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The Barbero-Immirzi (BI) parameter is promoted to a field and a canonical analysis is performed when

it is coupled with a Nieh-Yan topological invariant. It is shown that, in the effective theory, the BI field is a

canonical pseudoscalar minimally coupled with gravity. This framework is argued to be more natural than

the one of the usual Holst action. Potential consequences in relation with inflation and the quantum theory

are briefly discussed.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1–4] aims to quantize the
gravitational interaction in a rigorous and consistent way.
At classical level, it relies on the Hamiltonian formulation
of gravity through Ashtekar-Barbero canonical variables
[5–7] and features a real constant � (or � � �1=�) called
the Barbero-Immirzi (BI) parameter [7–9]. Its value can be
constrained by the computation of the entropy of nonrotat-
ing black-hole isolated horizons [10,11], but otherwise it is
arbitrary. Many authors have contributed to clarify the
physical origin of the BI parameter [9,12–14], and sugges-
tions have come from studying the interaction of gravity
with fermions [15–19].

Recently it has been proposed to promote � to a field
�ðxÞ in a Holst-type action and study the resulting dynam-
ics [20]; the same system was considered also in [21] and,
actually, in an older publication [22]. Classically, when the
so-called second Cartan structure equation is reinserted
into the action and the effective dynamics is extracted,
this system turns out to be equivalent to one with a pure
gravitational (Einstein-Hilbert) sector and a decoupled
scalar field.

The first goal of this paper is to clarify the parity
properties of the BI field, which were not recognized
previously. This can be done in a straightforward way by
decomposing torsion into irreducible components. It is
explicitly shown that � must be a pseudoscalar in order
to preserve the transformation properties of these compo-
nents under the local Lorentz group.

The Holst action, however, is not the most natural start-
ing point. In fact, � generates torsion and one should
expect the presence of torsion terms already at the action
level. As previously argued in [13,18,23], the Holst frame-
work has to be generalized in order to deal with Riemann-
Cartan space-time. This is achieved by completing the

Holst term with a torsion part so that the net coupling
with � is nothing but the Nieh-Yan density [13,14,18,23–
26].
In other words, the observation, made by Holst [27], that

the Hilbert-Palatini action can be generalized by adding a
new term (which, in the case � ¼ const, does not affect the
classical dynamics of pure gravity) can be extended to
torsional space-times [14,18]. Interestingly enough, in the
case � ¼ �ðxÞ coupled with the Nieh-Yan invariant, we
shall see that the BI field becomes a real canonical pseu-
doscalar field. The pseudoscalar nature of the � field can
be demonstrated by noting that the axial component of
torsion is proportional to the partial derivative of � itself.
All these results can be obtained in the Lagrangian

formalism, but for quantization purposes it is natural to
analyze the � field also within the canonical formalism
[28] (see [29] for an introduction). In the standard quanti-
zation procedure, Dirac brackets are promoted to commu-
tators and first-class constraints to operators acting on a
suitable Hilbert space.1 This motivates us to study the BI
field in the first-order Hamiltonian formalism in the ab-
sence of matter, in both the Holst and Nieh-Yan case. As
expected, the canonical system is fully equivalent to the
second-order effective action for a scalar field minimally
coupled with Einstein-Hilbert gravity (in agreement with
[20,21] in the Holst case).
The quantum theory provides us with yet another reason

to inspect the Nieh-Yan case. Since � is now coupled with
a topological invariant (while the Holst term vanishes only
‘‘on half shell,’’ i.e., when the second Cartan structure
equation is solved), one could ask whether it plays a role
analog to the � parameter in QCD [13,14] (see also [12]; an
early proposal for a CP-violating mechanism wherein the
Barbero-Immirzi parameter was involved, still as a con-
stant, can be found in [30]). In a companion paper [31], it is
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1Other quantization schemes are possible, for instance, after
solving some of the first-class constraints; this could lead to an
altogether different theory.
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argued that the BI parameter must be a field in order to
absorb a divergent chiral anomaly [25,32] in the presence
of fermions.

Another justification for focussing some attention to the
Hamiltonian framework is to clarify in what sense this
system (either Holst or Nieh-Yan) is a scalar-tensor theory.
In fact, since the� field is coupled to gravity in the original
action, this seems to be a particular example of a Brans-
Dicke theory [33,34]. In these models, one can make a
conformal transformation of the metric such that the theory
in the ‘‘Jordan frame,’’ where the coupling between gravity
and the scalar field is nonminimal, is mapped onto one in
the ‘‘Einstein frame,’’ where the coupling is minimal [35].
Physically the two theories are inequivalent, as one can
take either frame as the one where distances are measured.
Moreover, in the presence of matter the conformal trans-
formation changes the coupling between the scalar and
other fields, thus violating the strong equivalence principle.
However, on one hand in the effective action of the BI
model no trace of the nonminimal coupling is left, and on
the other hand it is not obvious how a scalar-tensor cou-
pling is translated into Hamiltonian language. The role of
the Nieh-Yan term in the presence of spinor matter fields
has been studied in [18] and more recently in [13] (see also
[14]), where the BI parameter has been argued to have a
topological origin. Here we do not take spinors into ac-
count but claim that, starting from an action containing the
Nieh-Yan term and promoting the BI parameter to a field,
we obtain a more natural effective action in which � is
canonical.

