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We study the phase space structure of the Jackiw-Teitelboim model in its connection variables

formulation where the gauge group of the field theory is given by local SLð2;RÞ [or SU(2) for the

Euclidean model], i.e. the de Sitter group in two dimensions. In order to make the connection with two-

dimensional gravity explicit, a partial gauge fixing of the de Sitter symmetry can be introduced that

reduces it to space-time diffeomorphisms. This can be done in different ways. Having no local physical

degrees of freedom, the reduced phase space of the model is finite dimensional. The simplicity of this

gauge field theory allows for studying different avenues for quantization, which may use various (partial)

gauge fixings. We show that reduction and quantization are noncommuting operations: the representation

of basic variables as operators in a Hilbert space depends on the order chosen for the latter. Moreover, a

representation that is natural in one case may not even be available in the other leading to inequivalent

quantum theories.
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I. INTRODUCTION

The Jackiw-Teitelboim (JT) model [1,2] is one of the
simplest but nontrivial formulations of general relativity
(GR) in two-dimensional space-time with cosmological
constant k. Its action is given by

SJT ¼ 1

2

Z
d2x

ffiffiffiffiffiffiffi�g
p

c ðR� 2kÞ: (1.1)

It is invariant under space-time diffeomorphisms and leads
to the Liouville equation

R� 2k ¼ 0: (1.2)

It contains only a finite number of degrees of freedom,
namely one (here we assume the space-time topologyM ¼
S1 � R). The model may be quantized in the original
variables of Jackiw and Teitelboim in a canonical frame-
work including the two first class constraints correspond-
ing to space-time diffeomorphism invariance [1,3].

On the other hand, one may take profit of its equivalence
with a BF theory [4–6], which has a structure similar to the
first order formulation of four-dimensional GR in
Ashtekar’s variables. Here, instead of being the four-
dimensional Lorentz group, the gauge group is that of
two-dimensional de Sitter or anti-de Sitter symmetry SO
(1, 2), or SO(3) in the Euclidean de Sitter case—or better
their covering groups, SLð2;RÞ � SUð1; 1Þ or SU(2), re-
spectively. The fields are a gauge connection 1-form! and
a scalar � in the adjoint representation. A quantization in

the Euclidean case was presented in [7], using spin network
and spinfoam techniques [8].
The canonical formulation of the BF theory gives rise to

three first class constraints whose Poisson bracket algebra
reproduces the three-dimensional Lie algebra of the gauge
group. The quantization may follow various roads, using
some complete or partial gauge fixing [5,6,9–12], or no
gauge fixing at all [7,13]. In [11], a time gauge has been
used, which consists in the vanishing of the connection
component!0

x—which is interpreted as the space compo-
nent of the zweibein (2-bein) form e0—with the purpose of
simulating the time gauge fixing of four-dimensional grav-
ity leading to the Ashtekar variables formulation [8]. This
partial gauge fixing leads to a reduction of the number of
first class constraints to two, corresponding to the space-
time diffeomorphism invariance—namely, one constraint
generating the space diffeomorphisms and the other one
playing the role of the Hamiltonian constraint.
Despite the extensive literature studying the JT model,

there is, to our knowledge, no complete treatment of the
quantization of the Lorentzian sector in its first order
formulation using loop variables (for reviews on other
methods see [14,15]). The main difficulty is technical:
the fact that the gauge group in that case is noncompact
precludes the possibility of using the standard quantization
techniques that are applicable in the Riemannian case. The
purpose of the present paper is twofold.
On the one hand, we study in detail the quantization of

the model in the Lorentzian sector. This is achieved
through a minimalistic application of the techniques de-
veloped in [16] which can also be introduced from the
point of view of [17]. It is by now known [18] that the
general case of a gauge theory with noncompact internal
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gauge symmetries presents important difficulties that are
not completely resolved by the methods proposed in [16].
Interestingly, those difficulties vanish in the two-
dimensional case and the quantization presented here is
well defined.

On the other hand, we propose a new partial gauge fixing
defined by the vanishing of one component of the scalar
field�, to compare the corresponding quantum theory with
the theories already constructed [7] or under construction
[12]. The question makes sense since it is well known
[19,20] that, even in theories with a finite number of
degrees of freedom, it may exist inequivalent quantization
of the same classical theory if some assumption of the
von Neumann theorem is invalid, such as for instance the
existence of pairs of self-adjoint operators ‘‘p, q’’ obeying
Heisenberg commutation relations. In a gauge theory, in-
equivalent quantizations can also arise from the possible
inequivalence of the two customary procedures of quanti-
zation consisting in either reducing the unconstrained
phase space and then quantizing or quantizing first and
then imposing the constraints at the quantum level (Dirac
procedure). This is particularly important in our case
where, even though the number of physical degrees of
freedom is finite, the unreduced phase space of the system
is infinite dimensional. Consequently, in the second quan-
tization procedure—the Dirac procedure—the
von Newman theorem has no bearing and infinitely many
inequivalent quantizations exist in principle.

II. THE JACKIW-TEITELBOIM MODEL IN THE
BF FORMULATION

It is possible to extend the JT model in order to include
degenerate geometry configurations by formulating it in a
first order formulation taking the form of a BF theory [13]
in two dimensions. The equivalence between the original
JT model and its BF extension is a subtle issue of similar
nature as the equivalence between metric formulations of
2þ 1 gravity and first order formulations such the BF and
the Chern-Simons formulations (see [21] for a discussion
in three dimensions; the problem is analyzed in the context
of two-dimensional dilaton gravity in [22]). Similar prob-
lems arise in 3þ 1 gravity. However, in most cases such
extensions of a theory lead to important simplifications in
the quantum theory. In four and three dimensions the latter
extensions are naturally suitable for the implementation of
the loop quantum gravity techniques for quantization. As
we would like to explore these techniques in two dimen-
sions, we take the BF extension of the JT model as the
definition of our model in this paper.

The gauge group G is de Sitter or anti-de Sitter in
Riemannian or Lorentzian space-time. The infinitesimal
generators are

J0 :¼ P0; J1 :¼ P1; J2 :¼ �;

with commutation relations

½J0; J1� ¼ kJ2; ½J0; J2� ¼ �J2; ½J1; J2� ¼ �J1;

where k is the cosmological constant and � is the metric
signature, equal to 1 in the Riemannian case and to �1 in
the Lorentzian case. A redefinition of the Lie algebra basis
allows one to reduce its commutation rules to

½Ji; Jj� ¼ fij
kJk; with f01

2 ¼ 1; f12
0 ¼ �;

f20
1 ¼ 1; ði; j; . . . ¼ 0; 1; 2Þ;

(2.1)

which, for � ¼ �1 or 1, is the Lie algebra of SO(3) or SO
(1, 2). We shall consider in the following their covering
groups SU(2) or SLð2;RÞ. The invariant Killing form �ij

has the form of a Euclidian or Minkowskian three-
dimensional metric:

