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The ‘‘improved dynamics’’ of loop quantum cosmology is extended to include anisotropies of the

Bianchi type I model. As in the isotropic case, a massless scalar field serves as a relational time parameter.

However, the extension is nontrivial because one has to face several conceptual subtleties as well as

technical difficulties. These include a better understanding of the relation between loop quantum gravity

and loop quantum cosmology, handling novel features associated with the nonlocal field strength operator

in presence of anisotropies, and finding dynamical variables that make the action of the Hamiltonian

constraint manageable. Our analysis provides a conceptually complete description that overcomes

limitations of earlier works. We again find that the big-bang singularity is resolved by quantum geometry

effects but, because of the presence of Weyl curvature, Planck scale physics is now much richer than in the

isotropic case. Since the Bianchi I models play a key role in the Belinskii, Khalatnikov, Lifshitz conjecture

on the nature of generic spacelike singularities in general relativity, the quantum dynamics of Bianchi I

cosmologies is likely to provide considerable intuition about the fate of generic spacelike singularities in

quantum gravity. Finally, we show that the quantum dynamics of Bianchi I cosmologies projects down

exactly to that of the Friedmann model. This opens a new avenue to relate more complicated models to

simpler ones, thereby providing a new tool to relate the quantum dynamics of loop quantum gravity to that

of loop quantum cosmology.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1–3] is a nonperturbative,
background independent approach to the unification of
general relativity and quantum physics. One of its key
features is that space-time geometry is treated quantum
mechanically from the beginning. Loop quantum cosmol-
ogy (LQC) [4,5] is constructed by applying methods of
LQG to minisuperspaces obtained by a symmetry reduc-
tion of general relativity. In the homogeneous, isotropic
cosmological models with a massless scalar field, quantum
geometry effects of LQG have been shown to create a new
repulsive force in the Planck regime. The force is so strong
that the big bang is replaced by a specific type of quantum
bounce. In the k ¼ 0, � ¼ 0 case, the force rises very
quickly once the scalar curvature reaches �� 0:15�=‘2Pl
(or matter density � reaches�0:01�Pl) to cause the bounce
but also dies very quickly after the bounce once the scalar
curvature and the density fall below these values.
Therefore outside the Planck regime the quantum space-
time of LQC is very well approximated by the space-time
continuum of general relativity. This scenario is borne out
in the k ¼ 0,� ¼ 0models [6–13],� � 0models [14,15],
the k ¼ 1 closed model [16,17], the k ¼ �1 open model
[18], and the k ¼ 0 model with an inflationary potential
with phenomenologically viable parameters [19]. Going

beyond the big-bang and big-crunch singularities, LQC has
also been used to argue that its quantum geometry effects
resolve all strong curvature singularities in homogeneous,
isotropic situations in which matter is a perfect fluid with
an equation of state of the standard type, p ¼ pð�Þ [20].
(For recent reviews, see, e.g., [21,22].) Finally, recent
investigations [23,24] of Gowdy models, which have an
infinite number of degrees of freedom, also indicate that
the big bang is replaced by a quantum bounce.
Detailed and viable quantum theories were constructed

in the homogeneous, isotropic case using the so-called
‘‘ ��’’ scheme. A key open question has been whether or
not the qualitative features of their Planck scale physics
will persist in more realistic situations in which these
strong symmetry assumptions do not hold exactly. A first
step in this direction is to retain homogeneity and extend
the ‘‘improved dynamics’’ of [10] to anisotropic situations.
In the isotropic case, there is only one nontrivial curvature
invariant, the (space-time) scalar curvature (or, equiva-
lently, matter density). In anisotropic situations Weyl cur-
vature is nonzero and it too diverges at the big bang.
Therefore, now one can enter the Planck regime in several
inequivalent ways which suggests that the Planck scale
physics would now be much richer.
In this paper we will continue the LQC explorations of

this issue by analyzing in detail the simplest of anisotropic
models, the Bianchi type I cosmologies. (Previous work on
this model is discussed below.) As in the isotropic case we
will use a massless scalar field as the matter source, and it

*ashtekar@gravity.psu.edu
†wilsonewing@gravity.psu.edu

PHYSICAL REVIEW D 79, 083535 (2009)

1550-7998=2009=79(8)=083535(21) 083535-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.083535


will continue to provide the ‘‘relational’’ or ‘‘internal’’
time a la Leibniz with respect to which other physical
quantities of interest—e.g., curvatures, shears, expansion,
and matter density—‘‘evolve.’’ Again, as in the isotropic
case, the framework can be further extended to accommo-
date additional matter fields in a rather straightforward
fashion.

Although the Bianchi I models are the simplest among
anisotropic cosmologies, results obtained in the context of
the Belinskii, Khalatnikov, Lifshitz (BKL) conjecture
[25,26] suggest that they are perhaps the most interesting
ones for the issue of singularity resolution. The BKL
conjecture states that, as one approaches spacelike singu-
larities in general relativity, terms with time derivatives
would dominate over those with spatial derivatives, imply-
ing that the asymptotic dynamics would be well described
by an ordinary differential equation. By now considerable
evidence has accumulated in favor of this conjecture [27–
31]. For the case when the matter source is a massless
scalar field in full general relativity without any symmetry
assumption, these results suggest that, as the system enters
the Planck regime, dynamics along any fixed spatial point
would be well described by a Bianchi I metric. Therefore
understanding the fate of Bianchi I models in LQC could
provide substantial intuition for what happens to generic
spacelike singularities in LQG [32,33].