The paper is organized as follows. Since the Holst case is
by far the most widely considered in the literature, we will
compare it with the Nieh-Yan case in a step-by-step fash-
ion. The fundamental action with a Holst or a Nieh-Yan
term is analyzed in the Lagrangian formalism in Secs. II A
and II B, respectively. The Hamiltonian formalism is in-
spected in Sec. III, where we quote the main results. The
reader unfamiliar with constrained Hamiltonian systems in
the presence of torsion can consult the appendix for a
pedagogical introduction and a full derivation of the con-
straints. Section IV is devoted to the discussion of the
achieved results and future directions.

In the following, the space-time signature is
(þ���). Repeated upper-lower indices are summed
over. We set 8�G ¼ 1.

II. LAGRANGIAN FORMULATION

Starting from the Lagrangian Holst theory, we calculate
the effective action by introducing the irreducible compo-
nents of torsion and solving their equations of motion. By
reintroducing the obtained solutions into the action, we
calculate the effective action, demonstrating that the BI
field decouples from gravity and also showing its pseudo-
scalar nature. It is worth stressing that the field � is
characterized by a complicated kinetic term, which can

be recast in the standard way by a simple change of
variables, as already noticed in [20,21,36]. Unfortunately,
this field redefinition would lead to a quite unnatural
coupling between the pseudoscalar and spinor matter.
Then we generalize the Holst action by introducing a

new torsion-torsion term in the action. This is motivated by
some geometrical arguments suggested by the fact that the
Holst modification of the Hilbert-Palatini action is not
completely general. In fact, it contains only one of the
two terms belonging to a well-known topological density
called the Nieh-Yan 4-form. The Nieh-Yan density is linear
in the curvature and contains a torsion-torsion term, which
can play an important dynamical role in the case torsion
does not vanish, i.e., in dynamical systems in which a
source for torsion is present. It goes without saying that
the new action containing the Nieh-Yan term reduces to the
usual Holst action for torsion-free gravity and constant BI
parameter.

A. Holst case

Let ðM4; g��Þ be a four-dimensional space-time mani-

fold M4 locally equipped with a metric g��. The tangent

space TxM4 is isomorphic to Minkowski space and we can
define the one-to-one map e: M4 ! TxM4 which sends
tensor fields from the manifold to theMinkowskian tangent
space. This map, generally called tetrad or vierbein, is a
local reference system for the space-time, physically rep-
resenting the gravitational field. Its relation with the metric
g�� is summarized in the following formulæ:

g�� ¼ �abe
a
�e

b
�; e�

aea
� ¼ ��

�; ea
�e�

b ¼ �b
a;

(1)

where both Greek and Latin indices run from 0 to 3 and
transform, respectively, under general coordinate and local
Lorentz transformations. The tetrad fields incorporate all
the metric properties of space-time, but the converse is not
true. In fact, due to (manifest) local Lorentz invariance,
there are infinitely many realizations of the local basis
reproducing the same metric tensor. This is also the reason
why there are more components in the tetrads than in the
metric field, the difference being exactly six, which is the
number of free parameters of the SOð3; 1Þ group represent-
ing Lorentz transformations on the Minkowski tangent
space.
The action for gravity can be rewritten in terms of the

tetrad fields and the Lorentz-valued spin connection !ab
�,

which will be considered as an independent field according
to the Palatini formulation. The usual Hilbert-Palatini ac-
tion will be generalized to contain the so-called Holst term
[27] and the Barbero-Immirzi parameter promoted to a
field [20,22]:
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S ¼
Z
M4

dtL

¼ � 1

2

Z
M4

d4xð4Þeea�eb
�

�
Rab

�� � �

2
	abcdR

cd
��

�
;

(2)

where ð4Þe � detðe�a Þ is the determinant of the tetrad, � ¼
�ðxÞ is the BI field, and Rab

�� ¼ 2@½�!ab
�� þ

2!a
c½�!

cb
�� is the Riemann curvature associated with

!ab
�.

