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The emission from neutral hydrogen (HI) clouds in the post-reionization era (z � 6), too faint to be

individually detected, is present as a diffuse background in all low frequency radio observations below

1420 MHz. The angular and frequency fluctuations of this radiation (� 1 mK) are an important future

probe of the large-scale structures in the Universe. We show that such observations are a very effective

probe of the background cosmological model and the perturbed Universe. In our study we focus on the

possibility of determining the redshift-space distortion parameter �, coordinate distance r�, and its

derivative with redshift r0�. Using reasonable estimates for the observational uncertainties and configu-

rations representative of the ongoing and upcoming radio interferometers, we predict parameter estima-

tion at a precision comparable with supernova Ia observations and galaxy redshift surveys, across a wide

range in redshift that is only partially accessed by other probes. Future HI observations of the post-

reionization era present a new technique, complementing several existing ones, to probe the expansion

history and to elucidate the nature of the dark energy.

DOI: 10.1103/PhysRevD.79.083538 PACS numbers: 98.80.Es, 95.36.+x, 98.62.Py

I. INTRODUCTION

Determining the expansion history of our Universe and
parametrizing the constituents of the Universe at a high
level of precision are currently some of the most important
goals in cosmology. While high-redshift (z � 2) supernova
Ia observations (e.g. [1,2]) and galaxy surveys (z � 1) (e.g.
[3]) probe the local universe, and cosmic microwave back-
ground radiation observations (e.g. [4,5]) probe the recom-
bination era (z� 1000), the expansion history is largely
unconstrained across the vast intervening redshift range.
Observations of redshifted 21 cm radiation from neutral
hydrogen (HI) hold the potential of probing the Universe
over a large redshift range (20 � z � 0): from the dark
ages to the present epoch (e.g. [6,7]). Such observations
can possibly be realized at several redshifts, using the
currently functioning giant meterwave radio telescope
(GMRT) [8]. Several new telescopes are currently being
built with such observations in mind (e.g. murschison
widefield array [9] and low frequency array [10]). Such
observations will map out the large-scale HI distribution at
high redshifts. It has recently been proposed [11,12] that
baryon acoustic oscillations (BAO) in the redshifted 21 cm
signal from the post-reionization era (z � 6) is a very
sensitive probe of the dark energy. The BAO is a relatively
small (� 10%–15%) feature that sits on the HI large-scale
structure (LSS) power spectrum. In this paper we inves-

tigate the possibility of probing the expansion history in the
post-reionization era using the HI LSS power spectrum
without reference to the BAO. Unless otherwise stated we
use the parameters ð�m0;��0;�bh

2; h; ns; �8Þ ¼
ð0:3; 0:7; 0:024; 0:7; 1:0; 1:0Þ referred to as the lambda
cold dark matter (LCDM) model in our analysis.
At redshifts z � 6, the bulk of the neutral gas is in clouds

that have HI column densities in excess of 2�
1020 atoms=cm2 [13–15]. These high column density
clouds are observed as damped Lyman-� absorption lines
seen in quasar spectra. These observations indicate that the
ratio of the density �gasðzÞ of neutral gas to the present

critical density �crit, of the Universe has a nearly constant
value �gasðzÞ=�crit�10�3, over a large redshift range 0�
z�3:5. This implies that the mean neutral fraction of the
hydrogen gas is �xHI¼50�gash

2ð0:02=�bh
2Þ¼2:45�10�2,

which we adopt for the entire redshift range z � 6. We note
that this assumption is likely to be invalid at high redshits
z ’ 6. Given the large uncertainty in �HI we adopt a
constant value to make fiducial predictions. The redshifted
21 cm radiation from the HI in this redshift range will be
seen in emission. The emission from individual clouds
(< 10 �Jy) is too weak to be detected with existing instru-
ments unless the image is significantly magnified by gravi-
tational lensing [16]. The collective emission from the
undetected clouds appears as a very faint background in
all radio observations at frequencies below 1420MHz. The
fluctuations in this background with angle and frequency is
a direct probe of the HI distribution at the redshift z where
the radiation originated. It is possible to probe the HI
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power spectrum at high redshifts by quantifying the fluc-
tuations in this radiation [17,18].