Indeed, in cosmological contexts where one has approxi-
mate homogeneity, a natural strategy in full LQG is to
divide the spatial 3-manifold into small, elementary cells
and assume that there is homogeneity in each cell, with
fields changing slowly as one moves from one cell to the
next. (For an exploration along these lines in the older ‘‘�o

scheme,’’ see [34].) Now, if one were to assume that
geometry in each elementary cell is also isotropic, then
the Weyl tensor in each cell—and therefore everywhere—
would be forced to be zero. A natural strategy to accom-
modate realistic, nonvanishing Weyl curvature would be to
use Bianchi I geometry in each cell and let the parameters
characterizing the Bianchi I solution vary slowly from one
cell to another. In this manner, LQC of the Bianchi I model
can pave way to the analysis of the fate of generic spacelike
singularities of general relativity in full LQG.

Because of these potential applications, Bianchi I mod-
els have already drawn considerable attention in LQC (see
in particular [35–40]). During these investigations, ground-
work was laid down which we will use extensively.
However, in the spatially noncompact context (i.e., when
the spatial topology is R3 rather than T3), the construction
of the quantum Hamiltonian constraint turned out to be
problematic. The Hamiltonian constraint used in the early
work has the same difficulties as those encountered in the
�o scheme in the isotropic case (see, e.g., [12], or
Appendix B of [21]). More recent papers have tried to
overcome these limitations by mimicking the �� scheme
used successfully in the isotropic case. However, to make

concrete progress, at a key point in the analysis a simplify-
ing assumption was made without a systematic justifica-
tion.1 Unfortunately, it leads to quantum dynamics which
depends, even to leading order, on the choice of an auxil-
iary structure (i.e., the fiducial cell) used in the construc-
tion of the Hamiltonian framework [40]. This is a major
conceptual drawback. Also, the final results inherit certain
features that are not physically viable (e.g., the dependence
of the quantum bounce on ‘‘directional densities’’ in
[36,37]). We will provide a systematic treatment of quan-
tum dynamics that is free from these drawbacks.
To achieve this goal one has to overcome rather non-

trivial obstacles which had stalled progress for the past two
years. This requires significant new input. The first is
conceptual: we will sharpen the correspondence between
LQG and LQC that underlies the definition of the curvature

operator F̂i
ab in terms of holonomies. The holonomies we

are led to use in this construction will have a nontrivial
dependence on triads, stemming from the choice of loops
on which they are evaluated. As a result, at first it seems
very difficult to define the action of the resulting quantum
holonomy operators. Indeed this was the primary technical
obstacle that forced earlier investigations to take certain
short cuts—the assumption mentioned above—while de-

fining F̂i
ab (see footnote 1). The second new input is the

definition of these holonomy operators without having to
take a recourse to such short cuts. But then the resulting
Hamiltonian constraint appears unwieldy at first. The third
major input is a rearrangement of configuration variables
that makes the constraint tractable both analytically, as in
this paper, and for the numerical work in progress [41].
Finally, we will find that the resulting Hamiltonian con-

straint has a striking feature which could provide a power-
ful new tool in relating the quantum dynamics of more
complicated models to that of simpler models. It turns out
that, in LQC, there is a well-defined projection from the
Bianchi I physical states to the Friedmann physical states
which maps the Bianchi I quantum dynamics exactly to the
isotropic quantum dynamics. Previous investigations of the
relation between quantum dynamics of a more complicated
model to that of a simpler model generally began with an
embedding of the Hilbert space H Res of the more re-
stricted model in the Hilbert space H Gen of the more
general model (see, e.g., [42,43]). In generic situations,
the image of H Res under this embedding was not left
invariant by the more general dynamics on H Gen. This
led to a concern that the physics resulting from first re-

1In the isotropic case, improved dynamics [10] required that ��
be proportional to 1=

ffiffiffiffiffiffiffijpjp
. In the anisotropic case, one has three

pi and quantum dynamics requires the introduction of three ��i.
In the Bianchi I case now under consideration, it was simply
assumed [36,37,40] that ��i be proportional to 1=

ffiffiffiffiffiffiffiffijpij
p

. We will
see in Sec. III B that a more systematic procedure leads to the
conclusion that the correct generalization of the isotropic result

is more subtle. For example, ��1 is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1j=jp2p3j

p
.
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ducing and then quantizing may be completely different
from that obtained by quantizing the larger system and
regarding the smaller system as its subsystem. The new
idea of projecting from H Gen to H Res corresponds to
‘‘integrating out the degrees of freedom that are inacces-
sible to the restricted model’’ while the embedding H Res

in to H Gen corresponds to ‘‘freezing by hand’’ these extra
degrees of freedom. Classically, both are equally good
procedures and in fact the embedding is generally easier
to construct. However, in quantum mechanics it is more
appropriate to integrate out the extra degrees of freedom. In
the present case, one integrates out anisotropies to go from
the LQC of the Bianchi I models to that of the Friedmann
model. This idea was already proposed and used in [44] in
a perturbative treatment of anisotropies in the locally rota-
tionally symmetric, diagonal, Bianchi I model. We extend
that work in that we consider the full quantum dynamics of
the diagonal Bianchi I model without additional symme-
tries and, furthermore, use the analog of the �� scheme in
which the quantum constraint is considerably more in-
volved than in the �o-type scheme used in [44]. The fact
that the LQC dynamics of the Friedmann model is recov-
ered exactly provides some concrete support for the hope
that LQCmay capture the essential features of full LQG, as
far as the quantum dynamics of the homogeneous, iso-
tropic degree of freedom is concerned.