2

It appears immediately clear that the action (2) is not
equivalent to the Hilbert-Palatini action, differently from
the case � ¼ const. The reason is that the second Cartan
structure equation is affected by the presence of the BI
field; in particular, a torsion contribution depending on the
derivative of the BI field will appear in the spin connection.
As a consequence, the Bianchi cyclic identity generalizes
too, assuming the form

Ra
b½��e

b

� ¼ D½�Ta

�
� � 0; (3)

where D� is the covariant derivative operator made with

the Lorentz-valued spin connection !ab and Ta
�� is the

torsion tensor, which depends on the derivative of � in this
specific case. Then, the Holst term no longer vanishes on
half shell, unless � is a constant. This fact has interesting
dynamical consequences. We are going to demonstrate that
the BI field, through the torsion tensor, decouples from the
gravitational sector of the theory and plays the role of an
independent (pseudo)scalar field [22].
We begin by studying the dynamics described by Eq. (2)

from a Lagrangian point of view. It is convenient to split
the Lorentz spin connection in a torsionless part �!ab (Ricci
connection, which obeys the homogeneous structure equa-
tion) plus the contortion 1-form Kab [37]:

!ab
� ¼ �!ab

� þKab
�; (4)

where the contortion tensor

K ab
� ¼ ea�e

b

K�


�; K�

� ¼ �K
�

�; (5)

is related with the torsion T�

� ¼ �T�

�
 by

K �

� ¼ 1

2ðT�

� � T


�
� � T�

�

Þ: (6)

The action equation (2) (integration domain omitted) reads

S ¼ � 1

2

Z
d4xð4Þeea�eb

� �R��
ab � 1

2

Z
d4xð4Þeea�eb

�ðKa
c�Kcb

� �Ka
c�Kcb

�Þ

þ 1

2

Z
d4xð4Þeea�eb

��	abcd@½�K
cd

�� þ
1

4

Z
d4xð4Þeea�eb

��	abcdðKc
f�K

fd
� �Kc

f�K
fd

�Þ; (7)

where the term 	abcdea
�eb

� �Rcd
�� vanishes because of the

Bianchi cyclic identity eb½
 �Rab
��� ¼ 0 and total divergen-

ces have been dropped out.
It will be particularly convenient to split the torsion into

its irreducible components in accordance with the Lorentz
group [38–41]:

T��
 ¼ 1
3ðT�g�
 � T
g��Þ � 1

6	��
�S
� þ q��
; (8)

where

T� � T�
�� (9)

is the trace vector,

S� � 	�
��T
�
� (10)

is the pseudotrace axial vector, and the antisymmetric
tensor q��
 is such that q�
� ¼ 0 ¼ 	��
�q��
. Equa-

tion (2) can be rewritten as

S ¼ � 1

2

Z
d4xð4Þe

�
ea

�eb
� �R��

ab þ �

2
�r�S

� þ 1

24
S�S

�

� 2

3
T�T

� þ �

3
T�S

� þ 1

2
q��
q

��


þ �

2
	��
�q�

�
q���
�
; (11)

where �r� is the torsionless and metric-compatible cova-

riant derivative. By varying the action with respect to the
irreducible components of torsion S�, T�, and q
��, we
obtain, respectively,

1
2 @��� 1

12S� � 1
3�T� ¼ 0; (12)

�S� � 4T� ¼ 0; (13)

q��
 þ �	��
�q�
�� ¼ 0: (14)

The solutions of the above system of equations can be
easily calculated:

S� ¼ 6

1þ �2
@��; (15)2Square brackets denote antisymmetrized indices, X½��� ¼

1
2 ðX�� � X��Þ.
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T� ¼ 3

2

�

1þ �2
@��; (16)

q��
 ¼ 0: (17)

By reinserting the solutions into the action (11), we obtain
the expected form of the effective action:

Seff ¼ � 1

2

Z
d4xð4Þeea�eb

� �R��
ab

þ 3

4

Z
d4xð4Þe

1

1þ �2
@a�@

a�: (18)

The system is therefore equivalent to Hilbert-Palatini
torsion-free gravity plus a massless scalar field with a
nonstandard kinetic term. Defining the new field  as

 ¼ ffiffiffi
3

p
sinh�1�; (19)

the nonstandard term in Eq. (18) can be reabsorbed to
obtain

Seff ¼ � 1

2

Z
d4xð4Þe

�
ea

�eb
� �R��

ab � 1

2
@a@a

�
: (20)

Now the effective action contains a standard decoupled
pseudoscalar field , which is connected to the BI field by
the relation (19). For the sake of completeness, it is worth
noting that the solution we have obtained passing through
the definition of the irreducible components of torsion
corresponds to a contortion tensor of the form

K ab
� ¼ 1

1þ �2

�
�e½a�@b��� 1

2
ec�	

ab
cd@

d�

�
; (21)

which agrees with the one obtained in [20].

B. Nieh-Yan case

As was shown in the previous section, the noncanonical
pseudoscalar � induces contortion in the spin connection.
On general grounds onewould expect to meet torsion terms
already at the level of the fundamental action. Equation (2)
can be generalized to

S ¼ � 1

2

Z
d4xð4Þeea�eb

�R��
ab

� 1

4

Z
d4xð4Þe�ð	��
��abT

a
��T

b

�

� ea
�eb

�	abcdR��
cdÞ; (22)

when � is constant, the second integral becomes the Nieh-
Yan topological invariant, which reduces to a total diver-
gence not affecting the equations of motion. In the pres-
ence of torsion it is the natural extension of the Holst term,
which is not topological by itself.