�ij :¼ ��

2
fik

lfjl
k ¼ diagð�; 1; 1Þ: (2.2)

The fields are an SU(2) or SLð2;RÞ connection 1-form
!i and a scalar field �i in the adjoint representation of the
gauge group. From this point on, we shall denote the
internal gauge group withG, and wewill use g to designate
its Lie algebra. We will use the explicit SLð2;RÞ and SU(2)
when we specialize to the Lorentzian or Riemannian mod-
els, respectively. The components !0 and !1 are inter-
preted as the zweibein components and !2 as the rotation,
respectively, Lorentz connection.
The theory is the 2D version of BF theory, and can be

seen as the g � 0 limit (g being the coupling constant) of
2D Yang Mills theory. Its action takes the form

S ¼
Z
M

�iFjð!Þ�ij; (2.3)

and the field equations are

d!�
i :¼ d�i þ fjk

i!j�k ¼ 0;

Fi :¼ d!i þ 1
2fjk

i!j!k ¼ 0;
(2.4)

where d! is the!-covariant exterior differential and Fi the
curvature 2-form of the connection. At first sight the action
is invariant under two kinds of gauge transformations: the
conventional Yang-Mills-like local G transformations gen-
erated by a Lie algebra valued scalar field �

��! ¼ d!�; ��� ¼ ½�;��; (2.5)

whose exponentiated version gives

!0 ¼ a!a�1 þ ada�1; �0 ¼ a�a�1; (2.6)

for a ¼ expð�Þ 2 G. The active diffeomorphisms are gen-
erated by a vector field v

�v! ¼ Lv!; �v� ¼ Lv�; (2.7)

Lv being the Lie derivative. However, on shell a diffeo-
morphism generated by v is the same transformation as a
local G transformation generated by the field
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�i ¼ va!i
a; (2.8)

as can be easily checked by writing these equations in
components and using the equations of motion.
Therefore, in this theory the diffeomorphisms (acting on
the space of solutions) can be considered as a subgroup of
the local G gauge transformations.

Solutions are given by flat connections ! ¼ gdg�1 for
gðxÞ 2 G, and (covariantly) constant� fields. Locally, one
can choose a gauge so that the connection ! ¼ 0. In this
gauge the equation d!� ¼ 0 implies that � ¼ constant.
This is particularly important for the Lorentzian case since
it implies that the causal type of � (thought as a vector in
three-dimensional Minkowski internal geometry) cannot
change in the classical solutions. This conclusion is a
global one since no gauge transformation � ! g�g�1

can send a timelike � into a spacelike one or vice versa.
In fact, this property is taken over to the quantum theory
where we will show that superselection sectors associated
to � being spacelike or timelike appear.

III. THE HAMILTONIAN FORMULATION

When M ¼ S1 � R, one can quantize the theory in the
canonical framework. General topologies can in principle
be considered in the path integral approach. The
Hamiltonian formulation is obtained through the standard
1þ 1 space-time decomposition. More precisely, one in-
troduces an arbitrary foliation of M by choosing a time
function. In terms of this foliation the action becomes

S ¼
Z

dt
Z
S1
dxð�i _!

i þ!i
tD�iÞ: (3.1)

We use the notations D�i :¼ @�i þ fjk
i!j�k, !i :¼ !i

x,

@ :¼ @x, x being the space coordinate. The Poisson bracket
among the phase space variables is

f!jðxÞ; �iðyÞg ¼ �j
i�ðx� yÞ or

f!jðxÞ; �iðyÞg ¼ �ij�ðx� yÞ:
We have three first class constraints [23–25] corresponding
to the three components of the Gauss law gi :¼ D�i ¼ 0.
Explicitly these components are

g0 ¼ @�0 þ �ð!1�2 �!2�1Þ � 0;

g1 ¼ @�1 þ!2�0 �!0�2 � 0;

g2 ¼ @�2 þ!0�1 �!1�0 � 0:

(3.2)

The smeared Gauss constraints gð�Þ � R
S1 Tr½�D�� for

� 2 g are first class—they satisfy the Poisson bracket
identity fgð�Þ; gð�Þg ¼ gð½�;��Þ—and generate infinitesi-
mal G-gauge transformations:

fgð�Þ; !ig ¼ @�i þ fjk
i!j�k;

fgð�Þ; �ig ¼ fjk
i�j�k:

(3.3)

There are therefore three local first class constraints for the
three configuration variables !i

a. Thus, the naive counting
of degrees of freedom gives zero physical degrees of free-
dom. However, the naive counting is only sensitive to local
excitations. The theory has indeed global degrees of free-
dom. In particular, if M ¼ S1 � R, an algebraic basis for
the gauge invariant (Dirac) observables is given by

O1 ¼ �i�
i; O2 ¼ Tr

�
P exp

�
�
Z
S1
!

��
: (3.4)

The physical phase space being therefore two-dimensional,
the theory has a single (global) degree of freedom. We note
for further use that the quantity

Q :¼ !i�i

�i�i

(3.5)

transforms as an Abelian connection under the special
gauge transformations which leave � invariant:

fgð�AbelÞ; Qg � @a; with �i
Abel ¼ a�i: (3.6)

This holds up to the constraint @ð�i�
iÞ � 0 which follows

from (3.2).

A. Partial gauge fixings

Space-time diffeomorphisms are hidden inside the larger
gauge group of BF theory that in two dimensions corre-
sponds to the localG transformations given in (2.5). Notice
that the former are generated by the two components of a
vector field inMwhile the latter are generated by the three
components of � 2 g. In this section we partially gauge fix
the symmetries of BF theory in order to establish a more
direct relationship with diffeomorphisms, and hence em-
phasize the relationship of the model with two-dimensional
gravity.
We will partially gauge fix the G gauge symmetry by

requiring the fourth constraint,

g3 ¼ �in
i � 0; (3.7)

where ni is a fixed normalized vector in the internal space.
Before going into the technical details of the constraint
algebra, let us discuss the geometric interpretation of the
partial gauge fixing introduced by the above equation.
Because of the fact that � �� is a Dirac observable (a
constant of motion), one can separate the analysis into
three distinct (dynamically independent) cases in the
Lorentzian case: � ��> 0, � �� ¼ 0, and � ��< 0
(in the Riemannian case there is only the first sector).
The following discussion is restricted to the Lorentzian
sector.

1. The ‘‘spacelike’’ sector: � ��> 0

In that case the good choice of gauge fixing corresponds
to ni ¼ timelike. The condition (3.7) is expected to reduce
the group SLð2;RÞ to a two-dimensional subgroup. A mo-
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ment of reflection shows that this is given by the Cartesian
product of the Uð1Þ � SLð2;RÞ that leaves invariant ni,
and the little group (the boosts) leaving invariant the vector
�i. All this will become transparent in the following.