The material is organized as follows. We begin in Sec. II
with an outline of the classical dynamics of Bianchi type I
models. This overview will not be comprehensive as our
goal is only to set the stage for the quantum theory which is
developed in Sec. III. In Sec. IV we discuss three key
properties of quantum dynamics: the projection map men-
tioned above, agreement of the LQC dynamics with that of
the Wheeler-DeWitt (WDW) theory away from the Planck
regime, and effective equations. (The isotropic analogs of
these equations approximate the full LQC dynamics of
Friedmann models extremely well.) In Sec. IV we summa-
rize the main results and discuss some of their ramifica-
tions. The Appendix discusses parity-type discrete
symmetries which play an important role in the analysis
of quantum dynamics.

II. HAMILTONIAN FRAMEWORK

In this section we will summarize those aspects of the
classical theory that will be needed for quantization. For a
more complete description of the classical dynamics see,
e.g., [35–37,45].

Our space-time manifoldM will be topologicallyR4. As
is standard in the literature on Bianchi models, we will
restrict ourselves to diagonal Bianchi I metrics. Then one
can fix Cartesian coordinates �, xi on M and express the
space-time metric as

ds2 ¼ �N2d�2 þ a21dx
2
1 þ a22dx

2
2 þ a23dx

2
3; (2.1)

whereN is the lapse and ai are the directional scale factors.

Thus, the dynamical degrees of freedom are encoded in
three functions aið�Þ of time. Bianchi I symmetries permit
us to rescale the three spatial coordinates xi by independent
constants. Under xi ! �ixi, the directional scale factors
transform as2 ai ! ��1

i ai. Thus, the numerical value of a
directional scale factor, say a1, is not an observable; only
ratios such as a1ð�Þ=a1ð�0Þ are. The matter source will be a
massless scalar field which will serve as the relational or
internal time. Therefore, it is convenient to work with a
harmonic time function, i.e., to ask that � satisfy h� ¼ 0.
From now on we will work with this choice.
Since the spatial manifold is noncompact and all fields

are spatially homogeneous, to construct a Lagrangian or a
Hamiltonian framework one has to introduce an elemen-
tary cell V and restrict all integrations to it [7]. We will
choose V so that its edges lie along the fixed coordinate
axis xi. As in the isotropic case, it is also convenient to fix a
fiducial flat metric oqab with line element

ds2o ¼ dx21 þ dx22 þ dx23: (2.2)

We will denote by oq the determinant of this metric, by Li

the lengths of the three edges of V as measured by oqab,
and by Vo ¼ L1L2L3 the volume of the elementary cell V
also measured using oqab. Finally, we introduce fiducial

cotriads o!i
a ¼ Dax

i and the triads oeai dual to them.
Clearly they are adapted to the edges of V and are com-

patible with oqab (i.e., satisfy oqab ¼ o!i
a
o!j

b�ij). As noted

above, Bianchi I symmetries allow each of the three coor-
dinates to be rescaled by an independent constant �i.
Under these rescalings, xi ! x0i ¼ �ixi, cotriads transform
as o!0i

a ¼ �i
o!i

a, and triads oeai are rescaled by inverse
powers of �i. The fiducial metric is transformed to oq0ab
defined by ds02o :¼ �2

1dx
2
1 þ �2

2dx
2
2 þ �2

3dx
2
3. We must en-

sure that our physical results do not change under these
rescalings. Finally, the physical cotriads are given by!i

a ¼
aio!i

a and the physical 3-metric qab is given by qab ¼
!i

a!
j
b�ij.

With these fiducial structures at hand, we can now
introduce the phase space. Recall first that in LQG the
canonical pair consists of an SU(2) connection Ai

a and a
triad Ea

i of density weight one. Using the Bianchi I sym-
metry, from each gauge equivalence class of these pairs we
can select one and only one, given by

Ai
a ¼: ciðLiÞ�1o!i

a; and

Ea
i �

ffiffiffi
q

p
eai ¼: piLiV

�1
o

ffiffiffiffi
oq

p
oeai ; (2.3)

where ci, pi are constants and q ¼ ðp1p2p3ÞoqV�1
o is the

determinant of the physical spatial metric qab. Thus the
connections Ai

a are now labeled by three parameters ci and

2Here and in what follows there is no summation over repeated
indices if they are all contravariant or all covariant. On the other
hand, a covariant index which is contracted with a contravariant
one is summed over 1, 2, 3.
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the triads Ea
i by three parameters pi. If pi are positive, the

physical triad eai and the fiducial triad oeai have the same
orientation. A change in sign of, say, p1 corresponds to a
change in the orientation of the physical triad brought
about by the flip ea1 ! �ea1 . These flips are gauge trans-
formations because they do not change the physical metric
qab. The momenta pi are directly related to the directional
scale factors:

p1 ¼ sgnða1Þja2a3jL2L3; p2 ¼ sgnða2Þja1a3jL1L3;

p3 ¼ sgnða3Þja1a2jL1L2; (2.4)

where we take the directional scale factor ai to be positive
if the triad vector eai is parallel to oeai and negative if it is
antiparallel. As we will see below, in any solution to the
field equations, the connection components ci are directly
related to the time derivatives of ai.