Using the same procedure of the previous section we can
rewrite the above action as

S ¼ � 1

2

Z
d4xð4Þe

�
ea

�eb
� �R��

ab þ �

2
�r�S

� þ 1

24
S�S

�

� 2

3
T�T

� þ 1

2
q��
q

��


�
: (23)

The terms ð�=3ÞT�S
� and ð�=2Þ	��
�q�

�
q��� featured

in Eq. (11) have been cancelled out. By varying the action
with respect to the irreducible components of torsion S�,
T�, and q
��, we obtain, respectively,

@��� 1
6S� ¼ 0; (24)

T� ¼ 0; (25)

q��
 ¼ 0: (26)

After reinserting the solutions above into the action (23),
we get the effective action

Seff ¼ � 1

2

Z
d4xð4Þeea�eb

� �R��
ab þ 3

4

Z
d4xð4Þe@a�@a�:

(27)

The system is therefore equivalent to Hilbert-Palatini
torsion-free gravity plus a massless scalar field. Contrary
to the Holst case, � itself is canonical and there is no need
to make a field redefinition.

III. HAMILTONIAN FORMULATION

The same results of the previous section can be obtained
in the Hamiltonian framework. Following the Dirac pro-
cedure, we calculate the first- and second-class constraints
of the Holst theory. The latter can be easily solved, so that
the system turns out to be characterized by a set of first-
class constraints which reflect rotational and diffeomor-
phism gauge freedom. The counting of the degrees of
freedom shows the presence of a free pseudoscalar field
decoupled from gravity.
In order not to distract the reader with a lengthy deriva-

tion of the constraints, we refer to the appendix for notation
and details. The phase space is equipped with the symplec-
tic structure

fKi
�ðt;xÞ; E�

j ðt;x0Þg ¼ ��
��i

j�ðx;x0Þ; (28a)

f�ðt;xÞ;�ðt;x0Þg ¼ �ðx;x0Þ; (28b)

where all indices are spatial (Greek ones over manifold
spatial coordinates), Ki

� ¼ !0i
� is the extrinsic curvature,

E�
i ¼ �ee�i is the triad, and � ¼ eðn � SÞ=4 is the mo-

mentum of the BI field. The total Hamiltonian is
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HD ¼
Z

d3xð�iRi þ N�H � þ NH Þ; (29)

where�i,N�, andN are Lagrange multipliers. In the Holst
case, the rotation, supermomentum, and super-Hamil-
tonian (first-class) constraints are, respectively,

Ri � 	ij
kKj

�E�
k � 0; (30a)

H � � 2E�
i D½�Ki

�� þ�@�� � 0; (30b)

H � � 1

2e
E�
i E

�
j ð	ijkRk

�� þ 2Ki
½�K

j
��Þ þ

1þ �2

3e
�2

� 3

4

e

1þ �2
@��@

�� � 0; (30c)

where D� is the covariant derivative in terms of the
SOð3Þ-valued spin connection �i

� ¼ 	ijk!�
jk=2 and Rk

��

is the curvature of �.
In the Nieh-Yan case, the super-Hamiltonian (30c) is

replaced by the simpler

H ¼ � 1

2e
E�
i E

�
j ð	ijkRk

�� þ 2Ki
½�K

j
��Þ þ

1

3e
�2

� 3

4
e@��@

��: (31)

The net effect of the Nieh-Yan term is to absorb factors
(1þ �2) in the contributions of the pseudoscalar field,
which is now canonical. Notice that the system possesses
a shift symmetry � ! �þ �0 which is absent in the Holst
case.

IV. DISCUSSION

The technical results of this paper may open up some
interesting lines of investigation.

In either the Holst or the Nieh-Yan case, the canonical
approach clearly shows [see Eqs. (30b), (30c), and (31)]
that the matter-free system under consideration is not
equivalent to a scalar-tensor theory in a nontrivial sense.
Although one can almost always perform a conformal
transformation of a minimally coupled scalar-tensor sys-
tem to get a Brans-Dicke type theory, in the absence of
extra matter this step may be physically justified only in the
other direction, i.e., from a scalar-tensor theory to a mini-
mally coupled one. When matter is included, the change of
frame would determine different couplings between the
matter sector and the scalar field. This happens to be the
case, for instance, when fermions are included, but in the
Holst case the resulting coupling is rather unnatural [21].
On the other hand, the scalar-fermion coupling is drasti-
cally simplified in the Nieh-Yan case [18,42]. The natural-
ness of the action in both the scalar and fermionic sectors
indeed makes the Nieh-Yan case more appealing.

