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We consider the recently introduced ‘‘Galileon’’ field in a dynamical spacetime. When the Galileon is

assumed to be minimally coupled to the metric, we underline that both field equations of the Galileon and

the metric involve up to third-order derivatives. We show that a unique nonminimal coupling of the

Galileon to curvature eliminates all higher derivatives in all field equations, hence yielding second-order

equations, without any extra propagating degree of freedom. The resulting theory breaks the generalized

‘‘Galilean’’ invariance of the original model.
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I. INTRODUCTION

An interesting scalar-field theory, named Galileon, was
recently introduced in Ref. [1] inspired by the Dvali-
Gabadadze-Porrati (DGP) model [2] and its ability to
produce an accelerated expansion of the Universe without
introducing any dark energy or cosmological constant
[3,4]. More specifically, taking the so-called decoupling
limit of the DGP model, one can extract an effective theory
for a scalar field � argued to describe the scalar sector of
the original model [5,6]. In particular, this scalar-field
theory still exhibits interesting properties of the original
model, such as the existence of the self-accelerating branch
of DGP cosmology. Similarly to the decoupling limit of
massive gravity [7], the action of this effective theory
contains second-order derivatives acting on the scalar field.
But in contrast to massive gravity, in which the equations
of motion contain fourth-order derivatives, signaling the
presence of ghostlike modes or at least extra degrees of
freedom [8,9], the field equation for � is in fact of second
order. Indeed, it is well known that, according to
Ostrogradski’s theorem [10], higher-derivative theories
contain extra degrees of freedom, and are usually plagued
by negative energies and related instabilities (see e.g. [11]).
In the decoupling limit of the DGP model,1 it is thus
striking that such additional degrees of freedom do not
appear. Moreover, in addition to the usual constant-shift

symmetry � ! �þ c in field space, due to the absence of
undifferentiated �’s in the action, this theory also pos-
sesses a symmetry under constant shifts of the gradient
@�� ! @��þ b�. This symmetry implies that the � field

equation contains only second derivatives (but no first
derivative nor any undifferentiated field).
The recent Ref. [1] classified all possible four-

dimensional actions for a scalar field, �, which have the
same properties as the DGP effective theory discussed
above: having Lorentz invariant equations of motion which
contain only second derivatives of � on a flat (Minkowski)
background. Besides known Lagrangians which are
(i) linear in �, L1 ¼ �, (ii) the standard quadratic kinetic
Lagrangian for � in the form L2 ¼ @��@

��, and (iii) a

cubic Lagrangian L3 ¼ h�@��@
�� which is the one

obtained in the decoupling limit of DGP model, Ref. [1]
argues there only exist two possible other Lagrangians
which share the same property in four spacetime dimen-
sions. The first one, named L4 is made of a linear combi-
nation of four terms each made of a product of four� and a
total of six derivatives acting on�. The second one, named
L5, is made of a linear combination of seven terms each
made of a product of five � and a total of eight derivatives
acting on �. The linear combinations in L4 and L5 are
uniquely chosen (up to total derivatives) so that the equa-
tions of motions derived from the corresponding action
only contain second-order derivatives acting on �. The
analysis carried in [1] was made in flat spacetime and
one can legitimately expect things to change radically
when one considers the same theory on a curved dynamical
spacetime.
Indeed, first, when varied with respect to �, the

Lagrangians L4 and L5 are expected to generate third-
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1Note that this decoupling limit not only exists in massive

gravity and in the DGP model, but also in the generalized
framework of Ref. [12].
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order derivatives acting on the metric. These derivatives, in
the form of gradients of the Riemann tensor, appear via
commutations of fourth-order covariant derivatives acting
on �, which eventually disappear (together with third-
order derivatives). Second, when varied with respect to
the metric, the same Lagrangians are expected to generate
third-order derivatives acting on �, from the covariant
derivatives present in the � action. Should such higher
derivatives be generated, instabilities are expected to be
present, or at least extra degrees of freedom to propagate,
as can simply be understood from the counting of initial
conditions necessary to have a well posed Cauchy problem.
In fact, it is argued in [1] that the Galileon model cannot be
covariantized while keeping all its desired properties, in
particular, its symmetries and the absence of ghosts.

It is our purpose here to examine this question in some
detail. We will first show that the naive expectation sum-
marized above turns out to be true: namely, a naive cova-
riantization of the � action leads to third-order derivatives
both in the � and the metric field equations. However, we
will show that there is a possible (and unique2) nonminimal
coupling to curvature that has the property of removing at
the same time higher derivatives in both equations of
motions (those of � and in the � energy-momentum
tensor). The full set of equations concerning the simpler
Lagrangian L4 will be discussed in the bulk of the paper,
while the heaviest ones corresponding to the more complex
L5 will be given in the Appendix.