The factors of Li in (2.3) ensure that this parametrization
is unchanged if the fiducial cotriad, triad, and metric are
rescaled via xi ! �ixi. However, the parametrization does
depend on the choice of the cell V . Thus the situation is
the same as in the isotropic case [7]. (The physical fields Ai

a

and Ea
i are of course insensitive to changes in the fiducial

metric or the cell.) To evaluate the symplectic structure of
the symmetry reduced theory, as in the isotropic case [7],
we begin with the expression of the symplectic structure in
the full theory and simply restrict the integration to the cell
V . The resulting (nonvanishing) Poisson brackets are
given by

fci; pjg ¼ 8�G��i
j: (2.5)

To summarize, the phase space in the Bianchi I model is
six dimensional, coordinatized by pairs ci, pi, subject to
the Poisson bracket relations (2.5). This description is tied
to the choice of the fiducial cell V but is insensitive to the
choice of fiducial triads, cotriads, and metrics.

Next, let us consider constraints. The full theory has a set
of three constraints: the Gauss, the diffeomorphism, and
the Hamiltonian constraints. It is straightforward to check
that, because we have restricted ourselves to diagonal
metrics and fixed the internal gauge, the Gauss and the
diffeomorphism constraints are identically satisfied. We
are thus left with just the Hamiltonian constraint. Its ex-
pression is obtained by restricting the integration in the full
theory to the fiducial cell V :

C H ¼ Cgrav þ Cmatt ¼
Z
V
NðH grav þH mattÞd3x; (2.6)

where N is the lapse function and the gravitational and the
matter parts of the constraint densities are given by

H grav ¼
Ea
i E

b
j

16�G
ffiffiffiffiffiffijqjp ð�ijkFab

k � 2ð1þ �2ÞKi
½aK

j
b�Þ and

H matt ¼ ffiffiffi
q

p
�matt: (2.7)

Here � is the Barbero-Immirzi parameter, and Fab
k is the

curvature of the connection Ai
a, given by

Fab
k ¼ 2@½aAb�

k þ �ij
kAi

aA
j
b; (2.8)

Ki
a is related to the extrinsic curvature Kab via Ki

a ¼
Kabe

bi, and �matt is the energy density of the matter fields.
In general, Ai

a is related to Ki
a and the spin connection �i

a

defined by the triad eai via Ai
a ¼ �i

a þ �Ki
a. However,

because Bianchi I models are spatially flat, �i
a ¼ 0 in the

gauge chosen in (2.3), whence Ai
a ¼ �Ki

a. This property
and the fact that spatial derivatives of Ki

a vanish by the
Bianchi I symmetry leads us to the relation

2Ki
½aK

j
b� ¼ ��2�ijkFab

k: (2.9)

Therefore, the gravitational part of the Hamiltonian con-
straint can be simplified:

H grav ¼ � Ea
i E

b
j

16�G�2 ffiffiffi
q

p �ijkFab
k

¼ �
ffiffiffiffi
oq

p
8�G�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1p2p3
p

Vo

� ðp1p2c1c2 þ p1p3c1c3 þ p2p3c2c3Þ: (2.10)

Finally, recall that our matter field is a massless scalar
field T. The matter energy density of the scalar field T is

given by �matt ¼ p2
ðTÞ=2V

2, where V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1p2p3j
p

is the

physical volume of the elementary cell. Our choice of
harmonic time � implies that the lapse function is given

by N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1p2p3j
p

. With these choices the constraint (2.6)
simplifies further:

C H ¼
Z
V

�
� Ea

i E
b
jVo

16�G�2
ffiffiffiffi
oq

p �ij
kFk

ab þ
ffiffiffiffi
oq

p
Vo

p2
T

2

�
d3x

(2.11)

¼ � 1

8�G�2
ðp1p2c1c2 þ p1p3c1c3 þ p2p3c2c3Þ þ p2

T

2
:

(2.12)

Physical states of the classical theory lie on the constraint
surface CH ¼ 0. The time evolution of each pi and ci is
obtained by taking their Poisson bracket with CH.

dp1

d�
¼ fp1; CHg ¼ �8�G�

@CH
@c1

¼ p1

�
ðp2c2 þ p3c3Þ;

(2.13)

dc1
d�

¼ fc1; CHg ¼ 8�G�
@CH
@p1

¼ �c1
�

ðp2c2 þ p3c3Þ:
(2.14)

The four other time derivatives can be obtained via permu-
tations. Although the phase space coordinates ci, pi them-
selves depend on the choice of the fiducial cell V , the
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dynamical equations for Ai
a and E

a
i—and hence also for the

physical metric qab and the extrinsic curvature Kab—that
follow from (2.13) and (2.14) are independent of this
choice.