In fact, if � and the inflaton were identified, then in-
flation would be reinterpreted as a phenomenon stemming

from a breaking of the topological sector of the theory (in
[43,44] a similar claim was made, although from a differ-
ent physical perspective). However, from the theory we do
not have any input as far as a potential for � is concerned.
An insertion by hand would not explain inflation more than
any other phenomenological model. If one required CP
symmetry to hold, the potential would be restricted to even
functions of �; otherwise some CP-violating effect might
make its appearance during the evolution of the universe. A
natural potential with nontrivial minima might be achieved
via a Peccei-Quinn mechanism [31]. At that point one
could also ask oneself whether the value of � found from
black hole entropy calculations [10,11] is related to a
particular vacuum.
Finally, since loop quantum gravity makes extensive use

of the Ashtekar-Barbero connection and its conjugate mo-
mentum, which allow for a well-defined quantization, it is
of interest to reexpress the constraints from ðK;EÞ varia-
bles to the latter. It is immediately clear that the most naive
generalization of the Ashtekar-Barbero connection to a

varying BI parameter, ~Ai
� � �ð1=�ÞKi

� þ �i
�, would not

lead to a canonical algebra [45]. For instance, fAi
�;�g � 0,

due to the mixing of matter and gravitational degrees of
freedom in A. There is another way to state this result. The
rotation constraint and the saturated compatibility condi-

tion combine into the Gauss constraint D�E
�
i � @�E

�
i þ

	ij
kAj

�E�
k � 0. Taking the Poisson bracket of the Gauss

constraint with itself, one can see that the algebra of gauge
rotations does not close. In fact, the above definition would
break the shift symmetry in the � field, thus leading to a
different theory. Obviously, with the usual definition of the
connection with constant �0,

Ai
� � � 1

�0

Ki
� þ �i

�; (32)

the symplectic structure remains canonical, and one gets
the well-known constraint equations with the addition of
the scalar sector. Now, one should justify the definition (32)
and explain the relation between the constant�0 and the BI
field. An explicit parametrization of �ðt;xÞ in terms of
space-time coordinates could shed some light on this issue.
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APPENDIX A: HAMILTONIAN ANALYSIS
WITH TORSION

1. Holst case

Let us consider the action (11) and assume that the
space-time ðM4; g��Þ is globally hyperbolic [46]. Then,
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according to Geroch theorem [47] (see also [48]), a global
time function t can be chosen in such a way that each
surface of constant t is a Cauchy surface and space-time
topology is M4 ¼ R� �3, where �3 is any Cauchy sur-
face. On each surface, the metric (1) induces a Riemannian
metric h�� defined by the first fundamental form, i.e.

h�� ¼ g�� � n�n�; (A1)

where n� is the normal vector to �3. Let t� ¼ t�ðyÞ be the
time flow vector field on M4 3 y satisfying
t�r�t ¼ t�@�t ¼ 1.3 The time flow vector field generates

a one-parameter group of diffeomorphisms, known as em-
bedding diffeomorphisms, t: R� �3 ! M4, defined as
yðt;xÞ � ytðxÞ. This allows to represent space-time as a
smooth deformation of the three-dimensional Cauchy sur-
faces �3 into a one-parameter family of three-dimensional
Cauchy surfaces�3

t . These are described by the parametric
equations y�t ¼ y�t ðxÞ, where t denotes the hypersurface at
different ‘‘times.’’ A general parametrization can be ob-
tained by introducing the normal and tangential compo-
nents of the vector field t�ðyÞ with respect to �3. Namely,
we define

N � g��t
�n�; N� � h��t

�; (A2)

respectively called the lapse function and shift vector. As a
consequence we have

t�ðt;xÞ ¼ @y�ðt;xÞ
@t

��������yðt;xÞ¼ytðxÞ
¼ Nðt;xÞn�ðt;xÞ þ N�ðt;xÞ: (A3)

By acting with a Wigner boost on the local basis, we can
rotate it so that its zeroth component results to be parallel,
in each point of �3, to the normal vector n�, i.e. n� ¼ e0�
(implying that the local boost parameter eit vanishes at
each point of �3). The requirement that this particular
choice of the orientation of the local basis be preserved
along the evolution fixes the so-called Schwinger or time
gauge, the net result being that the action will no longer
depend on the boost parameters; also, the local symmetry
group is reduced from the initial SOð3; 1Þ to SOð3Þ, which
encodes the spatial rotational symmetry. It can be demon-
strated that fixing the time gauge into the action does not
affect the consistency of the canonical analysis, this pro-
cedure being equivalent to a canonical gauge fixing. The
action (11) can be finally written as follows:

S ¼ � 1

2

Z
dtd3xð4Þe

�
2e0

�ei
�R��

0i þ ei
�ej

�R��
ij � 1

2
S�@��þ 1

24
S�S

� � 2

3
T�T

� þ 1

3
�T�S

�

�

¼ � 1

2

Z
dtd3xð4Þe

�
2
t� � N�

N
ei

�R��
0i þ ei

�ej
�R��

ij þ ðn�n� þ h��Þ

�
�
� 1

2
S�@��þ 1

24
S�S� � 2

3
T�T� þ 1

3
�T�S�

��

¼ �
Z

dtd3xe

�
e�i ½t�@�Ki

� þ!0i
�@�t

� � @�ðt �!iÞ �!i
k�ðt �!kÞ þ ðt �!i

kÞKk
�� � N�e�i

ð3ÞR��
0i

þ N

2
e�i e

�
j ðð3ÞR��

ij � 2Ki
½�K

j
��Þ �

1

4
ðn � SÞt�@��þ 1

4
ðn � SÞN�@��� N

4
S�@��

þ N

�
1

48
ðn � SÞ2 � 1

3
ðn � TÞ2 þ 1

6
�ðn � TÞðn � SÞ þ 1

48
S�S

� � 1

3
T�T

� þ 1

6
�T�S

�

��
; (A4)

where we have omitted the bars for torsionless geometrical
objects (they will be reinstated only in Sec. II B) and we set
the tensor q��
 to zero since it is nondynamical and does
not contribute to the torsion tensor, as was clear from the
Lagrangian analysis.4 The following notations have been
used:

Ki
� � !0i

�; (A5)

t �!i ¼ t�!0i
�, t �!jk ¼ t�!jk

�, n � S ¼ n�S�, n � T ¼
n�T�, and

ð4Þe ¼ Ne, e ¼ detei� being the determinant of
the triad. Greek indices �;�; . . . from the beginning of the
alphabet and Latin indices i; j; . . . from the middle of the
alphabet run from 1 to 3 and denote, respectively, compo-
nents transforming under spatial diffeomorphisms and
local spatial rotations. The three-dimensional Levi-Civita
symbol is defined as 	ijk � 	0ijk and we will often make
use of the relation 	ijk	

iln ¼ �n
j�

l
k � �l

j�
n
k .

Now, remembering the definition of the Lie derivative
operator on a vector, LtV� ¼ t�@�V� þ V�@�t

�, we can

rewrite the above action as

3We remark that neither t nor t� can be interpreted in terms of
physical measurements of time, since one does not know the
metric, which is, in fact, the unknown dynamical field in the
Einstein theory of gravitation.

4Setting q��
 ¼ 0 does not affect the generality of the for-
mulation and it has the advantage of simplifying the canonical
formulation, which is rather involved for 3-tensors like q��
.
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S ¼ �
Z

dtd3xe

�
e�i ½LtK

i
� �D�ðt �!iÞ þ ðt �!i

kÞKk
�� � 2N�e�i D½�Ki

�� þ
N

2
e�i e

�
j ðð3ÞR��

ij � 2Ki
½�K

j
��Þ �

1

4
ðn � SÞLt�

þ 1

4
ðn � SÞN�@��� N

4
S�@��þ N

�
1

48
ðn � SÞ2 � 1

3
ðn � TÞ2 þ 1

6
�ðn � TÞðn � SÞ þ 1

48
S�S

� � 1

3
T�T

� þ 1

6
�T�S

�

��
;

(A6)

where we introduced the SOð3Þ-valued covariant derivative
D�ð¼ �D�Þ, which can be written as D�V

i ¼ @�V
i þ

	ijk�
j
�Vk on a gauge vector, where

�i
� � 1

2	
i
jk!�

jk: (A7)

The curvature of � is defined as

Ri
�� � 2@½��i

�� þ 	ijk�
j
��k

� ¼ 1
2	

i
jk
ð3ÞR��

jk: (A8)

The next step is the definition of the momenta conjugated
to the fundamental variables. Since the Lagrangian is
singular, we expect a set of primary constraints to appear.
In particular, the only nonvanishing momenta are those
conjugated to Ki

� and �:

Ki
�: E

�
i � �S

�LtK
i
�

¼ �ee�i ; (A9a)

�: � � �S

�Lt�
¼ 1

4
eðn � SÞ: (A9b)

All the others vanish identically, i.e.

6

e�i : P
i
� ¼ 0; (A10a)

�i
�: �

�
i ¼ 0; (A10b)

t �!i: �i ¼ 0; (A10c)

t �!ij: �ij ¼ 0; (A10d)

n � S: �ðSÞ ¼ 0; (A10e)

n � T: �ðTÞ ¼ 0; (A10f)

S�: �ðSÞ
� ¼ 0; (A10g)

T�: �ðTÞ
� ¼ 0; (A10h)

N�: �ðNÞ
� ¼ 0; (A10i)

N: �ðNÞ ¼ 0: (A10j)

Here we have not made use of the fact that �!ij
� is the Ricci

spin connection, which depends on the triad field; the
canonical analysis will eventually show that it is not an
independent variable.