II. FORMULATION

The multifrequency angular power spectrum C‘ð��Þ
[19] quantifies the statistics of the HI signal as a joint
function of the angular multipole ‘ and the frequency
separation ��. We define the angular power spectrum
C‘ ¼ C‘ð0Þ and the frequency decorrelation function

�‘ð��Þ ¼ C‘ð��Þ
C‘ð0Þ ; (1)

to separately characterize the angular and the �� depen-
dence, respectively. The latter quantifies whether the HI
signal at two different frequencies � and �þ �� is corre-
lated �‘ð��Þ � 1 or uncorrelated �‘ð��Þ � 0. The func-
tion C‘ð��Þ can be estimated directly from observations
without reference to a cosmological model (e.g. [20]).
However, it is necessary to assume a background cosmo-
logical model in order to interpret C‘ð��Þ in terms of the
three-dimensional LSS HI power spectrum. On the large
scales of interest here, it is reasonable to assume that HI
traces the dark matter with a possible linear bias b,
whereby the three-dimensional HI power spectrum is
b2PðkÞ, where PðkÞ is the dark matter power spectrum at
the redshift where HI signal originated. We have [19]

Clð��Þ ¼
�T2

�r2�

Z 1

0
dkk cosðkkr0���ÞPHIðkÞ; (2)

where the three-dimensional wave vector k has been de-
composed into components kk and l=r�, along the line of

sight and in the plane of the sky, respectively. The comov-
ing distance r� is the distance at which the HI radiation
originated. Note that ð1þ zÞ�1r� ¼ dAðzÞ is the angular
diameter distance and r0� ¼ dr�=d�. The temperature oc-
curring in Eq. (2) is given by

�TðzÞ ¼ 4:0 mKð1þ zÞ2
�
�bh

2

0:02

��
0:7

h

�
H0

HðzÞ ; (3)

and PHIðkÞ is the three-dimensional power spectrum of the
‘‘21 cm radiation efficiency in redshift space,’’ which in
this situation is given by

PHIðkÞ ¼ �x2HIb
2ð1þ ��2Þ2PðkÞ: (4)

The term ð1þ ��2Þ2 arises due to HI peculiar velocities
[17,21], which we assume to be determined by the dark
matter. This is the familiar redshift-space distortion seen in
galaxy redshift surveys, where � ¼ kk=k and � ¼ fðzÞ=b
is the linear distortion parameter, which is the ratio of fðzÞ
that quantifies the growth rate of linear perturbations, and b
the linear bias which we assume to be unity throughout.
Note that we have assumed that the HI spin temperature is
much larger than the temperature of the cosmic microwave
background radiation, and the HI is seen in emission.

III. RESULTS AND CONCLUSIONS

The expected signal Clð��Þ from a few representative
redshifts, calculated for the LCDM model, is plotted in
Fig. 1, and in Fig. 2 we have plotted the frequency decor-
relation function �‘ð��Þ as a function of ��, for a fixed
redshift z ¼ 3:0 and for ‘ ¼ 100, 1000, and 10 000. The HI

signal (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1ÞCl=2�

p
) is smaller than �1 mK, and it

decreases with increasing l. The shape or ‘ dependence
is decided by the shape of PðkÞ at all comoving wave-
numbers k � ‘=r�. The signal at two different frequencies
� and �þ �� decorrelates rapidly with increasing �� and
�‘ð��Þ< 0:1 at�� > 5 MHz. The decorrelation occurs at
a smaller �� for the larger multipoles (Fig. 2). Defining
��1=2 [19] such that �‘ð��1=2Þ ¼ 1=2, and j �‘ð��Þ j�
1=2 for �� > ��1=2, we find that it is reasonably well

approximated as ��1=2 � 1 MHzð‘=100Þ�0:7 at the red-

shifts of interest. The value of �‘ð��Þ falls rapidly for
�� >��1=2, and we use ��1=2 to estimate the frequency

separation beyond which the HI signal is uncorrelated.
While the HI signal at a frequency separation �� >
5 MHz is definitely expected to be uncorrelated, the fore-
grounds are expected to be highly correlated even at fre-
quency separations larger than this (e.g. [22]). This should
in principle allow the HI signal to be separated from the
foregrounds, which are a few orders of magnitude larger
(e.g. [23,24]).
It is clear from Eq. (2) that C‘ð��Þ depends on the

background cosmological model through the parameters
ð�; r�; r0�Þ. Assuming that the dark matter power spectrum
PðkÞ is known a priori, observations of C‘ð��Þ can be used
to determine the values of these three parameters. It is
convenient to replace r0� with the dimensionless parameter

FIG. 1. Here we plot Clð0Þ at redshifts z ¼ f1:5; 3:0; 4:5g. The
signal decreases monotonically with increasing redshift, so the
lowest plot is for the highest redshift. We assume the bias to be
b ¼ 1 throughout.
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[25],

pðzÞ ¼ d ln½r�ðzÞ�
d lnðzÞ : (5)

Figure 3 shows the variation of the three parameters
ð�; r�; pÞ across the redshift range z � 6 for the LCDM
model.

