence and general covariance seem to become even
more rigorous than in usual general relativity since the
gravitational field representing the metric structure of
space-time is directly connected to the properties of the
spin structure of a matter field assumed to be fundamental.
In this sense one could assert that the gravitational field and
thus the metric structure of space-time are not as funda-

mental as matter fields but are a consequence of these
fields. Thus a relationalistic view of space-time, at least
its metric structure, appears in a completely new way in
this approach. As a consequence of the fact that the dy-
namics of the connection is expressed by two spinor fields
assumed to be fundamental for gravity, the dynamical
behavior of the metric field is derived from a more funda-
mental action referring to these spinor fields. The quanti-
zation of the gravitational field also occurs in a completely
new way, because the quantum theoretical description of
the gravitational field is derived from more fundamental
canonical quantization rules of the couple of spinor fields
related to the representation of the fundamental spinor field
describing matter. Thus the quantization of gravity is di-
rectly connected to the quantization of the fundamental
spinor field being at the origin of all other fields. Altogether
the presented theory seems to represent a very interesting
approach to reconciling the decisive conceptual assertions
of quantum field theory and general relativity.
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