As one can immediately notice, in none of the above
conjugated momenta there is the temporal Lie derivative of
any of the fundamental variables; so, in principle, all of

them should be considered as primary constraints.
Therefore the following set of primary constraints has to
be imposed:

ðKÞC�
i � E�

i þ ee�i � 0; (A11a)

C � �� 1
4eðn � SÞ � 0; (A11b)

ðeÞCi
� � P i

� � 0; (A11c)

ð�ÞC�
i � ��

i � 0; (A11d)

Ci � �i � 0; (A11e)

Cij � �ij � 0; (A11f)

CðbÞ � �ðbÞ � 0; b ¼ S; T; N; (A11g)

CðbÞ
� � �ðbÞ

� � 0; b ¼ S; T; N: (A11h)

The phase space has been equipped with the symplectic
structure

EQ-TARGET;temp:intralink-;da12,da12a,da12b,da12c,da12d,da12e,da12f,da12g,da12h,da12i,da12j,da12k,da12l;316;454 fKi
�ðt;xÞ; E�

j ðt;x0Þg ¼ ��
��i

j�ðx;x0Þ; (A12a)

f�ðt;xÞ;�ðt;x0Þg ¼ �ðx;x0Þ; (A12b)

fei�ðt;xÞ;P �
j ðt;x0Þg ¼ ��

��i
j�ðx;x0Þ; (A12c)

f�i
�ðt;xÞ;��

j ðt;x0Þg ¼ ��
��i

j�ðx;x0Þ; (A12d)

ft �!iðt;xÞ;�kðt;x0Þg ¼ �i
k�ðx;x0Þ; (A12e)

ft �!ijðt;xÞ;�klðt;x0Þg ¼ �i
½k�

j
l��ðx;x0Þ; (A12f)

fSðt;xÞ;�ðSÞðt;x0Þg ¼ �ðx;x0Þ; (A12g)

fTðt;xÞ;�ðTÞðt;x0Þg ¼ �ðx;x0Þ; (A12h)

fNðt;xÞ;�ðNÞðt;x0Þg ¼ �ðx;x0Þ; (A12i)

fS�ðt;xÞ;�ðSÞ
� ðt;x0Þg ¼ ��

��ðx;x0Þ; (A12j)

fT�ðt;xÞ;�ðTÞ
� ðt;x0Þg ¼ ��

��ðx;x0Þ; (A12k)

fN�ðt;xÞ;�ðNÞ
� ðt;x0Þg ¼ ��

��ðx;x0Þ; (A12l)

where f�; �g are Poisson brackets. Having calculated the
conjugated momenta, we can now perform the Legendre
dual transformation and extract the canonical Hamiltonian.
Since the latter is not uniquely determined because of the
primary constraints, we write the Dirac Hamiltonian:

BARBERO-IMMIRZI FIELD IN CANONICAL FORMALISM . . . PHYSICAL REVIEW D 79, 084004 (2009)

084004-7



HD ¼
Z

d3xðE�
i LtK

i
� þ�ð�ÞLt�þ �mCmÞ � L

¼
Z

d3x

�
E�
i ½D�ðt �!iÞ � ðt �!i

kÞKk
�� þ N�H � þ NH þ ðKÞ�i

�
ðKÞC�

i þ �Cþ ðeÞ��
i
ðeÞCi

� þ ð�Þ�i
�
ð�ÞC�

i

þ �iCi þ �ijCij þ
X

b¼S;T;N

½�ðbÞCðbÞ þ ��
ðbÞC

ðbÞ
� �

�
; (A13)

where

H � � 2E�
i D½�Ki

�� þ�@�� (A14)

is the supermomentum and

H � � 1

2e
E�
i E

�
j ð	ijkRk

�� þ 2Ki
½�K

j
��Þ þ

1

3e
�2 þ 2

3
ðn � TÞ��

þ e

�
1

48
S�S

� � 1

3
ðn � TÞ2 � 1

3
T�T

� þ 1

6
�T�S

� � 1

4
S�@��

�
(A15)

is the super-Hamiltonian, while �m and �m are arbitrary
functions.

As a consistency requirement, the Dirac canonical pro-
cedure imposes to calculate the Poisson brackets between
the primary constraints and the Dirac Hamiltonian. If they
do not vanish on the primary surface for some value of the
Lagrange multipliers �m, they must be constrained to
vanish. This way, secondary constraints are generated
which determine the secondary constraint surface on the
phase space [29].

The Poisson brackets between the Dirac Hamiltonian
and the first three primary constraints Eqs. (A11a)–(A11c)
do not generate any secondary constraints: In fact, they can
be set to zero by suitably choosing the Lagrange multi-

pliers ðKÞ��
i and �ðSÞ.

For the other primary constraints one gets

fCi;HDg ¼ D�E
�
i ; (A16)

fCðSÞ; HDg ¼ 0; (A17)

fð�ÞC�
i ; HDg ¼ 	ijkE

�j

�
ðt �!kÞ � N�Kk

� þ E�k@�

�
N

e

��

þ N�	ijkE
�jKk

� þ N

e
	i

jkD�ðE�
j E

�
k Þ;
(A18)

fCðSÞ
� ;HDg ¼ Ne

2

�
1

2
@��� 1

12
S� � 1

3
�T�

�
; (A19)

fCðTÞ
� ;HDg ¼ Ne

3

�
2T� � 1

2
�S�

�
; (A20)

fCðTÞ; HDg ¼ 2

3
N½eðn � TÞ � ���; (A21)

fCij; HDg ¼ K�½jE�
i�; (A22)

fCðNÞ
� ;HDg ¼ �H �; (A23)

fCðNÞ; HDg ¼ �H : (A24)

