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In this work, we studied how the relative variation of the gravitational constant j _�G= �Gj0 at the redshift
z ¼ 0 restricts model parameters in Palatini fðRÞ gravity. According to results from the observation of big

bang nucleosynthesis and the anisotropies in the cosmic microwave background radiation, the ratio that

gives the general constraint condition on the fðRÞ model is taken to be j _�G= �Gj0 < 10�13 yr�1. Associating

with the scalar curvature at present, this constraint condition yields concrete relations among model

parameters in the generalized �CDM model, the logarithmic Lagrangian, and the exponential gravity

model. These constraint relations which can be reconcilable with the value j _�G= �Gj0 < 10�13 yr�1 are

plotted.
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I. INTRODUCTION

Among the multitude of efforts devoted to explaining
and modeling the current acceleration of the cosmic ex-
pansion discovered with type Ia supernovae [1], so-called
fðRÞ gravity has received much attention. Disposing of the
concept of dark energy, the fðRÞ theory claims that the
deviation from Einstein’s general relativity on a cosmic
scale results in the accelerated expansion of the Universe
[2,3]. One form of the fðRÞ theory is the Palatini formula-
tion in which the metric and the connection are assumed to
be independent to each other. This formulation results in a
second order field equation which directly reduces to the
standard general relativity with a cosmological constant in
vacuum [4]. Moreover, the cosmological evolution of ra-
diation, matter, and accelerated epochs appeared success-
fully in it [5].

However, there are a few free parameters in the fðRÞ
gravity which should be restricted to fit with astronomical
data more accurately. Recently, the restrictions on parame-
ters of some simple fðRÞ models in Palatini formulation,
such as f ¼ Rp þ�, f ¼ Rþ�=Rm, f ¼ Rþ
�R2 þ �=R, and f ¼ Rþ � lnRþ �, are given by the
data from cosmological large scale phenomena [6–8].
But, for other complex models with more parameters,
one will meet tremendous difficulties in using these data
to give constraints on the model parameters. A notable fact
is that the fðRÞ gravity contains a time-varying gravita-
tional constant [9]. So, we can utilize the relative variation

of the gravitational constant j _�G= �Gj to find the limitation on
the model parameters.

Several facts enlighten us to estimate the magnitude of

the ratio j _�G= �Gj at the redshift z ¼ 0. On the cosmological
large scale and over 1010 yr from the early Universe to the
present time, big bang nucleosynthesis and anisotropies in

the cosmic microwave background radiation yield upper
limits on the long-term averaged variation such that

j _�G= �Gj< 10�13 yr�1 [10]. At the same time, the value of

the ratio j _�G= �Gj is calculated in the fðRÞ models with the
restricted parameters mentioned above [6–8] to be

j _�G= �Gj< 10�13 yr�1 at the redshift z ¼ 0. Moreover, the
motion of the planets in the solar system has provided

constraints with j _�G= �Gj< 10�14 yr�1 at 1� confidence at
present [11]. According to these results, we can reliably

use the ratio j _�G= �Gj< 10�13 yr�1 at the redshift z ¼ 0 to
give the limitation on model parameters of the Palatini
fðRÞ models. In Sec. II, the fðRÞ model in Palatini for-
mulation and the corresponding field equation are re-
viewed. The general form of the constraint condition is
also derived. In Sec. III, we analyze fðRÞ gravity models,
such as the generalization of �CDM, logarithmic
Lagrangian, and the exponential gravity model, and the
constraint relations among the model parameters are given.
The conclusion and the discussion are given in Sec. IV.

II. GENERAL CONSTRAINT CONDITIONS

The generalized action of the fðRÞ gravity is

I ¼ 1

2�

Z
fðRÞ ffiffiffiffiffiffiffi�g

p
d4xþ Im; (1)

where � ¼ 8�G is the coupling constant, fðRÞ is a func-
tion of the scalar curvature R ¼ g��R��, and Im represents

the matter action which is supposed to be independent of
the affine connection ��

��. The curvature tensor R�� is

given by

R�� ¼ ���
��;� þ ��

��;� � �	
���

�
�	 þ �	

����
�	: (2)

In the Palatini formulation of the fðRÞ model, the metric
g�� and the affine connection ��

�� are independent varia-

bles. Varying Eq. (1) with respect to the metric g�� and the

affine connection ��
��, respectively, we get*cgshao@mail.hust.edu.cn
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R��F� 1

2
g��f ¼ �T��; (3)

and

rð�Þ�ðF ffiffiffiffiffiffiffi�g
p

g��Þ ¼ 0: (4)

Where F ¼ @f=@R, T�� ¼ �2
Im=ð ffiffiffiffiffiffiffi�g
p


g��Þ is the

energy-momentum tensor of matter, and rð�Þ� represents

the covariant derivative with respect to the connection ��
��.