The choice ni ¼ spacelike leads to a degenerate situ-
ation for phase space points where �i / ni, as on these

points the little groups associated to ni and �i coincide.
This leads to complications that we will not analyze in this
work.
To simplify notation we can take ni ¼ ð1; 0; 0Þ which

simply turns (3.7) into simply g3 ¼ �0 � 0. With this
choice, the matrix G�� ¼ fg�; g�g becomes

Gðx; yÞ ¼
0 0 0 0
0 0 0 ���2�ðx� yÞ
0 0 0 ��1�ðx� yÞ
0 ��2�ðx� yÞ ���1�ðx� yÞ 0

2
6664

3
7775: (3.8)

In order to isolate the second class part of the previous constraints we make the following redefinition:

C0 ¼ g0 ¼ @�0 þ �ð!1�2 �!2�1Þ � 0;

C1 ¼ �1g1 þ�2g2 ¼ �1ð@�1 þ!2�0 �!0�2Þ þ�2ð@�2 þ!0�1 �!1�0Þ � 0;

C2 ¼ �1g1 ��2g2 ¼ �1ð@�1 þ!2�0 �!0�2Þ ��2ð@�2 þ!0�1 �!1�0Þ � 0;

C3 ¼ g3 ¼ �0 � 0:

(3.9)

With this definition the matrix C ¼ fC�; C�g is block
diagonal, namely, up to terms involving constraints:

C �
0 0 0 0
0 0 0 0
0 0 0 �2��2�1�ðx� yÞ
0 0 2�2��1�ðx� yÞ 0

2
6664

3
7775:

(3.10)

This implies that the pair ðC2; C3Þ is second class and can
therefore be explicitly solved. For instance, they can be
used to solve for !0. Namely,

�0 ¼ 0; !0 ¼ 1

2

�
@�1

�2
� @�2

�1

�
: (3.11)

The first class ones become

C0 ¼ !1�2 �!2�1 ¼ �AB!
A�B � 0;

C1 ¼ 1
2@ð�A�AÞ � 0;

(3.12)

where A, B ¼ 1, 2. It is easy to see that the Dirac bracket
among the remaining variables is

f!BðxÞ; �AðxÞgD ¼ �BA�ðx� yÞ: (3.13)

Direct computation shows that the algebra of the first class
constraints is Abelian. More precisely, if we define

C0ðaÞ ¼
Z
S1
dxaðxÞC0ðxÞ;

and C1ðbÞ ¼
Z
S1
dxbðxÞC1ðxÞ;

(3.14)

we have the following Dirac bracket algebra:

fC0ðaÞ; C0ðbÞgD ¼ 0 ¼ fC1ðaÞ; C1ðbÞgD (3.15)

and

fC0ðaÞ; C1ðbÞgD ¼ � 1

2

Z
S1
dx

Z
S1
dyaðxÞ@bðyÞ�AB�AðxÞ

� f!BðxÞ; �C�CðyÞgD ¼ 0: (3.16)

The gauge transformations generated by the first class
constraints are

�ð0Þ!A ¼ f!A;C0ðaÞgD ¼ ��a�BA!B;

�ð0Þ�A ¼ f�A;C0ðaÞgD ¼ ��a�BA�B;
(3.17)

which correspond to local U(1) internal rotations, and

�ð1Þ!A ¼ f!A;C1ðaÞgD ¼ ��A@a;

�ð1Þ�A ¼ f�A;C1ðaÞgD ¼ 0:
(3.18)

What is the geometric meaning of the transformation gen-
erated by C1? Recall that C1 � �1g1 þ�2g2 which is
nothing other than the expression in the gauge (3.7) of
�igi. This is precisely the generator of the internal
‘‘boosts’’ leaving the ‘‘spacelike’’ field �i invariant, as
anticipated above.
The Riemannian theory is fully described by the equa-

tions of this section. The only change is that bothC0 andC1

generate U(1) transformations in that case.

2. The ‘‘timelike’’ sector: � ��< 0

The gauge fixing analogous to the previous case would
now be defined with ni spacelike and we would expect
condition (3.7) to reduce the group SLð2;RÞ to the
Cartesian product of the boosts leaving invariant ni, and
of the little group [the U(1) rotations] leaving invariant the
vector �i. It seems however difficult to control the pos-
itivity of � ��, which is no more automatic. A more
appropriate choice is to take �iðxÞ ¼ �ðxÞui, where u is
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some fixed timelike vector. With the choice u ¼ ð1; 0; 0Þ,
this amounts to adding to the constraints (3.2)—taken with
� ¼ �1—the new constraints:

g3 ¼ �1 � 0; g4 ¼ �2 � 0:

The 5� 5 Poisson bracket matrixG�� ¼ fg�; g�g, �,� ¼
0; � � � ; 4 reads (up to constraints)

Gðx; yÞ �

0 0 0 0 0
0 0 0 0 1
0 0 0 �1 0
0 0 1 0 0
0 �1 0 0 0

2
666664

3
777775�ðxÞ�ðx� yÞ: (3.19)

Only g0 is first class, the remainder four constraints being
of second class. Eliminating them through the Dirac pro-
cedure, we are left with the strong conditions,

�A ¼ 0; !A ¼ 0; A ¼ 1; 2;

and the Dirac bracket algebra (with ! :¼ !0)

f!ðxÞ; �ðyÞgD ¼ ��ðx� yÞ: (3.20)

The first class constraint reads

g0ðxÞ ¼ @� or; in integral form: g0ðaÞ ¼ �
Z
S1
dx@a�:

(3.21)

and generates the U(1) gauge rotations which leaves �i

invariant:

fg0ðaÞ; �ðyÞgD ¼ 0; fg0ðaÞ; !ðxÞgD ¼ @a:

! plays the role of the U(1) connection. We note that the
connectionQ (3.5) is equivalent to !, since Q ¼ !=� and
� is constrained to be a constant.

3. The ‘‘null’’ sector: � �� ¼ 0

We add to the constraints (3.2)—taken with � ¼ �1—
the partial gauge-fixing constraint

g3 ¼ �0 � 1 � 0;

plus an additional constraint g4 ¼ � �� � 0 which im-
poses the null condition. Notice that g4 commutes with the
Gauss constraints and with g3 so it is automatically first
class. The constraint algebra is the same as in the spacelike
sector. The first class constraints are again C0 ¼ �AB�

A!B

and C1 ¼ @ð�A�AÞ=2� �AB�
A!B and g4 ¼ �A�A � 1.