Since we have extracted the torsion components from the
full spin connection, the triad obeys the homogeneous
structure equation D½�ei�� ¼ 0. Hence, �i

� is the spatial

torsion-free SOð3Þ spin connection 2�i
a½E� ¼

	ijkE
�jr�E

k
�, where the covariant derivative r� contains

the Christoffel symbols, in turn expressed as functions of
E�
i (see [2] for the explicit expression). In particular, this

implies that the Lagrange multiplier ð�Þ�i
� is determined by

the equation of motion of �i
a½E�.

On the other hand, the dynamical equations of the
canonical variables S�, T�, n � T, t �!i, t �!ij, N, and
N� are completely arbitrary, since each of their Poisson
brackets with the full Dirac Hamiltonian is proportional to
the associated Lagrange multiplier �m (the same is true for
the equations of motion of e�i , n � S, and �i

�, but as argued
above their Lagrange multipliers are no longer arbitrary).
Therefore, at this point a useful simplification of this
canonical system of constraints can be naturally provided
and consists in treating the above subset of canonical
variables directly as Lagrange multipliers. This could
have been done at the very beginning by inferring which
are the dynamical variables and which are the Lagrange
multipliers. However, the Dirac procedure does not give us
any hint about this classification ab initio, so here we have
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preferred to follow the general procedure and arrive at this
conclusion after having calculated the set of primary and
secondary constraints.

Equation (A16) is solved because of the compatibility
equation, andD�E

�
i ¼ 0 strongly (i.e., on all phase space).

Equation (A17), on the other hand, is a consequence of the
fact that n � S disappears from the Dirac Hamiltonian, so
that its momentum is preserved by the Hamiltonian flow.

Then we can set �ðSÞ ¼ 0 strongly, as it vanishes initially.
Equations (A18)–(A24) do not contain Lagrange multi-

pliers �m and do not vanish on the primary surface. Hence
they have to be considered as secondary constraints.

Equation (A18) has been arranged to isolate three terms.
The first includes some of the new Lagrange multipliers
and can be made to vanish by definition. The second is
proportional to Eq. (A22), so it vanishes weakly. The third
term is strongly equal to zero as it is nothing but the
compatibility equation. Overall, Eq. (A18) is redundant
with other constraints and it will be ignored from now on.

The expression of the new Lagrange multipliers n � T,
S�, and T� can be easily calculated in order for the sec-
ondary constraints Eqs. (A19)–(A21) to vanish:

n � T ¼ 1

e
��; (A25)

S� ¼ 6

1þ �2
@��; (A26)

T� ¼ 3

2

�

1þ �2
@��: (A27)

According to Eq. (A26), � must be a pseudoscalar.
Plugging these expressions into Eq. (A15), we get the
reduced set of first-class constraints given by Eqs. (30a)–
(30c).

To summarize, the initial complicated system of con-
straints has been reduced to a set of seven first-class con-
straints, Eqs. (30a)–(30c), which reflect the gauge freedom
of the physical system, i.e., rotation of the local spatial
basis and diffeomorphisms of space-time. As regards the
canonical variables, the system is completely described by
the SOð3Þ-valued extrinsic curvature Ki

� and its momen-
tum E�

i , together with the field � and its momentum�, for

a total of 20 degrees of freedom. Then the physical degrees
of freedom on the phase space are 20� 2� 7 ¼ 6,5 spe-
cifically four corresponding to the two polarizations of the
graviton and two associated with the pseudoscalar field.
Before concluding the section, we wish to notice the

self-consistency of the results achieved so far. One can
verify that Eqs. (30b) and (30c) do correspond to the
supermomentum and super-Hamiltonian of the canonical
theory based on the effective action Eq. (18) for a mini-
mally coupled, nonstandard scalar field, whose conjugate
momentum is

� ¼ 3e

2

1

1þ �2
n�@�� ¼ 3e

2N

1

1þ �2
ðLt�� N�@��Þ:

(A28)

Finally, we note that Eqs. (15) and (16) are in agreement,
after projection, with the solutions Eqs. (A26) and (A27).

2. Nieh-Yan case

The canonical analysis does not change much with
respect to the previous section. The secondary constraints
Eqs. (A19)–(A21) become

fCðSÞ
� ;HDg ¼ Ne

4

�
@��� 1

6
S�

�
; (A29)

fCðTÞ
� ;HDg ¼ 2

3NeT�; (A30)

fCðTÞ; HDg ¼ 2
3Neðn � TÞ; (A31)

leading to

n � T ¼ 0; T� ¼ 0; S� ¼ 6@��: (A32)

The super-Hamiltonian turns out to be Eq. (31). One can
show that the canonical theory stemming from Eq. (27)
coincides with the one above.
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