Combining Eqs. (2.4), (2.13), and (2.14), one finds

ci ¼ �LiV
�1
o ða1a2a3Þ�1 dai

d�
: (2.15)

It is instructive to relate the ci to the directional Hubble
parameters Hi ¼ d lnai=dt where t is the proper time,
corresponding to the lapse function NðtÞ ¼ 1. Since t is

related to the harmonic time � via Nd� ¼ NðtÞdt

d

dt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1p2p3j

p d

d�
: (2.16)

Therefore, we have

ci ¼ �Li

dai
dt

¼ �LiaiHi; (2.17)

where Liai is the length of the ith edge of V as measured
by the physical metric qab.

Next, it is convenient to introduce a mean scale factor

a :¼ ða1a2a3Þ1=3 which encodes the physical volume ele-
ment but ignores anisotropies. Then, the mean Hubble
parameter is given by

H :¼ d lna

dt
¼ 1

3
ðH1 þH2 þH3Þ;

where as before Hi :¼ d lnai
dt

: (2.18)

Squaring Eq. (2.18) and using the implication

H1H2 þH2H3 þH3H1 ¼ 8�G�matt (2.19)

of the Hamiltonian constraint, we obtain the generalized
Friedmann equation for Bianchi I space-times,

H2 ¼ 8�G

3
�matt þ �2

a6
; (2.20)

where

�2 ¼ a6

18
½ðH1 �H2Þ2 þ ðH2 �H3Þ2 þ ðH3 �H1Þ2�

(2.21)

is the shear term. The right-hand side of (2.20) brings out
the fact that the anisotropic shears ðHi �HjÞ contribute to
the energy density; they quantify the energy density in the
gravitational waves. Using the fact that our matter field has
zero anisotropic stress one can show that�2 is a constant of
the motion [37]. If the space-time itself is isotropic, then
�2 ¼ 0 and Eq. (2.20) reduces to the usual Friedmann
equation for the standard isotropic cosmology. These con-
siderations will be useful in interpreting quantum dynam-
ics and exploring the relation between the Bianchi I and
Friedmann quantum Hamiltonian constraints.

Next, let us consider the scalar field T. Because there is
no potential for it, its canonically conjugate momentum
pðTÞ is a constant of motion (which, for definiteness, will be

assumed to be positive). Therefore, in any solution to the
field equations T grows linearly in the harmonic time �.
Thus, although T does not have the physical dimensions of
time, it is a good evolution parameter in the classical
theory. The form of the quantum Hamiltonian constraint
is such that T will also serve as a viable internal time
parameter in the quantum theory.
We will conclude with a discussion of discrete ‘‘reflec-

tion symmetries’’ that will play an important role in the
quantum theory. (For further details see the Appendix.) In
the isotropic case, there is a single reflection symmetry,
�ðpÞ ¼ �p, which physically corresponds to the orienta-
tion reversal eai ! �eai of triads. These are large gauge
transformations, under which the metric qab remains un-
changed. The Hamiltonian constraint is invariant under this
reflection whence one can, if one so wishes, restrict
one’s attention just to the sector p � 0 of the phase
space. In the Bianchi I case, we have three reflections
�i, each corresponding to the flip of one of the triad
vectors, leaving the other two untouched [e.g.,
�1ðp1; p2; p3Þ ¼ ð�p1; p2; p3Þ]. As shown in [46], the
Hamiltonian flow is left invariant under the action of
each �i. Therefore, it suffices to restrict one’s attention
to the positive octant in which all three pi are non-negative:
dynamics in any of the other seven octants can be easily
recovered from that in the positive octant by the action of
the discrete symmetries �i.
Remark.—In the LQC literature on Bianchi I models, a

physical distinction has occasionally been made between
the fiducial cells V which are ‘‘cubical’’ with respect to
the fiducial metric oqab and those that are ‘‘rectangular.’’

(In the former case all Li are equal.) However, given any
cell V one can always find a flat metric in our collection
(2.1) with respect to which that V is cubical. Using it as
oqab one would be led to call it cubical. Therefore the

distinction is unphysical and the hope that the restriction
to cubical cells may resolve some of the physical problems
faced in [36,37] was misplaced.

III. QUANTUM THEORY

This section is divided into four parts. In the first, we
briefly recall quantum kinematics, emphasizing issues that
have not been discussed in the literature. In the second, we
spell out a simple but well-motivated correspondence be-
tween the LQG and LQC quantum states that plays an
important role in the definition of the curvature operator

F̂ab
k in terms of holonomies. However, the paths along

which holonomies are evaluated depend in a rather com-
plicated way on the triad (or momentum) operators,
whence at first it seems very difficult to define these
holonomy operators. In the third section we show that
geometric considerations provide a natural avenue to over-
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come these apparent obstacles. The resulting Hamiltonian
constraint is, however, rather unwieldy to work with. In the
last section we make a convenient redefinition of configu-
ration variables to simplify its action. The simplification, in
turn, will provide the precise sense in which the singularity
is resolved in the quantum theory.