II. MINIMALLY VS NONMINIMALLY COUPLED
GALILEON

As shown in [1], any linear combination of L1, L2, L3,
defined in the Introduction,L4 andL5, defined as follows

3

L 4 ¼ ðh�Þ2ð�;��
;�Þ � 2ðh�Þð�;��

;���;�Þ
� ð�;���

;��Þð�;��
;�Þ þ 2ð�;��

;���;���
;�Þ; (1)

L5 ¼ ðh�Þ3ð�;��
;�Þ � 3ðh�Þ2ð�;��

;���;�Þ � 3ðh�Þ
� ð�;���

;��Þð�;��
;�Þ þ 6ðh�Þð�;��

;���;���
;�Þ

þ 2ð�;�
��;�

��;�
�Þð�;��

;�Þ þ 3ð�;���
;��Þ

� ð�;��
;���;�Þ � 6ð�;��

;���;���
;���;�Þ; (2)

(where a semicolon denotes the covariant derivative r�

associated with the metric g�� and � is a scalar field, the

Galileon) has the property that, considered on flat space-
time where r� ¼ @�, the derived equations of motion for

� only contain second-order derivatives of �. Actually, the
various terms written in Eqs. (1) and (2) are not indepen-

dent in flat spacetime. For instance, the combination
ðh�Þ2ð�;��

;�Þ þ 2ðh�Þð�;��
;���;�Þ � ð�;���

;��Þ�
ð�;��

;�Þ � 2ð�;��
;���;���

;�Þ is a total derivative in

Minkowski spacetime, so that L4 may be rewritten more
simply as L4 ¼ 2ð�;��

;�Þ½ðh�Þ2 � ð�;���
;��Þ� þ

tot: div. However, this expression does differ from Eq. (1)
in curved background, and we will come back to this
below. Similar rewritings also exist for Eq. (2) in
Minkowski spacetime, while giving different expressions
in curved background.
Following Ref. [1] a minimal coupling to the metric and

matter of the Galileon could be defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðRþL� þLmatterÞ; (3)

where L� is a linear combination (with arbitrary constant
coefficients ci) of L1, L2, L3, L4, and L5,

L � ¼ Xi¼5

i¼1

ciLi; (4)

R is the Ricci scalar for the metric g��, and Lmatter is the

Lagrangian of matter fields minimally coupled to a metric
~g�� made of the Einstein frame metric g�� and of the

Galileon �, e.g. in a conformal way like in ~g�� ¼ e2�g��.

It is clear that neither L1 nor L2 are able to generate
equations of motion containing derivatives of order higher
than two when varied with respect to � or g��. The DGP-

motivated Lagrangian L3 is known to generate a second-
order field equation for �, and it cannot yield either higher
derivatives when varied with respect to the metric. Indeed,
it contains at most first derivatives of g��, and those are

multiplied by first derivatives of �. As we will see now, the
situation is strikingly different for L4 and L5.
Let us first discuss the case of L4. When one varies L4

with respect to �, we obtain the equation of motion E4 ¼
0, where4

E4 � 2ð�;��
;�Þð� � �

;� � � �;��
��Þ þ 2�;��;�ð2�;���

�

� �;���
� � � �

;� ��Þ þ 10ðh�Þ�;�ð�;��
� � � �

;� �Þ
þ 12�;��

;��ð� �
;� � � �;��

�Þ þ 8�;��;��ð�;���

� �;���Þ � 4ðh�Þ3 � 8ð�;�
��;�

��;�
�Þ

þ 12ðh�Þð�;���
;��Þ; (5)

where the first two terms contain fourth-order derivatives,
the following three terms contain third-order derivatives,
and the last three terms contain second-order derivatives.
One notices in fact that the fourth- and third-order deriva-

2This nonminimal coupling is unique up to total derivatives,
and provided all �’s are differentiated.

3We use the sign conventions of Ref. [13], notably the mostly
plus signature.