The constraint system is clearly reducible as C1 is a com-
bination of the other. Following the standard procedure we
drop the constraint C1. Classical solutions are maps from
S1 to S1, due to the action of C0 only the homotopy class of
these maps is physically meaningful. The quantization of
the null sector is outside the scope of this paper.1

4. Diffeomorphisms, Virasoro and Abelian generators

For simplicity the following analysis is performed in the
� ��> 0 sector. Let us define

� ¼ �AB�
B@�A

�C�C
; (3.22)

solution of the equation

@�A � �AB��B ¼ 0; (3.23)

an analog to the torsion-free connection of general relativ-
ity in the first order formulation. We may check that � �
!0 and that (3.23), with � replaced by!0, is a constraint, a
combination of the first class constraint C1 and of the
second class one C2.
One can introduce variables invariant under the gauge

group generated by C0 as follows:

� � 1

2
�A�A and Q � �A!A

�C�C
; (3.24)

obeying the following equation:

Z
S1
dxaðxÞf�ðxÞ; QðyÞgD ¼ 0; (3.25)

for arbitrary aðxÞ 2 C1ðS1Þ.� corresponds, in the �0 ¼ 0
gauge, to the invariantO1 defined in (3.4), whereasQ is the
Abelian connection (3.5). The meaning of these quantities
will become clearer in the next section.
The constraints C0 and C1 are scalar densities of weight

one. This is why they are naturally smeared with scalar
functions a and b in order to produce coordinate indepen-
dent quantities C0ðaÞ and C1ðbÞ, respectively. We would
like now to define an equivalent set of constraints that
would be suitably smeared with vector fields of S1. In order
to do this, one needs first to define vector density con-
straints which can be achieved by multiplying the original
ones by density one phase space functions. Without further
motivation we redefine the constraints as

V1 ¼ ��C0 ¼ � �AB�
B@�A

�C�C
�DE!

D�E � 0;

V2 ¼ �QC1 ¼ � 1

2

�A!A

�C�C
@ð�B�BÞ � 0:

(3.26)

These are vector densities of weight one (or scalar densities
of weight two). As long as we are away from configura-
tions for which � ¼ 0 or Q ¼ 0, the previous constraints
define the same constraint surface. Assuming we have two
vector fields � and �, we define the smeared versions of
the previous constraints in the obvious manner. Then one
has that

fV1ð�Þ; V2ð�ÞgD ¼ 0 (3.27)

and

1For a study of the topological properties of the classical
solutions of a more general type of models of which this case
is a particular one, see [15]
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fV1ð�Þ; V1ð�ÞgD ¼ V1ð½�;��Þ;
fV2ð�Þ; V2ð�ÞgD ¼ V2ð½�;��Þ;

(3.28)

where ½�;�� is the vector field commutator. Therefore V1

and V2 commute with respect to each other, each of them
satisfying a classical Virasoro algebra. They look like
diffeomorphism generators, however none of the two gen-
erates diffeomorphisms of S1. The combination that does
this is

D ¼ V1 þ V2: (3.29)

The analog of the Hamiltonian constraint of gravity then is

H ¼ V1 � V2: (3.30)

These satisfy the ‘‘gravity’’ algebra

fDð�Þ; Dð�ÞgD ¼ Dð½�;��Þ;
fHð�Þ; Hð�ÞgD ¼ Dð½�;��Þ;
fHð�Þ; Dð�ÞgD ¼ Hð½�;��Þ:

(3.31)

The constraintDð�Þ generate standard diffeomorphisms as
can be checked by a direct calculation, namely,

fDð�Þ; �AgD ¼ ���AB�B � ��@�A ¼ L��
A; (3.32)

fDð�Þ; !AgD ¼ ���AB!B � @ð�QÞ�A

� �ð�@!A þ @�!AÞ ¼ �L�!
A; (3.33)

where the weak equalities in (3.32) and (3.33) mean the
insertion of the constraint equations. Similarly, H gener-
ates time evolution up to space diffeomorphisms and field
equations.

B. Full reduction

Notice, from (3.24), that ðQðxÞ;�Þ are conjugate U(1)-
invariant fields, i.e., they strongly commute with C0), and

fQðxÞ;�ðyÞgD ¼ �ðx� yÞ: (3.34)

Since � also commutes with C1, it represents a strong
Dirac observable of the model. So we introduce

P �
Z
S1
�: (3.35)

On the other hand, Q does not commute with C1 but it
transforms as an Abelian connection—cf. (3.6):

�ð1ÞQ ¼ fQ;C1ðaÞgD ¼ �@a: (3.36)

Therefore, it is quite easy to define a strong Dirac
observable

X �
Z
S1
Q (3.37)

so that

fX;P gD ¼ 1: (3.38)

The connection Q is an R-connection (associated to the
boost structure group) in the � ��> 0 sector, while it
becomes a U(1) connection in the � ��< 0 sector.

C. Time-gauge reduction

In this section we describe the results obtained in [11]
where the ‘‘temporal gauge’’ was considered. This gauge
fixing is based in the one taken in four dimensions, through
which we can obtain a compact gauge group as the residual
symmetry, as described in [8]. It consists in making the
zweibein component 	 :¼ !0

x vanish and it is implemented
as an extra constraint 	 � 0. The action then reads

S ¼
Z

dt
Z
S1
dxð�i _!

i þ!i
tD�i þ B	Þ; (3.39)

and again the Dirac method is used in order to eliminate the
second class constraints. The remaining constraints,
namely G0

0 and G0
1, are

G 0
0ðxÞ ¼ ð!1

xÞG0ðxÞ

¼ �!1
x@x

�
@x�

2

!1
x

�
þ kð!1

xÞ2�2 �!1
x!

2
x�

1;

(3.40)

G 0
1ðxÞ ¼ !1

xG1ðxÞ ¼ !1
x@x�

1 þ!2
x@x�

2: (3.41)

The Dirac bracket algebra of these constraints is closed:

fG0
0ð�Þ;G0

0ð�ÞgD ¼ �G0
1ð½�; ��Þ;

fG0
0ð�Þ;G0

1ð�ÞgD ¼ �G0
0ð½�; ��Þ;

fG0
1ð�Þ;G0

1ð�ÞgD ¼ �G0
1ð½�; ��Þ;

(3.42)

where ½�; �� ¼ ð�@x�� �@x�Þ, which confirms that G0
0

and G0
1 are first class. In fact, time diffeomorphisms are

generated by G0
0 up to constraints, up to field equations

(‘‘on-shell realization’’), and up to a compensating local
Lorentz transformation which takes care of the time-gauge
condition. The second unbroken invariance is that of space
diffeomorphisms, generated by G0

1.
Observe also that G0

0 and G0
1 are scalar densities of

weight 1 and this ensures that they form a closed Lie
algebra (3.42)—in contrast with gravity in higher dimen-
sions where the algebra closes with field dependent struc-
ture ‘‘constants’’ [8,26,27]. Such a feature is characteristic
of two-dimensional theories with general covariance, such
as the bosonic string in the approach of [28].
A new redefinition

C þ ¼
ffiffiffiffiffiffiffiffi��

p
2

G0
0 �

1

2
G0

1; (3.43)

C � ¼ �
ffiffiffiffiffiffiffiffi��

p
2

G0
0 �

1

2
G0

1; (3.44)

leads to the algebra
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fCþð�Þ; Cþð�ÞgD ¼ Cþð½�; ��Þ;
fC�ð�Þ; C�ð�ÞgD ¼ C�ð½�; ��Þ;
fCþð�Þ; C�ð�ÞgD ¼ 0;

(3.45)

which shows a factorization in two classical Virasoro
algebras, as in the �0 ¼ 0 gauge of Sec. III A.