A. LQC kinematics

Wewill summarize quantum kinematics only briefly; for
details, see, e.g., [36,37]. Let us begin by specifying the
elementary functions on the classical phase space which
are to have unambiguous analogs in the quantum theory. In
LQC this choice is directly motivated by the structure of
full LQG [1–3]. As one might expect from the isotropic
case [7,9], the elementary variables are the three momenta

pi and holonomies hð‘Þi along edges parallel to the three
axis xi, where ‘Li is the length of the edge with respect to
the fiducial metric oqab.

3 These functions are (over)com-

plete in the sense that they suffice to separate points of the
phase space. Taking the x1 axis for concreteness, the

holonomy hð‘Þ1 has the form

hð‘Þ1 ðc1; c2; c3Þ ¼ cos
c1‘

2
Iþ 2 sin

c1‘

2
�1 (3.1)

where I is the unit 2� 2 matrix and �i constitute a basis of
the Lie algebra of SU(2), satisfying �i�j ¼ 1

2 �
ij
k�

k �
1
4�

ijI. Thus, the holonomies are completely determined

by almost periodic functions expði‘cjÞ of the connection;

they are called ‘‘almost’’ periodic because ‘ is any real
number rather than an integer. In quantum theory, then,

elementary operators ĥð‘Þi and p̂i are well defined and our
task is to express other operators of physical interest in
terms of these elementary ones.

Recall that in the isotropic case it is simplest to specify
the gravitational sector of the kinematic Hilbert space in
the triad of p representation: it consists of wave functions
�ðpÞ which are symmetric under p ! �p and have a
finite norm: k�k2 ¼ P

pj�ðpÞj2 <1. In the Bianchi I

case it is again simplest to describe H grav
kin in the momen-

tum representation. Consider first a countable linear com-
bination,

j�i ¼ X
p1;p2;p3

�ðp1; p2; p3Þjp1; p2; p3i with

X
p1;p2;p3

j�ðp1; p2; p3Þj2 <1; (3.2)

of orthonormal basis states jp1; p2; p3i, where

hp1; p2; p3jp0
1; p

0
2; p

0
3i ¼ �p1p

0
1
�p2p

0
2
�p3p

0
3
: (3.3)

Next, recall that on the classical phase space the three
reflections �i represent large gauge transformations
under which physics does not change. They have a

natural induced action �̂i on the space of wave
functions �ðp1; p2; p3Þ. [Thus, for example,

�̂1�ðp1; p2; p3Þ ¼ �ð�p1; p2; p3Þ.] Physical observables
commute with �̂i. Therefore, as in gauge theories, each

eigenspace of �̂i provides a physical sector of the theory.

Since �̂2
i ¼ I, eigenvalues of �̂i are �1. For definiteness,

as in the isotropic case, we will assume that the wave

functions �ðp1; p2; p3Þ are symmetric under �̂i. Thus,
the gravitational part H grav

kin of the kinematical Hilbert

space is spanned by wave functions �ðp1; p2; p3Þ satisfy-
ing

�ðp1; p2; p3Þ ¼ �ðjp1j; jp2j; jp3jÞ (3.4)

which have finite norm (3.2).
The basis states jp1; p2; p3i are eigenstates of quantum

geometry: In the state jp1; p2; p3i the face Si of the fiducial
cell V orthogonal to the axis xi has area jpij. Note that
although pi 2 R, the orthonormality holds via Kronecker
deltas rather than the usual Dirac distributions; this is why
the LQC quantum kinematics is inequivalent to that of the
Schrödinger theory used in Wheeler-DeWitt cosmology.
Finally the action of the elementary operators is given by

p̂1jp1; p2; p3i ¼ p1jp1; p2; p3i anddexpi‘c1jp1; p2; p3i ¼ jp1 � 8��G@‘; p2; p3i (3.5)

and similarly for p̂2,
dexpi‘c2, p̂3, and

dexpi‘c3.
The full kinematical Hilbert space H kin will be the

tensor product, H kin ¼ H grav
kin �H matt

kin where, as in the

isotropic case, we will set H matt
kin ¼ L2ðR; dTÞ for the

Hilbert space of the homogeneous scalar field T. On

H matt
kin , the operator T̂ will act by multiplication and

p̂ðTÞ :¼ �i@d=dT will act by differentiation. Note that

we can also use a ‘‘polymer Hilbert space’’ for H matt
kin

spanned by almost periodic functions of T. The quantum
Hamiltonian constraint (3.22) will remain unchanged and
our construction of the physical Hilbert space will go
through as it is [47].