Contracting Eq. (3), we get

RF� 2f ¼ �T: (5)

Expressing the generalized Ricci tensor R�� in terms of the

Ricci tensor RðgÞ�� associated with the metric g�� and

expressing covariant derivatives rð�Þ� in terms of the

Levi-Civita connection, we obtain the generalized field
equation

G�� ¼ �

F
ðT�� þ ���Þ; (6)

where G�� ¼ RðgÞ�� � g��RðgÞ=2 is the Einstein tensor

and

��� ¼
�
3r�Fr�F

4�F
þ f� FR� 2r�r�F

2�

�
g��

þr�r�F

�
� 3r�Fr�F

2�F
: (7)

The right-hand side of Eq. (6) indicates that the effective
gravitational constant is modified by the factor 1=F and a
new source ��� appeared which can be regarded as the

dark energy. Specifically, in the case of the Hilbert action
with f ¼ R, Eq. (6) reduces to the usual Einstein-Hilbert
gravity G�� ¼ �T��. Motivated by recent observations,

we adopt the metric in the spatially flat Friedman-
Robertson-Walker (FRW) form ds2 ¼ �dt2 þ
a2ðtÞ
ijdx

idxj and the perfect-fluid energy-momentum

tensor T�
� ¼ diagð�	; p; p; pÞ. The state parameter in the

equation of state p ¼ !	 has the value ! ¼ 0 for matter
and ! ¼ 1=3 for radiation. Therefore the generalized cos-
mic evolution equations are given by

3H2 ¼ 8� �G	m þ RF� f

2F
þ 3H

_�G
�G
� 3

4

� _�G
�G

�
2
; (8)

and

3H2 þ 2 _H ¼ �8� �Gpm þ 3

4

� _�G
�G

�
2 þ RF� f

2F
þ

€�G
�G

þ 2H
_�G
�G
; (9)

where H � _a=a is the Hubble parameter, and the effective
gravitational constant is defined as [12]

�G � G

F
: (10)

We can infer from Eqs. (8) and (9) that the time variation of
the effective gravitational constant �G leads to the acceler-
ated expansion of the Universe at present time, and the
dark energy can be regard as the time-varying gravitational
constant in part [13].
Generally, a variable gravitational constant can induce

many observable effects of astronomy. Inversely, data de-
rived from these effects determine the value range of the
variable gravitational constant and therefore restrict the
value range of the denominator F. Since the conservation
of the energy and momentum, the term 	a3 is a constant
for matter. Using Eq. (5) and the constant 	a3, the first
order time derivative of the scalar curvature is given by

_R ¼ 3Hð2f� RFÞ
RF0 � F

; (11)

where F0 ¼ @F=@R. According to the definition Eq. (10),
the relative value of the time-varying effective gravita-

tional constant _�G= �G is given by

_�G
�G
¼ �F0

F
_R: (12)

The density parameter of matter is defined as [14]

�m � �	m

3FH2
: (13)

Using Eqs. (5) and (13), Eq. (8) can be rewritten as

R ¼ 3

�
2H�

_�G
�G

�
2 � 9H2�m; (14)

In this paper, the ratio j _�G= �Gj0 < 10�13 yr�1 and H0 ¼
h� 10�10 yr�1 with h� 0:7 are adopted [15]. Because

of j _�G= �Gj0 � 2H0, the current curvature of the space-time
is

R0 ¼ KH2
0 : (15)

Where the subscript 0 represents the present value andK ¼
12� 9�m0. Using Eqs. (5) and (13), one can obtain

3H2
0�m0 ¼

�
2f� RF

F

�
0
: (16)

Inserting Eq. (11) in (12) we get

_�G
�G
¼ 9H3�mF

0

F� RF0 : (17)

For convenience, we define a dimensionless number as

" � H2
0

��������
F0

F� RF0

��������0
; (18)

and the magnitude of " is given by

" ¼ 1

9H0�m0

��������
_�G
�G

��������0
: (19)
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Requiring j _�G= �Gj0 < 10�13 yr�1, one can estimate the or-
der of " as " < 5� 10�4. In fact, Eqs. (18) and (19) can
only ensure the fðRÞ gravity models to be consistent with
the constraint date [10]. While a cosmologically acceptable
model should be satisfied with Eq. (16) in the late time of
the evolution of the Universe, this restriction ensures that
the Universe is dark-energy-dominated at present time.