IV. QUANTIZATION

Quantization prescriptions take a classical theory as an
input and are supposed to give us a quantum theory. As it is
well known (and should be expected) this recipe is not
complete and leads often to inequivalent quantum theories.
Consequently, it is instructive to have explicit examples
available to illustrate this point. Here we show that differ-
ent natural choices lead to inequivalent quantum theories in
our ultrasimple gauge field theory.

A. Dirac quantization

The physical Hilbert space is given by gauge invariant
square integrable functions of G. They are therefore class
functions fðgÞ ¼ fðaga�1Þ for all g, a 2 G. There are
important differences between the quantization of the
Riemannian and Lorentzian cases. Therefore, we shall treat
each case separately in this section.

1. The Riemannian case, G ¼ SUð2Þ
This case is treated in great detail in [7,29]. We briefly

review the results here. As in the case of loop quantum
gravity (LQG), one shifts emphasis from smooth connec-
tions to holonomies

g
½!� ¼ P exp

�
�
Z


!

�

along oriented paths 
 � �. In the context of the Dirac
quantization program one first introduces an auxiliary
Hilbert H aux space where the holonomy g
½!� and the

scalar fields �i are represented as operators. In the present
case, once holonomies and �i have been chosen as funda-
mental variables, there is a natural choice of H aux where
diffeomorphisms are unitarily implemented. In dimension
higher than two, this representation is unique (up to unitary
equivalence); however, for technical reasons the unique-
ness theorem [30] does not apply to the two-dimensional
case: uniqueness remains an open question.

This Hilbert space is given by the Cauchy completion in
an appropriate topology of the algebra of functionals of the
connection that depend on the holonomy of ! along paths
that are edges of arbitrary graphs in � (the details of this
construction turn out not to be important for our simple
model). In a second step one promotes the Gauss con-
straints (3.2) to self-adjoint operators satisfying the appro-
priate quantum constraint algebra, and finally looks for the

physical Hilbert space H phys � H aux defined by the ker-

nel of the quantum constraints.
Because of the simplicity of our model, these steps can

be shortcut and we can directly construct the physical
Hilbert spaceH phys in one stroke. The logic is as follows:

The Gauss constraints generate infinitesimal SU(2) gauge
transformations. Elements of H phys are gauge invariant

functions of the holonomy. As in LQG this restricts the set
of possible graphs on which states are defined to closed
ones. In our case there is a unique close graph correspond-
ing to the entire initial value surface �. Therefore, the
physical Hilbert space is given by functions of the holon-
omy g½A� 2 SUð2Þ around � ¼ S1 which are in the kernel
of the Gauss constraints (3.2). Those are square integrable
functions which are invariant under c ðgÞ ¼ c ðaga�1Þ for
any a 2 SOð3Þ (this invariance is the residual gauge action
on the based point from where the holonomy around the
Universe is defined). The latter are the so-called class
functions c ðgÞ 2 L2ðSOð3ÞÞ=G � L2ðSOð3ÞÞ. Using the
Peter-Weyl theorem they can be written as

�ðgÞ ¼ X
j

ð2jþ 1Þc j TrðDj½g�Þ; (4.1)

where Dj½g� are unitary irreducible representations of SU

(2), and c j ¼
R
dgTrðDj½g�Þ�½g� with dg the Haar mea-

sure. Consequently, there is a natural construction of the
physical Hilbert space based on the following choice of
inner product:

h�;�i ¼
Z

dg�ðgÞ�ðgÞ:

Any gauge invariant function (c ðgÞ ¼ c ðaga�1Þ 2
H phys) can be expanded in terms of the characters 	jðgÞ ¼
Tr½DjðgÞ�. This are the strict analog of the so-called spin-
network states of LQG. A fact that will become more
important in the Lorentzian case is that class functions
can be thought of as functions of the (unique up to con-
jugation) Cartan subgroup H � SOð3Þ. More concretely,
any SU(2) rotation can be characterized by a U(1) rotation
by an angle � 2 ½0; �� around an axis defined by a unit
vector n̂ 2 R3. The latter is entirely defined by a point on
the unit 2-sphere labeled by spherical coordinates  2
½0; �� and � 2 ½0; 2��. One can express the SU(2) Haar
measure in these coordinates as follows:

dg ¼ 1

2�2
sin2ð�ÞðsinðÞdd�Þd�:

Now any class function depends only on the coordinate �,
namely c ðgÞ ¼ c ð�Þ. Therefore, the inner product above
takes the form

hc ; �i ¼ 2

�

Z �

0
d�sin2ð�Þ �c ð�Þ�ð�Þ; (4.2)

where we have explicitly performed the  and � integra-
tion. In the Lorentzian case, the analog of the last step (in a
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formal manipulation) leads to a trivial divergence due to
the noncompactness of the gauge group. It is clear that one
can regularize this divergence by simply dropping such
integration. We will see this in detail in the following
section.

Incidentally, notice that the characters can be expressed
in terms of linear combinations of powers of 	1=2ðgÞwhich
shows that the most general gauge invariant functional of
the generalized connection is the observable (3.4) O2 ¼
TrP expð�R

S1 !Þ. The Dirac observable O1 is quantized

by the self-adjoint operator O1 ¼ �@
2�, where � denotes

the Laplacian on SU(2), the characters 	jðgÞ ¼ Tr½DjðgÞ�
are its eigenstates with eigenvalues @2jðjþ 1Þ, namely

O1jji ¼ @
2jðjþ 1Þjji; (4.3)

where we have used Dirac bracket notation 	jðgÞ ! jji.
The Dirac observable O2 acts by multiplication, in the
spin-network basis its action is given by

O2jji ¼ cðþÞ
j jjþ 1

2i þ cð�Þ
j jj� 1

2i; (4.4)

where cð�Þ
j are the corresponding Clebsh-Gordon coeffi-

cients. The gauge invariant combination O3 of �i and
g�½!� can be quantized using the commutator of O1 and
O2.

2. The Lorentzian case, G ¼ SLð2;RÞ
The Lorentzian case is more involved, and, to our

knowledge, has not been described in the literature. The
main technical complication is the noncompactness of the
gauge group which implies that the standard nonperturba-
tive techniques applicable to standard gauge theories with
compact groups need to be revised due to the appearance of
divergences in the naive treatment. The main technical
complication is due to the fact that, unlike the compact
case, class functions c ðgÞ ¼ c ðaga�1Þ are not square
integrable functions in the Haar measure of SLð2;RÞ.
The main difficulty with which one needs to deal is the
definition of the physical inner product for functions of
SLð2;RÞ=G so that appropriate reality conditions are sat-
isfied by the Dirac observables. On the other hand the
structure of the theory is richer.