B. The curvature operator F̂ab
k

To discuss quantum dynamics, we have to construct the
quantum analog of the Hamiltonian constraint. Since there
is no operator corresponding to the connection coefficients
ci onH

grav
kin , we cannot use (2.12) directly. Rather, as in the

isotropic case [10], we will return to the expression (2.11)
involving curvature Fab

k. Our task then is to find the

operator on H grav
kin corresponding to Fab

k. As is usual in

LQG, the idea is to first express the curvature in terms of
our elementary variables—holonomies and triads—and

3More precisely, the dimensionless number ‘ is the length of
the edge along which the holonomy is evaluated, measured in the
units of the length of the edge of V parallel to it. Since ‘ is a
ratio of lengths, its value does not depend on the fiducial or any
other metric.
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then replace them by their direct quantum analogs. Recall
first that, in the classical theory, the a-b component of Fab

k

can be written in terms of holonomies around a plaquette
(i.e., a rectangular closed loop whose edges are parallel to
two of the axes xi):

Fab
k ¼ 2 lim

Arh!0
Tr

�hhij
� I

Arh
�k
�
o!i

a
o!j

b; (3.6)

where Arh is the area of the plaquetteh and the holonomy
hhij

around the plaquette hij is given by

hhij
¼ h

ð ��jÞ�1

j h
ð ��iÞ�1
i h

ð ��jÞ
j h

ð ��iÞ
i ; (3.7)

where ��jLj is the length of the jth edge of the plaquette, as

measured by the fiducial metric oqab. (There is no summa-

tion over i, j.) Because the Arh is shrunk to zero, the limit
is not sensitive to the precise choice of the closed plaquette
h. Now, in LQG the connection operator does not exist,
whence if we regard the right side of (3.6) as an operator,
the limit fails to converge in H grav

kin . The nonexistence of

the connection operator is a direct consequence of the
underlying diffeomorphism invariance [48] and is inter-
twined with the fact that the eigenvalues of geometric

operators—such as the area operator cArh associated with
the plaquette under consideration—are purely discrete.
Therefore, in LQC the viewpoint is that the nonexistence
of the limit Arh ! 0 in quantum theory is not accidental:
quantum geometry is simply telling us that we should
shrink the plaquette not till the area it encloses goes to
zero, but rather only to the minimum nonzero eigenvalue
�‘2Pl of the area operator (where � is a dimensionless

number). The resulting quantum operator F̂ab
k then inher-

its Planck scale nonlocalities.
To implement this strategy in full LQG one must resolve

a difficult issue. If the plaquette is to be shrunk only to a
finite size, the operator on the right side of (3.6) would
depend on what that limiting plaquette is. So, which of the
many plaquettes enclosing an area �‘2Pl should one use?

Without a well-controlled gauge fixing procedure, it would
be very difficult to single out such plaquettes, one for each
2-dimensional plane in the tangent space at each spatial
point. However, in the diagonal Bianchi I case now under
consideration, a natural gauge fixing is available and in-
deed we have already carried it out. Thus, in the i-j plane, it
is natural to choose a plaquette hij so that its edges are

parallel to the xi-xj axis. Furthermore, the underlying

homogeneity implies that it suffices to introduce the three
plaquettes at any one point in our spatial 3-manifold.

These considerations severely limit the choice of pla-
quetteshij but they do not determine the lengths of the two

edges in each of these plaquettes. To completely determine
the plaquettes, as in the isotropic case, we will use a simple
but well-motivated correspondence between kinematic
states in LQG and those in LQC. However, because of
anisotropies, new complications arise which require that

the correspondence be made much more precise. Fix a state
jp1; p2; p3i in H grav

kin of LQC. In this state, the three faces

of the fiducial cell V orthogonal to the xi axis have areas
jpij in the LQC quantum geometry. This is the complete
physical information in the ket jp1; p2; p3i. How would
this quantum geometry be represented in full LQG? First,
the macroscopic geometry must be spatially homogeneous
and we have singled out three axes with respect to which
our metrics are diagonal. Therefore, semiheuristic consid-
erations suggest that the corresponding LQG quantum
geometry state should be represented by a spin network
consisting of edges parallel to the three axes [see Fig. 1(a)].
Microscopically this state is not exactly homogeneous. But
the coarse grained geometry should be homogeneous. To
achieve the best possible coarse grained homogeneity, the
edges should be packed as tightly as is possible in the
desired quantum geometry. That is, each edge should carry
the smallest nonzero label possible, namely, j ¼ 1=2.
For definiteness, let us consider the 1-2 face S12 of the

fiducial cell V which is orthogonal to the x3 axis [see
Fig. 1(b)]. Quantum geometry of LQG tells us that at each
intersection of any one of its edges with S12, the spin
network contributes a quantum of area�‘2Pl on this surface,

where � ¼ 4��
ffiffiffi
3

p
[49]. For this LQG state to reproduce

the LQC state jp1; p2; p3i under consideration, S12 must be
pierced by N3 edges of the LQG spin network, where N3 is
given by

N3�‘
2
Pl ¼ jp3j:

Thus, we can divide S12 into N3 identical rectangles each
of which is pierced by exactly one edge of the LQG state,
as in Fig. 1(b). Any one of these elementary rectangles
encloses an area �‘2Pl and provides us the required pla-

quette h12. Let the dimensionless lengths of the edges of
these plaquettes be ��1 and ��2. Then their lengths with
respect to the fiducial metric oqab are ��1L1 and ��2L2.