III. CONSTRAINTS ON fðRÞ MODELS

The constraints on the model parameters of the fðRÞ
model in Palatini formalism can be derived with Eqs. (15),
(16), (18), and (19) as follows.

A. Theories of type f ¼ �½Rm þ�ðH2
0Þm�n

This model, as the possible generalization of �CDM
with n � 0, was discussed in Refs. [16,17], and it can also
account for the current acceleration of the Universe. In the
case of m ¼ n ¼ 1, the standard �CDM model is recov-
ered. From Eqs. (16) and (18), we obtain the relation for
this model

" ¼ 1

K

��������
2ðmn� 1ÞK þ ðm� 1Þ½ð3�m0 þ KÞmn� 2K�
2ð2�mnÞK þ ð2�mÞ½ð3�m0 þ KÞmn� 2K�

��������;

(20)

and

� ¼ 1

2
ð3�m0 þ KÞmnKm�1 � Km: (21)

Because " is very small, as an effective approximation,
Eq. (20) reduces to

2ðmn� 1ÞK þ ðm� 1Þ½ð3�m0 þ KÞmn� 2K� ¼ 0:

(22)

For " ¼ 5� 10�4, we have found no significant changes in
the results with " ¼ 0, and parameters approaching infinity
are regard as nonphysical ones; we will neglect these
values for them in the paper. The following discussions
are the same. From Eq. (22), we can obtain the following
constraint relation:

m ¼ 2Kð1� nÞ
ð3�m0 þ KÞnþ 1: (23)

The constraint relations among the model parameters are
shown in Fig. 1. For the special case of mn ¼ 1, the model

becomes f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm þ�ðH2

0Þmm

q
[17]. Equations (20) and

(21) give jm� 1j ¼ KðK þ 3�m0Þ"=ðK � 3�m0Þ< 6�
10�3 and � ¼ �6ð1��m0Þ. It means that the parameter
m is very close to the constant 1. Therefore, the model is
just the standard �CDM model f ¼ R� 6ð1��m0ÞH2

0

and other cases withm � 1, including the model withm ¼
2 [17], should be ruled out.

B. Logarithmic Lagrangian

A model with a logarithmic Lagrangian in the Ricci
scalar is induced by quantum effects in curved space-
time [16,18]. There are two kinds of such models we will
discuss, respectively.

1. Theories of type f ¼ �Rm½lnð�R=H2
0Þ�n

For these theories, Eqs. (16) and (18) give

" ¼ 1

K

��������
mnðm� 1Þ½ 3�m0þK

ð2�mÞK�3m�m0
�2 þ nð2m�1Þð3�m0þKÞ

ð2�mÞK�3m�m0
þ n� 1

mnðm� 2Þ½ 3�m0þK
ð2�mÞK�3m�m0

�2 þ 2nðm�1Þð3�m0þKÞ
ð2�mÞK�3m�m0

þ n� 1

��������; (24)

and

� ¼ 1

K
exp

�ð3�m0 þ KÞ½2K � ð3�m0 þ KÞm�
2KðK � 3�m0Þ

�
: (25)

Because " is very small, as an effective approximation,

Eq. (24) reduces to

n ¼ ½ð3�m0 þ KÞm� 2K�2
2KðK � 3�m0Þ : (26)

Similar to the generalized �CDM model, the model pa-

FIG. 1. Constraint relations among the dimensionless parame-
ters of the model f ¼ �½Rm þ�ðH2

0Þm�n with the density pa-

rameter �m0 ¼ 0:3.
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rameters m, n, and � are correlative to each other with the
constraint conditions Eqs. (25) and (26). The constraint
relations among them are shown in Fig. 2. It indicates that
this type of model with n � 0 is unacceptable, while in the

case of n > 0, as an alternative of the dark energy, the
model has the potential to explain the current acceleration.