4Equation (5) may also be written in a slightly different form
by using the identity �;��;�ð�;���

� � �
�

;�� �Þ þ
�;��

;��ð� �
;� � � �;��

�Þ � �;��;��ð�;��� � �;���Þ ¼ 0.
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tives disappear on a flat spacetime (as they should accord-
ing to Ref. [1]). Indeed, commuting the derivatives, we find
that one can rewrite E4 as

E 4 ¼ �4ðh�Þ3 � 8ð�;�
��;�

��;�
�Þ þ 12ðh�Þ

� ð�;���
;��Þ � ð�;��

;�Þð�;�R
;�Þ

þ 2ð�;��;��;�R
��;�Þ þ 10ðh�Þð�;�R

���;�Þ
� 8ð�;��

;��R���
;�Þ � 2ð�;��

;�Þð�;��R
��Þ

� 8ð�;��;��;��R
����Þ: (6)

We are left over with derivatives of the Ricci tensor and
scalar and hence with third-order derivatives of the metric.
One can think of a nonminimal coupling to the metric
which would get rid of those terms, in a form of a linear
combination of the two terms L4;1 and L4;2 defined as5

L4;1 ¼ ð�;��
;�Þð�;��

;�ÞR; (7a)

L4;2 ¼ ð�;��
;�Þð�;�R

���;�Þ: (7b)

In fact there is a unique combination of those two terms,
namely L4;2 � 1

2L4;1 which added to L4 eliminates all the

third derivatives in the � equations of motion. Specifically,
if we add to action

S4 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L4 (8)

the action

Snonmin
4 �

Z
d4x

ffiffiffiffiffiffiffi�g
p ð�;��

;�Þ�;�

�
R�� � 1

2
g��R

�
�;�

¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ð�;��
;�Þð�;�G

���;�Þ; (9)

G�� denoting the Einstein tensor, we obtain the equations
of motion for � in the form E0

4 ¼ 0, where E0
4 is given by

E0
4 ¼ �4ðh�Þ3 � 8ð�;�

��;�
��;�

�Þ
þ 12ðh�Þð�;���

;��Þ þ 2ðh�Þð�;��
;�ÞR

þ 4ð�;��
;���;�ÞRþ 8ðh�Þð�;�R

���;�Þ
� 4ð�;��

;�Þð�;��R
��Þ � 16ð�;��

;��R���
;�Þ

� 8ð�;��;��;��R
����Þ: (10)

We see that this equation does not contain derivatives of
order higher than 2, and that it obviously reduces to the
original form of Ref. [1] in flat spacetime. On the other
hand, notice that it involves first-order derivatives of � in
curved spacetime. This breaks the ‘‘Galilean’’ symmetry
under @�� ! @��þ b�, � ! �þ c which is a covariant

generalization of the transformation � ! �þ b�x
� þ c

(where b� and c are constants) defined in Ref. [1] in

Minkowski spacetime. Note also the complex mixing of
the field degrees of freedom implied by the presence of
second derivatives of both � and g�� in this equation.

It is interesting to note that the full action S4 þ Snonmin
4 ,

Eqs. (8) and (9), can be rewritten in a much more compact
form thanks to integrations by parts and commutations of
derivatives:

S4 þ Snonmin
4 ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p ð�;��

;�Þ
�
2ðh�Þ2

� 2ð�;���
;��Þ � 1

2
ð�;��

;�ÞR
�
: (11)

The nonminimal coupling to the Ricci tensor (7b) is indeed
automatically taken into account by the rewriting of Eq. (1)
discussed below Eq. (2).
Let us now investigate the variation of action S4, Eq. (8),

with respect to the metric.6 It results in an energy-

momentum tensor7 T ��
4 � ð�gÞ�1=2�S4=�g�� of the

form given by

T ��
4 ¼ ð�;��;�Þ�;�ð2�;��

� � �;�
��Þ þ ð�;��

;�Þ�;�ð�;�
�� � �;��

�Þ þ ð�;��
;�Þ�;�ð�;�

�� � �;��
�Þ

� �;��;�ð�;��;��
� þ �;��;��

�Þ þ ð�;��
;�Þð�;��

;���Þ þ ð�;��;��;��
;���Þg�� � ð�;��

;�Þð�;��;�
��Þg��

þ ð�;��;�Þ½3ð�;���
;��Þ � 2ðh�Þ2� þ ð�;��Þ�;�ð2�;���;� þ �;�h�Þ þ 3ðh�Þ�;�ð�;���;� þ �;���;�Þ

� 4�;��
;��ð�;�

��;� þ �;�
��;�Þ � 2ð�;��

;��Þð�;��
;��Þ � 1

2ð�;��
;�Þ½ðh�Þ2 þ ð�;���

;��Þ�g��

þ �;��;�½3�;���;�
� � 2ðh�Þ�;���g��:

(12)

Notice that this energy-momentum tensor contains third-
order derivatives of �, and even if flat spacetime g�� ¼
��� were a solution of Einstein’s equations. This shows

5These terms are the only possible nonvanishing ones made of
contractions of four gradients of � and one curvature tensor,
thereby involving a total of 6 derivatives.