We separately consider parameter estimation using C‘

and �‘ð��Þ. The former does not depend on p. The am-
plitude A ¼ ð �T �xHIbÞ2=�r2� of C‘ is uncertain, and we con-
sider the joint estimation of three parameters ðA;�; r�Þ

from observations of C‘. The value of �‘ð��Þ is insensitive
to the amplitude A, leaving three parameters ð�; r�; pÞ that
can be jointly estimated from this. We use the Fisher matrix
(e.g. [26]) to determine the accuracy at which these pa-
rameters can be estimated.
Parameter estimation depends on two distinct aspects of

the observing instrument. The first is the ‘ range i.e. ‘min,
‘max, and the sampling interval �‘, which corresponds to
the smallest ‘ spacing at which we have independent
estimates of C‘ð��Þ. This is determined by the instru-
ment’s field of view and is inversely related to it. The
second is the observational uncertainty in C‘ð��Þ. This is
a sum, in quadrature, of the instrumental noise and the
cosmic variance. The cosmic variance contribution

	C‘=C‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðð2‘þ 1Þf�‘Þp

(f is the fraction of sky ob-
served) is further reduced because the large frequency
bandwidth ��B provides several independent estimates
of C‘. We assume that 	C‘ is reduced by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��B=��1=2

q
because of this. The instrumental uncertain-

ties were estimated using relations [20] between 	C‘ and
the noise in the individual visibilities measured in radio-
interferometric observations. For this we assume that the
baselines in the radio-interferometric array have a uniform
coverage in the Fourier space.
We consider three different instrumental configurations

for parameter estimation.
(A) The currently functional GMRT has too few anten-

nas for cosmological parameter estimation. We
consider an enhanced GMRT-like instrument with
a substantially larger number of antennas (N ¼
120), each identical to those of the existing
GMRT. The antennas have a relatively small field
of view (
FWHM � 0:8� at 610 MHz) and the array
has relatively large baselines spanning ‘min ¼ 500
to ‘max ¼ 10 000 with �‘ ¼ 100.

(B) Many upcoming instruments like murschison wide-
field array have a large number of small-sized an-
tennas. The principle aim of this instrument is to
map the epoch of reionization and therefore it does
not operate in the range of frequencies of interest to
us here. We consider here a similar wide-field in-
strument operating at higher frequencies for our
study. The antennas are assumed to have a large
field of view (
FWHM � 5� at 610 MHz), and the
array is expected to be quite compact spanning
‘min ¼ 100 to ‘max ¼ 2000 with �‘ ¼ 20, with
the number of antennas N ¼ 500.

(C) This is a future wide-field instrument with N ¼
5000 antennas.

For each of these configurations, we assume that only a
single primary beam is observed at a given time. Note that
future instruments could have the capability of simulta-
neously observing in several (Np) primary beams. This

would cause a 1=
ffiffiffiffiffiffiffi
Np

p
reduction of the error estimates

presented here.

FIG. 3. Here we plot the parameters ð�; r; pÞ as a function of
redshift z for the concordance LCDM model. The parameter r ¼
r�=ð6000 MpcÞ.

FIG. 2. Here we plot the frequency decorrelation function
�‘ð��Þ as a function of ��, for a fixed redshift z ¼ 3:0 and ‘ ¼
f100; 1000; 10000g. The signal declines more sharply for higher
value of ‘.
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We present results for 2 yr of observation for A and B,
and 1000 h for C. Throughout we assume frequency chan-
nels adjusted to ��1=2, a bandwidth ��B ¼ 32 MHz, and
that a single field is observed for the entire duration. For

parameter estimation we use 	�‘ð��Þ ¼
ffiffiffi
2

p
	C‘=C‘.