2. Theories of type f ¼ Rþ �H2
0½lnð�R=H2

0Þ�n
From Eqs. (16) and (18) we can obtain

" ¼ 1

K

��������
n�½n� 1� lnð�KÞ�½lnð�KÞ�n�2

K þ 2n�½lnð�KÞ�n�1 � �Knðn� 1Þ½lnð�KÞ�n�2

��������; (27)

and

Kð3�m0 � KÞ ¼ 2K�½lnð�KÞ�n � n�ðK þ 3�m0Þ
� ½lnð�KÞ�n�1: (28)

Because of the very small parameter ", Eq. (27) can give

n�½n� 1� lnð�KÞ�½lnð�KÞ�n�2 ¼ 0: (29)

From Eq. (29), we can get n ¼ 0, lnð�KÞ ¼ n� 1, or
lnð�KÞ ¼ 0. For the case of n ¼ 0, we have � ¼ �ðK �
3�m0Þ=2; the Lagrangian reduces to the standard cosmo-
logical model f ¼ R� ðK � 3�m0ÞH2

0=2. For lnð�KÞ ¼
n� 1, we can obtain

� ¼ Kð3�m0 � KÞ
½ðK � 3�m0Þn� 2K�ðn� 1Þn�1

; (30)

and

� ¼ 1

K
expðn� 1Þ: (31)

The constraint relations among model parameters are
shown in Fig. 3. In the case of n � 4, the parameter � !
0, the corresponding Lagrangian reduces to f ¼ R. It
cannot explain the current acceleration, so, this case should
be ruled out. Specifically, in the case of n ¼ 1, we can get
� ¼ 	K2" and � ¼ 1=K. Therefore the Lagrangian re-

duces to f ¼ R	 "K2H2
0 ln½R=ðKH2

0Þ�. At present, due to
ln½R=ðKH2

0Þ� ! 0 with the curvature of the space-time
R ! KH2

0 , so the model f ¼ Rþ �H2
0 ln½R=ðKH2

0Þ� can-
not explain the current acceleration of the Universe and
should be ruled out. In the case of lnð�KÞ ¼ 0, the
Lagrangian f ¼ Rþ �H2

0 ln½R=ðKH2
0Þ� reduces to f ¼ R

at present, and it cannot explain the cosmic acceleration.

C. The exponential gravity model

The so-called exponential fðRÞ gravity models fit rather
well with the supernovae Ia data, and its cosmological
feasibility is also discussed in metric formulation [16,19].
There are two kinds of such models we will discuss,
respectively.

1. Theories of type f ¼ �Rm expb�Rn=ðH2
0Þnc

In this type of model, Eqs. (16) and (18) can give

" ¼ 1

K

��������
2KðK�3�m0Þ
ð3�m0þKÞ2 þ nð 2K

3�m0þK �mÞ
� 12�m0K

ð3�m0þKÞ2 þ nð 2K
3�m0þK �mÞ

��������; (32)

and

� ¼ 2K

ð3�m0 þ KÞnKn �
m

nKn : (33)

FIG. 2. Constraint relations among the dimensionless parame-
ters of the model f ¼ �Rm½lnð�R=H2

0Þ�n with the density pa-

rameter �m0 ¼ 0:3.

FIG. 3. Constraint relations among the dimensionless parame-
ters of the model f ¼ Rþ �H2

0½lnð�R=H2
0Þ�n with the density

parameter �m0 ¼ 0:3.
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In the case of n � 0, we can take approximately " ¼ 0. So
Eq. (32) gives

m ¼ 2K

K þ 3�m0

�
K � 3�m0

ðK þ 3�m0Þnþ 1

�
: (34)

According to Eqs. (33) and (34), the constraint relations
among the model parameters at n � 0 are shown in Fig. 4.
The curve in Fig. 4 indicates that n � 1:5, � ! 0, and the

Lagrangian reduces to f ¼ �Rm with 1:8<m< 3. The
model with the Lagrangian f ¼ �Rm is required to have
jm� 1j< 7:2� 10�19 [6]. So, the theory of the type f ¼
�Rm expb�Rn=ðH2

0Þnc is unacceptable when n � 1:5.

2. Theories of type f ¼ Rþ �H2
0 expb�Rn=ðH2

0Þnc
For this type of model, Eqs. (16) and (18) give

" ¼ 1

K

��������
��nKn expð�KnÞð�nKn þ n� 1Þ

K þ ��nð2� nÞKn expð�KnÞ � �n2ð�KnÞ2 expð�KnÞ
��������; (35)

and

� ¼ KðK � 3�m0Þ
½ð3�m0 þ KÞ�nKn � 2K� expð�KnÞ : (36)

We take " ¼ 0 approximately, and Eq. (35) gives

�nKn expð�KnÞð�nKn þ n� 1Þ ¼ 0: (37)

Equation (37) requires n ¼ 0, � ¼ 0, or �nKn ¼ 1� n.
For the case of n ¼ 0, from Eq. (36), we can get � ¼
ð3�m0 � KÞ=ð2e�KÞ, therefore the Lagrangian reduces to
f ¼ Rþ ð3�m0 � KÞe�H2