As we saw in the Riemannian case, physical states are
characterized by class functions which in turn can be
thought off as functions of elements of the Cartan sub-
groups. The new feature in the Lorentzian sector is that
there are two inequivalent (under conjugation) Cartan sub-
groups in SLð2;RÞ. On the one hand, one hasH1 ¼ Uð1Þ 2
SLð2;RÞ, given by rotations fixing an internal time axis,
namely

H1 ¼
�
g� ¼ cosð�Þ sinð�Þ

� sinð�Þ cosð�Þ
� ��

; (4.5)

and H2 2 SLð2;RÞ given by the subgroup of boosts fixing
some spacelike internal direction, explicitly

H2 ¼
�
g� ¼ expð�Þ 0

0 expð��Þ
� ��

: (4.6)

This means that conjugation g ! aga�1 for fixed g 2
SLð2;RÞ and arbitrary a 2 SLð2;RÞ generate orbits (gauge
orbits) which are labeled by elements of H1, H2,
respectively2.
Therefore, gauge invariant states�ðgÞ ¼ �ðaga�1Þ can

be characterized by two functions

�½g� ¼
�
c 1ð�Þ for ½g� 2 H1

c 2ð�Þ for ½g� 2 H2:

As mentioned above, the noncompactness of the gauge
group implies that gauge invariant states �ðgÞ ¼
�ðaga�1Þ are not square integrable with respect to the
Haar measure. The reason is that physical states are con-
stant on noncompact adjoint orbits. However, an inner
product can be introduced in such a way that these states
are normalizable and the appropriate self-adjoint property
of observables holds.
This is easily done by mimicking what we did in the

previous section when finding an explicit parametrization
of the Haar measure in terms of the Cartan subgroup. It is
still true that one can write a regular element of SLð2;RÞ as
Abelian ‘‘rotations around an axis n̂.’’ The main difference
is that the unit vector n̂ can be either timelike or spacelike.
In other words the (rotationally invariant) 2-sphere of
directions is now replaced by the [SO(2, 1) invariant]
timelike hyperboloid h0 (given by the points in
Minkowski internal space-time xixj�ij ¼ 1) together

with the future and past spacelike hyperboloid h� (given
by the points in Minkowski internal space-time3 xixj�ij ¼
�1). The second difference is that ‘‘rotations around n̂’’
are now standard U(1) rotations (elements of H1) only
when n̂ 2 h�, while they are replaced by boosts (elements
of H2) when n̂ 2 h0.
Elements of g 2 SLð2;RÞ can be modeled by points on

three-dimensional de Sitter space-time (thought of as em-
bedded in a four-dimensional flat space-time of signature
ðþ þ��Þ) as follows:

g ¼ x0 þ x3; x1 þ x2

x1 � x2; x0 � x3

� �
ðx0Þ2 � ðx1Þ2 þ ðx2Þ2 � ðx3Þ2

¼ 1:

In terms of these coordinates the invariant measure takes
the simple form

dg ¼ dx0dx1dx2dx3�ððx0Þ2 � ðx1Þ2 þ ðx2Þ2 � ðx3Þ2 � 1Þ:
Elements g 2 SLð2;RÞ equivalent by conjugation to ele-

2More precisely, this is true for the so-called regular elements
of SLð2;RÞ which are an open subset of the full group with
complement of measure zero with respect to the Haar measure
[31].

3The Minkowski metric is �ij ¼ diagð�1; 1; 1Þ.
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ments in H1 � SLð2;RÞ are characterized by jTr½g�j 	 2.
It is easy to see that these elements can be described in
terms of hyperbolic coordinates as

x0 ¼ cos½�� x1 ¼ sin½�� sinh½�� cos½��
x2 ¼ sin½�� cosh½�� x3 ¼ sin½�� sinh½�� sin½��;

where � 2 Rþ and � 2 ½0; 2�� label points on h�. For
these regular elements the invariant measure becomes

dg ¼ sinhð�Þsin2ð�Þd�d�d�; for ½g� 2 H1: (4.7)

Elements g 2 SLð2;RÞ equivalent by conjugation to ele-
ments in H2 � SLð2;RÞ are characterized by jTr½g�j 
 2.
In terms of hyperbolic coordinates they are characterized
by

x0 ¼ cosh½�� x1 ¼ sinh½�� sin½� cosh½��
x2 ¼ sinh½�� sin½� sinh½�� x3 ¼ sinh½�� cos½�;

where �, 2 Rþ, and  2 ½0; �� label points on h0.
Explicitly we have Tr½g� ¼ 2 cosh½��. The invariant mea-
sure becomes

dg ¼ sinðÞsinh2ð�Þd�d�d�; for ½g� 2 H2: (4.8)

Indeed the physical Hilbert space H phys ¼ H 1 �H 2 is

such that �ðgÞ ¼ ðc 1ð�Þ; c 2ð�ÞÞ 2 H phys with c 1ð�Þ 2
H 1 and c 2ð�Þ 2 H 2. The inner product is, respectively,

hc ; �i1 ¼
Z 2�

0
d�sin2ð�Þ �c ð�Þ�ð�Þ;

and hc ; �i2 ¼
Z 1

0
d�sinh2ð�Þ �c ð�Þ�ð�Þ;

where the integration measure is defined by dropping the
redundant integrations from the invariant measures (4.7)
and (4.8), respectively. The two Hilbert spaces H 1 and
H 2 are superselection sectors. Harmonic analysis on
SLð2;RÞ implies that any function fðgÞ 2 L2ðSLð2;RÞÞ
can be written as

fðgÞ ¼ X
n
1

ð2n� 1ÞTrðfþn Dþ
n ½g�Þ þ

X
n
1

ð2n� 1Þ

� Trðf�n D�
n ½g�Þ þ

Z 1

0
ds�ðsÞTrðfsDs½g�Þ: (4.9)

As in the Euclidean case, physical states can be spanned in
terms of characters. From the point of view of the space
L2ðSLð2;RÞÞ these states are distributional. The restriction
of the characters to H1 and H2 gives an orthonormal basis
of H 1 and H 2, respectively, of eigenstates of the Dirac
observable O1 ¼ � �� ¼ �@

2�. In H 1 the Laplacian
takes the explicit form � ¼ sinð�Þ�1@2� sinð�Þ þ 1=4 and
the characters are 	�

n ð�Þ ¼ � expð�iðn� 1Þ�Þ=ð2i sinð�ÞÞ
and the eigenvalues of O1 are given by @

2ðn� 1
2Þðn� 3

2Þ.
Therefore, the spin-network states 	�

n ð�Þ ! jn;�i, which
satisfy

hn;þjm;þi1 ¼ hn;�jm;�i1 ¼ �nm and

hn;þjm;�i1 ¼ 0;

are a basis for H 1 diagonalizing O1:

O1jni ¼ �@
2ðn� 1

2Þðn� 3
2Þjni: (4.10)

The Dirac observable O2 acts by multiplication by O2 ¼
2 cosð�Þ in H 1. In the spin-network basis its action is
given by