We find that observations of C‘ impose very poor con-
straints on the parameters � and r�, and we do not show
these here. The accuracy is considerable higher for �‘ð��Þ,
which captures the three-dimensional clustering of the HI
as compared to C‘, which quantifies only the angular
dependence. Figure 4 shows the predicted estimates for
the parameters�, r�, and p at various redshifts. Further, we
find that a compact, wide-field array (B, C) is considerably
more sensitive to these parameter as compared to case A.

Considering the three parameters individually:
Redshift-space distortion parameter: �. This has tradi-

tionally been measured from galaxy redshift surveys [27–
30], with uncertainties in the range 0:1 � ��=� � 0:2.
These observations have, to date, been restricted to z � 1.
Future galaxy surveys are expected to achieve higher red-
shifts and smaller uncertainties. Galaxy surveys have the
drawback that at very high redshifts they probe only the
most luminous objects, which are expected to be highly
biased. HI observations do not have this limitation and
could provide high precision (��=�< 0:1) estimates
over a large redshift range.

Coordinate distance r�: The most direct measurement of
the coordinate distance comes from supernova type Ia
observations for z � 2. Current Sn Ia observations give
�r�=r� ’ 0:07 [31] for a single supernova. The statistical
error in the coordinate distance can be further reduced by
observing a large number of supernovae in a small redshift
bin; thus the fundamental limitation of this technique is
due to unknown systematics in the supernovae themselves,
since it is certainly possible that supernovae at high red-
shifts are different. Figure 4 shows that the HI method
might have the potential to enable a precise measurement
of the coordinate distance up to much larger redshifts.
Furthermore, such a complimentary probe will also help
in ascertaining systematics in the supernova probe.

Derivative of coordinate distance p: This quantifies the
Alcock-Paczynski effect [32], which is well accepted as a
means to study the expansion history at high z, though such

observations have not been possible to date. Observations
of redshifted 21 cm radiation hold the potential of measur-
ing the Alcock-Paczynski effect [25,33,34]. The parameter
p is not affected by the overall amplitude A and the bias b,
and is a sensitive probe of the spatial curvature (Fig. 3).
Our estimates indicate that it will be possible to measure p
with an accuracy �p=p� 0:03 over a large z range.
The parameters ð�; r�; pÞ chosen for our analysis occur

naturally when we interpret C‘ð��Þ in terms of the three-
dimensional dark matter power spectrum PðkÞ. Further,
these parameters are very general in that they do not refer
to any specific model for either the dark energy or the dark
matter, and are valid even in models with alternate theories
of gravity (e.g. [35,36]). In fact, observations of these three
parameters at different redshifts can in principle be used to
distinguish between these possibilities.
For the purpose of this paper, we illustrate the cosmo-

logical parameter estimation by considering the simplest
LCDM model, with two unknown parameters �m0 and
�k0, and ��0 ¼ 1��m0 ��k0. In Fig. 5 we plot the
1-� confidence interval for the estimation of�m0 and�k0,

FIG. 4. Expected one-sigma fractional errors for parameter estimation at different redshifts for the LCDMmodel. The curves in each
panel correspond, from top to bottom, to the cases A, B, and C, respectively.

FIG. 5. Expected one-sigma confidence regions for the pa-
rameters �m0 and �k0, based on estimated errors for observa-
tions of p, corresponding to Fig. 4, at z ¼ 1 and z ¼ 3.
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using two measurements of p alone, i.e. only one of the
three parameters measured at two different redshifts z ¼ 1
and z ¼ 3. Note that p is insensitive to H0 and hence it is
not considered as an additional parameter here. It is pos-
sible to combine measurements of all three parameters i.e.
�, r, and p to improve the constraints on cosmological
parameters. We shall undertake this and also a detailed
analysis for quantifying the precision that can be achieved
by combining different data sets (cosmic microwave back-
ground radiation, galaxy surveys) for a more complicated
dark energy model in a future work.

In conclusion, HI observations of the post-reionization
era can, in principle, determine the expansion history at a

high level of precision and thereby constrain cosmological
models. Neither the wide-field instrument with number of
antennas N ¼ 500 or any conceivable up-gradation of the
existing GMRT will be in a position to carry out such
observations, the observation time needed being too large.
We find that an enhanced version of the wide-field instru-
ment with 5000 antenna elements would be in a position to
meaningfully constrain cosmological models. By combin-
ing different probes, we expect to achieve an unprece-
dented precision in the determination of cosmological
parameters. This will be a step towards pinning down the
precise nature of dark energy in the universe.
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