0=ð2e�KÞ. For � ¼ 0, we can
obtain � ¼ �ðK � 3�m0Þ=2, and the Lagrangian is f ¼
R� ðK � 3�m0ÞH2

0=2. In the two cases, the standard
�CDM paradigm is recovered. In the case of �nKn ¼ 1�
n, the constraint conditions are

� ¼ KðK � 3�m0Þ
½3�m0 � K � ð3�m0 þ KÞn� expð1�n

n Þ ; (38)

and

� ¼ 1� n

nKn : (39)

The constraint relations among the model parameters are

shown in Fig. 5. When 0< n< 0:2, the parameter � ! 0,
the Lagrangian reduces to f ¼ R, and it cannot explain the
current acceleration. For the case of n � 0:5, the parameter
� ! 0. This means that the model has no meaningful
difference with the standard cosmological model. For the
case of n � �1, as an alternative of the dark energy, the
model has the potential to explain the cosmic acceleration
at present.

IV. CONCLUSION AND DISCUSSION

The fðRÞmodels can provide an explanation for the late-
time acceleration of the Universe. With the modified gen-
eral relativity, it results in a time-varying gravitational
constant. In this paper, we clarified how the time variation
of the effective gravitational constant constrains the pa-
rameters of fðRÞ models in Palatini formalism. The neces-
sary conditions for fðRÞ models which can be reconcilable

with the value j _�G= �Gj0 < 10�13 yr�1 are obtained. It pro-
vides an extremely simple method to investigate the feasi-
bility of the fðRÞ model. We also studied some concrete
models and gave the relations among model parameters
and the restrictions on values of model parameters.

FIG. 4. Constraint relations among the dimensionless parame-
ters of model f ¼ �Rm exp½�Rn=ðH2

0Þn� given at n � 0 and

�m0 ¼ 0:3.

FIG. 5. Constraint relations among the dimensionless parame-
ters of the model f ¼ Rþ �H2

0 exp½�Rn=ðH2
0Þn� with the den-

sity parameter �m0 ¼ 0:3.
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For the model f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm þ�ðH2

0Þmm

q
, the constraint con-

ditions require jm� 1j< 6� 10�3. It is very close to the
standard �CDM model. Other cases in which m deviates
very far from 1 should be ruled out. The parameter n in
theories of type f ¼ �Rm½lnð�R=H2

0Þ�n must be larger

than zero. The case of n � 0 for this type of theories is
unacceptable. Theories with f ¼ Rþ �H2

0½lnð�R=H2
0Þ�n

are reasonable for n < 4 and n � 1. When n ¼ 1 or n � 4,
the relation between parameters n and � requires � ! 0.
In these cases, the model should be ruled out because its
Lagrangian reduces to f ¼ R and cannot explain the ac-
celerated expansion of the Universe at present time. As a
possible alternative of the dark energy, the model f ¼
�Rm expb�Rn=ðH2

0Þnc has the potential to explain the cos-

mic acceleration in the case of n < 0. In the model f ¼
Rþ �H2

0 expb�Rn=ðH2
0Þnc, the parameter � ! 0 when

0< n< 0:2 that the Lagrangian reduces to the unaccept-
able form f ¼ R. For the case of n � 0:5, the parameter
� ! 0, the model reduces to the standard cosmological
model. For the case of n � �1, the model provides a
reasonable explanation of the cosmic acceleration.

The key point of the paper is that our discussions are

based on the supposition j _�G= �Gj< 10�13 yr�1 at the red-

shift z ¼ 0. It is noted that Eqs. (16) and (18) depend on the
current curvature of space-time R0. As long as

j _�G= �Gjz¼0 � 2H0, we obtain the relation R0 ¼ KH2
0

from Eq. (14), which is independent of the form of the

function fðRÞ. Accordingly, the ratio j _�G= �Gjz¼0 can be

relaxed to j _�G= �Gjz¼0 < 10�12 yr�1 with H0 � 0:7�
10�10 yr�1, which is far larger than the above adopted

j _�G= �Gjz¼0 < 10�13 yr�1. The only influence is that it wid-
ens the range of the dimensionless number " to " < 5�
10�3. This relaxation does not alter our results, and the
obtained conclusions are always valid. If the relaxed sup-

position j _�G= �Gjz¼0 < 10�12 yr�1 is not true, the constraints
on the model parameters will not be obtained using this
method because we cannot get the relation R0 ¼ KH2

0 . We

emphasize finally that the adopted assumption, even being
quite reasonable, is still a hypothesis which requires a
further experimental verification.
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