O2jn;�i ¼ jn� 1;�i þ jn� 1;�i: (4.11)

In H 2 the Laplacian takes the explicit form � ¼
� sinhð�Þ�1@2� sinhð�Þ þ 1=4 and the characters are

	sð�Þ ¼ � cosðs�Þ=j sinhð�Þj and the eigenvalues of O1

are given by @
2ðs2 þ 1

4Þ. Now spin-network states are

labeled by a real parameter 	sð�Þ ! jsi. We have

O1jsi ¼ @
2ðs2 þ 1

4Þjsi: (4.12)

The Dirac observable O2 ¼ coshð�Þ acts by multiplica-
tion. Its action on spin-network states is not a spin-network
state.
Is there a two-dimensional geometric interpretation of

states in the above quantization? The answer to this ques-
tion is in the affirmative as long as we construct the
geometric interpretation in terms of the fundamental var-
iables at hand in the BF theory formulation of the JT
model. The physical inner product given above Eq. (4.9)
can be given a path integral representation [7] which can
formally be expressed as

h �c ; �i ¼
Z

D!�½Fð!Þ� �c ð!0Þc ð!1Þ; (4.13)

where one integrates over space-time connections ! in a
cylinderM ¼ S1 � ½0; 1�, and !0 and !1 are the pull back
of the space-time connection to the corresponding bounda-
ries. The physical inner product between spin-network
states can be seen as an evolution of a state of definite � �
� eigenvalue in a 2D manifold where ! is flat.

B. Time-gauge quantization

The purpose of [11,12] is a quantization along the lines
of loop quantization in 1þ 3 dimensions with a time-
gauge fixing, in the presumably simpler case of the ð1þ
1Þ-dimensional Jackiw-Teitelboim model. However, the
procedure still remains somewhat more complicated than
in the other cases studied in the present paper. The con-
struction of the kinematical Hilbert space is based on the
wave functionals defined on the configuration space
spanned by the ‘‘holonomies’’ of the scalar fields �1 and
�2 defined in Sec. III C, the ‘‘polymerlike’’ scalar product
used there leading to nonseparability of the Hilbert space
[32]. The conjugate fields !1 and !2 are represented as
functional differential operators, which are diagonal in a
spin-network- like orthonormal basis.
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The construction of operators representing the classical
constraints (3.41) goes through a cell regularization, and
the hope is to check the algebra (3.42) at the quantum level,
the final task being that of solving the quantum constraints.

C. Quantization in the � � n ¼ 0 gauge

Recall that the � � n ¼ 0 gauge in the Lorentzian case,
as described classically in Sec. III A, lets us with two first
class constraintsC0 andC1 (3.12) in the� ��> 0 case,C0

generating U(1) internal rotations in the ð�1; �2Þ plane,
and C1 a boost leaving the vector � ¼ ð0; �1; �2Þ invari-
ant. In the case � ��< 0, we are left with one constraint
g0 (3.21) generating U(1) internal rotations leaving the
vector � ¼ ð�; 0; 0Þ invariant. In the former case, to the
transformation generated by C1 is associated the Abelian
connectionQ (3.5). In the latter case, to the U(1) invariance
is associated the connection ! ¼ !0. In the spirit of loop
quantization, one must thus choose the holonomiesHI ofQ
or ! along intervals I of S1 as the configuration space
variables (from the connections we go to the generalized
connections). These Abelian holonomies are given by

HI ¼ exp

�
�
Z
I
dxT ðxÞ�?

�
; (4.14)

with

T ¼Q; �? ¼ �1 0
0 1

� �
for the sector � ��> 0;

T ¼!; �? ¼ 0 �1
1 0

� �
for the sector � ��< 0:

Notice that these are the generators whose exponentiation
leads to group elements of the form (4.6) (a boost) and (4.5)
(a rotation), respectively. The holonomy H ¼ HS1 is ob-
viously a Dirac observable, element of the adjoint repre-
sentation of the group generated by C1 or g0.

Let us now discuss the two sectors separately.

1. Sector � ��> 0

It will be convenient to use the invariant (under the
action of C0) variables (3.24), namely

� � 1

2
�A�A and Q � �A!A

�C�C
:

The advantage of these variables is that � is nothing else
but O1 (3.4), one of the Dirac observables, and Q is the
Abelian connection discussed above, transforming under
the remaining Abelian gauge symmetry generated by the
constraint C1 (boosts) as

fQ;C1ðbÞgD ¼ �@b:

[See (3.12) and (3.14)]. A finite transformation of HI as
given by (4.14) reads

H0
I ¼ expð�?ðbt � bsÞÞHI;

where bs and bt are the values of b at the ends (source/
target) of the interval I. Therefore, the holonomy around
the space, H :¼ HS1 , being gauge invariant is a Dirac
observable. It takes the form

H ¼ expð��?�Þ ¼
expð�Þ 0

0 expð��Þ

" #
;

with � ¼
Z
S1
dxQðxÞ and �? � �1 0

0 1

" #
: (4.15)

From the classical Dirac bracket algebra (3.13) follows:

f�ðxÞ; HgD ¼ �?H; (4.16)

and consequently

f�; �gD ¼ �1: (4.17)

This suggests to take � and � as the classical phase space
coordinates, with � 2 Rþ (real positive) and � 2 R.
[Owing to the constancy of � following from the con-
straint C1, we can take for� the value of�ðxÞ at any point
x 2 C1.]
We can quantize this sector in the conventional

Schrödinger scheme. Here, elements of the physical
Hilbert space are functions �ð�Þ—with � defined in
(4.15)—belonging to L2ðR; d�Þ, and � is represented by

the operator �̂ ¼ �i@d=d�. Eigenfunctions of �̂ are un-
normalizable ‘‘plane waves’’ expði��=@Þ. Restricting to
‘‘wave packets’’ of positive frequency � > 0. we recover
the set of positive real number as the (now continuous)

spectrum of �̂. The spectrum of � ¼ O1 is thus consti-
tuted by the positive real numbers in agreement with the
results of the previous section, but it does not quite coin-
cide with it for small values of s, as there is no discrete gap
here [in contrast with (4.12)]. However, there is agreement
in the asymptotic regime.
Alternatively, as H is an element of the Abelian boost

group, parametrized by the real number � one could ex-
plore the quantization based on the so-called polymer
representations [19,20] Our task is to construct a physical
Hilbert space H phys as a representation of the quantum

algebra ½�̂; �̂� ¼ �i@ or, better:

½�̂; ĥ� ¼ @ĥ; where h ¼ expði�Þ; (4.18)

corresponding to the classical algebra (4.17). The elements
of H phys will be taken as functions of the boost group,

which we parametrize by real numbers � considered as
elements of the Bohr compactification [33] RB of R.
Accordingly, the integration measure for the ‘‘almost pe-
riodic functions’’

�sð�Þ ¼ exp

�
� i

@
s�

�
; s 2 R;

is given by
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Z
RB

d�ð�Þ�sð�Þ ¼ �s0: (4.19)

The ‘‘cylindrical vector space’’ H cyl is defined as the set

of all finite linear combinations of almost periodic func-
tions, and a Hermitian scalar product is defined with the
help of the integration measure (4.19). Hence, in particular,

h�sj�ti ¼ �st: (4.20)

The action of the operator �̂ is defined through the action
of its almost periodic counterparts �tð�Þ for any t 2 R:

�̂ t�sð�Þ ¼ �tþsð�Þ;
whereas that of �̂ is defined by

�̂�sð�Þ ¼ �i@
d

d�
�ð�Þ;

in agreement with the algebra (4.18).