6Note that this variation was not computed in Ref. [1], because
it chose the � energy-momentum tensor to be negligible, as can
be justified in an effective theory. Our aim is here to exhibit the
higher derivatives it contains and to find a cure, assuming it is a
fundamental classical field theory.

7This definition of the energy-momentum tensor corresponds
to choosing units such that 8�G=c4 ¼ 1.
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that once one lets the metric be dynamical, new degrees of
freedom will propagate even on a Minkowski background.
One can show that this energy-momentum tensor is con-
served on shell. Indeed, one finds (after many commuta-
tions of covariant derivatives) that

r�T
��
4 ¼ 1

2�
;�E4: (13)

This means, in particular, that the third derivatives present

in the expression ofT ��
4 are killed by the application of an

extra covariant derivative.
Remarkably, it turns out that the addition to action (8) of

the nonminimal coupling (9) is enough to eliminate all
third derivatives appearing in the � energy-momentum
tensor. Indeed varying the sum of actions (8) and (9), one
finds now the energy-momentum tensor

T 0��
4 ¼ 4ðh�Þ�;�½�;��;�� þ �;��;��� � 2ðh�Þ2ð�;��;�Þ þ 2ðh�Þð�;��

;�Þð�;��Þ þ 4ð�;��
;���;�Þð�;��Þ

� 4ð�;��
;��Þð�;��

;��Þ þ 2ð�;���
;��Þð�;��;�Þ � 2ð�;��

;�Þð�;�
��

;��Þ � 4�;��;��½�;���;� þ �;���;��
� ðh�Þ2ð�;��

;�Þg�� � 4ðh�Þð�;��
;���;�Þg�� þ 4ð�;��

;���;���
;�Þg�� þ ð�;��

;�Þð�;���
;��Þg��

þ ð�;��
;�Þð�;��;�ÞR� 1

4ð�;��
;�Þð�;��

;�Þg��R� 2ð�;��
;�Þ�;�½R���;� þ R���;�� þ 1

2ð�;��
;�Þð�;��

;�ÞR��

þ 2ð�;��
;�Þð�;�R

���;�Þg�� � 2ð�;��
;�Þð�;��;�R

����Þ; (14)

which now contains at most second derivatives. As ex-
pected, identity (13) is also verified by T 0��

4 and E0
4, given

in Eq. (10) above.
As we will see now, things proceed along the same line

for the Lagrangian L5. Indeed, varying the action

S5 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L5 (15)

with respect to �, we find, after commutation of covariant
derivatives, that the � equations of motion do not contain
derivatives or order higher than 2 acting on � but contain
third-order derivatives of the metric in the form of first
derivatives of the curvature. Those first derivatives are
found to be given by the combination

� 3ðh�Þð�;��
;�Þð�;�R

;�Þ þ 3ð�;��
;���;�Þð�;�R

;�Þ
þ 6ðh�Þð�;��;��;�R

��;�Þ þ 6ð�;��
;�Þ

� ð�;��;��R
��;�Þ � 12ð�;��;��

;��;��R
��;�Þ

� 6ð�;��;��;��;��R
����;�Þ:

(16)

One can think of eliminating those terms by adding to the
action a linear combination of the following seven non-
trivial contractions with the curvature tensors8:

L5;1 ¼ ð�;��
;�Þð�;��;��;��R

����Þ; (17a)

L5;2 ¼ ð�;��
;�Þð�;��

;�Þð�;��R
��Þ; (17b)

L5;3 ¼ ð�;��
;�Þð�;��

;��R���
;�Þ; (17c)

L5;4 ¼ ð�;��
;�Þðh�Þð�;�R

���;�Þ; (17d)

L5;5 ¼ ð�;��
;���;�Þð�;�R

���;�Þ; (17e)

L5;6 ¼ ð�;��
;�Þð�;��

;�Þðh�ÞR; (17f)

L5;7 ¼ ð�;��
;�Þð�;��

;���;�ÞR: (17g)

Not all those terms are independent, though. In fact using
the contracted Bianchi identity R��

;� ¼ 1
2R

;�, one can

show that the combination L5;2 þ 4L5;3 � 1
2L5;6 � 2L5;7

is a total derivative, and hence has an invariant action, i.e.,

�
Z

d4x
ffiffiffiffiffiffiffi�g

p �
L5;2 þ 4L5;3 � 1

2
L5;6 � 2L5;7

�
¼ 0:

(18)

It turns out that there is a unique combination (up to the
addition of the above expression), which added to action
S5, Eq. (15), removes all higher derivatives (those of the
metric as well as those of �) in the � equations of motion,
E0
5 ¼ 0. This combination is given by

Snonmin
5 ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�3L5;1 � 18L5;3 þ 3L5;4

þ 15

2
L5;7

�
: (19)

The resulting field equation for � is given in Eq. (A1) of
the Appendix.
Similarly to Eq. (11), the full action S5 þ Snonmin

5 may

also be rewritten in various simpler forms thanks to inte-
grations by parts and commutations of derivatives. A par-
ticularly elegant one is

S5 þ Snonmin
5 ¼ 5

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ð�;��

;�Þ½ðh�Þ3 � 3ðh�Þ
� ð�;���

;��Þ þ 2ð�;�
��;�

��;�
�Þ

� 6ð�;��
;��G���

;�Þ�: (20)

Varying now action (15) with respect to the metric, we
find as previously an energy-momentum tensor T ��

5 that

contains third derivatives of �. However, it turns out that
the addition of (19) to (15) eliminates all higher derivatives

and generates a new energy-momentum tensor T 0��
5 ,

whose expression is given in Eq. (A2) of the Appendix,
and which contains at most second derivatives (of � and

8These terms are the only possible nonvanishing ones made of
contractions of five �’s (acted on by at least one derivative) and
one curvature tensor, involving a total of eight derivatives.
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the metric). The analogue of Eq. (13) is consistently sat-

isfied by T 0��
5 and E0

5.

III. CONCLUSIONS

In this paper, we have shown that all higher-order de-
rivatives appearing in the field equations of the minimally
coupled Galileon to a dynamical metric, can be removed
by a suitable nonminimal coupling to curvature. This in-
sures that no extra degree of freedom is generated, and
thereby defines a class of purely scalar-tensor theories,
involving a single scalar degree of freedom, together
with the standard graviton and matter fields. However,
note that the absence of higher derivatives does not prove
the stability of the theory (and conversely, their presence
may occur in some specific stable models). This and other
issues deserve more investigation. For instance, Ref. [1]
considers Lagrangians involving products of more than
five�’s, which are total derivatives in flat four-dimensional
spacetime, and it seems interesting to study their behavior
in curved and extradimensional manifolds. Even without
assuming the Galileon symmetry of this reference, it is
worth studying the general form of scalar-field actions,
coupled to gravity, and yielding second-order equations.

Sticking with the original motivation of this kind of mod-
els, it remains to study their precise phenomenological
predictions and their consistency in a cosmological con-
text. We will tackle these questions in a future study.
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APPENDIX: FIELD EQUATIONS DERIVING FROM
THE NONMINIMAL EXTENSION OF L5

We give below the field equation for �, E0
5 ¼ 0, deriving

from the action S5 þ Snonmin
5 , i.e., the sum of Eqs. (15) and

(19):

E0
5 ¼�5ðh�Þ4þ30ðh�Þ2ð�;���

;��Þþ15

2
ðh�Þ2ð�;��

;�ÞRþ15ðh�Þ2ð�;�R
���;�Þ�40ðh�Þð�;�

��;�
��;�

�Þ
þ15ðh�Þð�;��

;���;�ÞR�30ðh�Þð�;��
;�Þð�;��R

��Þ�60ðh�Þð�;��
;��R���

;�Þ
�30ðh�Þð�;��;��;��R

����Þ�15ð�;���
;��Þð�;���

;��Þþ30ð�;���
;���;���

;��Þ�15

2
ð�;��

;�Þð�;���
;��ÞR

�15ð�;��
;���;���

;�ÞR�15ð�;���
;��Þð�;�R

���;�Þ�30ð�;��
;���;�Þð�;��R

��Þþ30ð�;��
;�Þð�;�

�R�
��;�

�Þ
þ60ð�;��

;���;��R
���;�Þþ30ð�;��

;��R���
;���;�Þþ15ð�;��

;�Þð�;���;��R
����Þþ30ð�;��;��;���

;�
�R

����Þ
�60ð�;��

;�
��;���;�R

����Þ�15

2
ð�;��

;�Þð�;�R
���;�ÞRþ15ð�;��
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As mentioned in the bulk of the paper, both the Galileon � and the metric g�� are differentiated at most twice in this field
equation. This is also the case for the variation of the same action S5 þ Snonmin

5 with respect to g��, i.e., the � energy-
momentum tensor, which takes the form
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