We observe that the �s are eigenvectors of �̂ with
eigenvalue s. Since this operator owes to be positive be-
yond being self-adjoint, we define H cylþ as the space

generated by the restricted basis f�s; s 
 0g—in analogy
with the separation of the positive and negative frequency
parts in the relativistic quantum theory of free fields.
Finally, the physical Hilbert space H phys is defined as

the Cauchy completion of H cylþ with respect to the

norm induced by the scalar product (4.20). Possessing an
uncountable orthonormal basis, H phys is nonseparable.

We note that the spectrum of �̂ coincide with the one
found in the Schrödinger representation, yet it must be
considered as ‘‘discrete’’ as the corresponding eigenvec-
tors have finite norm.

2. Sector � ��< 0

In this sector, as discussed in Sec. III A 2, the classical
phase space variables are ! ¼ !0 and � ¼ �0, obeying
the canonical Dirac bracket algebra (3.20). The constraint
g0 (3.21) lets� to be a constant, and! transforms under g0
as the connection associated to the residual group U(1) of
gauge transformations preserving the gauge-fixing condi-
tions �1 ¼ �2 ¼ 0. Thus, the classical Dirac observables
are �—taken at an arbitrary valor of the space coordinate
x—and the holonomy along the space slice:

H ¼ expð�?�Þ ¼ cosð�Þ sinð�Þ
� sinð�Þ cosð�Þ

� �
;

� ¼
Z
S1
dx!ðxÞ; �? ¼ 0 �1

1 0

� �
:

It is convenient to perform the quantization in terms of the
variables � and �. From now on we switch emphasis from
Hð�Þ ! hð�Þ :¼ expði�Þ. From the classical Dirac bracket
f�ðxÞ; hgD ¼ ih, we define the corresponding quantum
commutator as

½�̂; ĥ� ¼ @ĥ:

With this choice of variables, elements of the physical
Hilbert space are continuous functions of U(1), i.e.,
�ðÞ, with  2 ½0; 2��, and hðÞ acts simply by multi-
plication. There is a spin-network basis given by the uni-
tary irreducible representations of U(1), explicitly:

�nðÞ ¼ 1ffiffiffiffiffiffiffi
2�

p expðinÞ; for all n 2 Z:

The spectrum of �̂ is discrete, given by its eigenvalues n@.

Thus the spectrum of O1 ¼ �̂ � �̂ is in agreement with the
results of the previous section but has eigenvalues that
differ from those corresponding to (4.10) for a small value
of n. However, the eigenvalues of O1 approach each other
in the large (in Planck units) eigenvalue limit.

D. Quantization after totally reducing

The Dirac bracket algebra given by Eq. (3.38) tells us
that the reduced phase space of the Jackiw-Teitelboim
model corresponds to that of a system with a single degree
of freedom. There are however prequantization conditions
that are expected to make the spectra of quantum observ-
ables compatible (at least in the large eigenvalue limit)
with the results of the previous sections (for details, see
[14,15]).

V. CONCLUSIONS

This paper is divided in two parts. In the first part we
performed the canonical analysis of the JT model and
studied the phase space structure of the theory. We showed
that there are dynamically independent sectors correspond-
ing to the cases � ��> 0 (spacelike), � �� ¼ 0 (null),
and � ��> 0 (timelike). The system has no local degrees
of freedom. However, for M ¼ S1 � R there is one global
topological degree of freedom in the timelike and spacelike
sectors, respectively. The null sector is special, classical
(physically inequivalent) solutions are labeled by a discrete
parameter (winding number) [15].
A partial gauge fixing allows, in the spacelike case, to

reduce the de Sitter gauge symmetry of the JT model to the
two-dimensional diffeomorphism invariance of gravity.
We explicitly showed in that case how, after partial gauge
fixing, the remaining first class constraints relate to the
generators of two Virasoro symmetries, and the familiar
diffeomorphism and scalar constraints of gravitational
theories.
In the second part we studied the quantization of the JT

model using background independent techniques. We first
performed the quantization of the model without the in-
troduction of gauge fixing. Even though this was well
known in the Riemannian case, the Lorentzian case pre-
sented some technical difficulties related to the noncom-
pactness of the gauge group. The difficulties were
overcome using group averaging techniques which natu-
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rally lead to two possible Hilbert space representations of
the fundamental observables. These inequivalent quantum
theories have both physical interpretation as they are in
one-to-one correspondence with the superselection sectors
� ��> 0 (spacelike), and � ��> 0 (timelike).

Alternatively, one can partially (or totally) reduce the
gauge freedom of the system at the classical level by
introducing gauge conditions, and explore afterwards the
quantization of the reduced system. We have explicitly
shown that representations of the basic fields obtained
following this alternative avenue are not equivalent to the
previous ones. The main results of the second part are
summarized in Table I, which shows the various inequiva-
lent sectors of the quantum Jackiw-Teitelboim theory. We
have called I and II the sectors (phases) of the Lorentzian
theory which are described by the Hilbert spaces H 1 and
H 2 in the no gauge-fixing part (Sec. IVA), and by the � �
�< 0 and � ��> 0 sectors in the n �� ¼ 0 gauge
(Sec. IVC).

We observe that the spectrum of O1 in the nongauge-
fixed and n �� gauge coincide in the large eigenvalue limit
in both the Riemannian and the Lorentzian phase I. This is
compatible with a common semiclassical limit. But, in the
Lorentzian phase II the spectrum is that of all positive real
numbers, discrete or ‘‘continuous’’ depending on the quan-
tization being ‘‘polymeric’’ or of the ‘‘Schrödinger ’’ type.
Finally, the spectrum of O1 is completely changed (con-
tinuous) in the fully reduced case, for the Riemannian and
for both phases of the Lorentzian theory. The gauge group

structure vanishing in this case implies that the kind of
representations used in the former cases are not even
available. As discussed in Sec. IVB, one could use a
polymerlike representation to recover a discrete spectrum
but the microscopic Planckian structure is lost in the fully
reduced setting.
We have not attempted the quantization of the null

sector. This problem seems quite subtle. We notice that
the group averaging quantization of Sec. IVA seems to
miss that sector. It would be desirable to fully understand
the quantum nature of the null sector. At this stage, this is
beyond the scope of this paper.
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