FIG. 1 (color online). Depiction of the LQG quantum geome-
try state corresponding to the LQC state jp1; p2; p3i. The LQG
spin network has edges parallel to the three axes selected by the
diagonal Bianchi I symmetries, each carrying a spin label j ¼
1=2. (a) Edges of the spin network traversing through the fiducial
cell V . (b) Edges of the spin network traversing the 1-2 face of
V and an elementary plaquette associated with a single flux line.
This plaquette encloses the smallest quantum, �‘2Pl, of area. The
curvature operator F̂12

k is defined by the holonomy around such
a plaquette.
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Since the area of S12 with respect to oqab is L1L2, we have

N3 ��1L1 ��2L2 ¼ L1L2:

Equating the expressions ofN3 from the last two equations,
we obtain

�� 1 ��2 ¼ �‘2Pl
jp3j : (3.8)

This relation by itself does not fix ��1 and ��2. However,
repeating this procedure for the 2-3 face and the 3-1 face,
we obtain, in addition, two cyclic permutations of this last
equation and the three simultaneous equations do suffice to
determine ��i:

�� 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp1j�‘2Pl
jp2p3j

s
; ��2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2j�‘2Pl
jp1p3j

s
;

��3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp3j�‘2Pl
jp1p2j

s
:

(3.9)

To summarize, by exploiting the Bianchi I symmetries
and using a simple but well-motivated correspondence
between LQG and LQC states we have determined the
required elementary plaquettes enclosing an area �‘2Pl on
each of the three faces of the cell V . On the face Sij, the

plaquette is a rectangle whose sides are parallel to the xi
and xj axes and whose dimensionless lengths are ��i and

��j, respectively, given by (3.9). Note that (as in the iso-

tropic case [10]) the ��i and hence the plaquettes are not
fixed once and for all; they depend on the LQC state
jp1; p2; p3i of quantum geometry in a specific fashion.
The functional form of this dependence is crucial to ensure
that the resulting quantum dynamics is free from the
difficulties encountered in earlier works.

Components of the curvature operator F̂ab
k can now be

expressed in terms of holonomies around these plaquettes:

F̂ ab
k ¼ 2

X
i;j

Tr

� hhij
� I

��i ��jLiLj

�k
�
o!i

a
o!j

b; (3.10)

with

hhij
¼ h

ð ��jÞ�1

j h
ð ��iÞ�1
i h

ð ��jÞ
j h

ð ��iÞ
i ; (3.11)

where ��j are given by (3.9). (There is no summation over i,

j.) Using the expression (3.1) of holonomies, it is straight-
forward to evaluate the right-hand side. One finds

F̂ ab
k ¼ �ij

k

�
sin ��c

��L
o!a

�
i
�
sin ��c

��L
o!b

�
j
; (3.12)

where the usual summation convention for repeated cova-
riant and contravariant indices applies and�

sin ��c

��L
o!a

�
i ¼ sin ��ici

��iLi
o!i

a; (3.13)

where there is now no sum over i. This is the curvature
operator we were seeking.
We will conclude with a discussion of the important

features of this procedure and of the resulting quantum
dynamics.
(1) In the isotropic case all pi are equal (pi ¼ p)

whence our expressions for ��i reduce to a single

formula, �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘2Pl=jpj

q
. This is precisely the re-

sult that was obtained in the improved dynamics
scheme for the k ¼ 0 isotropic models. Thus, we
have obtained a generalization of that result to
Bianchi I models.

(2) In both cases, the key observation is that the pla-
quette should be shrunk till its area with respect to
the physical—rather than the fiducial—geometry is
�‘2Pl. However, there are also some differences.

First, in the above analysis we set up and used a
correspondence between quantum geometries of
LQG and LQC in the context of Bianchi I models.
In contrast to the previous treatment in the isotropic
models [10], we did not have to bring in classical
geometry in the intermediate steps. In this sense,
even for the isotropic case, the current analysis is an
improvement over what is available in the literature.

(3) A second difference between our present analysis
and that of [10] is the following. Here, the semi-
heuristic representation of LQC states jp1; p2; p3i in
terms of spin networks of LQG suggested that we
should consider spin networks which pierce the
faces of the fiducial cell V as in Fig. 1(a). (As
one would expect, these states are gauge invariant.)
The minimum nonzero eigenvalue of the area op-

erator on such states is �‘2Pl with � ¼ 4
ffiffiffi
3

p
��. This

is twice the absolute minimum of nonzero eigen-
value on all gauge invariant states. However, that
lower value is achieved on spin networks (whose
edges are again labeled by j ¼ 1=2 but) which do
not pierce the surface but rather intersect it from
only one side. (In order for the state to be gauge
invariant, the edge then has to continue along a
direction tangential to the surface. For details, see
[49].) Obvious considerations suggest that such
states cannot feature in homogeneous models.
Since the discussion in the isotropic case invoked
a correspondence between LQG and LQC at a
rougher level, this point was not noticed and the

value of � used in [10] was 2
ffiffiffi
3

p
��. We emphasize,

however, that although the current discussion is
more refined, it is not a self-contained derivation.
A more complete analysis may well change this
numerical factor again.

(4) On the other hand, we believe that the functional
dependence of ��i on pi is robust: As in the isotropic
case this dependence appears to be essential to make
quantum dynamics viable. Otherwise quantum dy-
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namics can either depend on the choice of the
fiducial cell V even to leading order, or is physi-
cally incorrect because it allows quantum effects to
dominate in otherwise ‘‘tame’’ situations, or both.
The previous detailed, quantum treatments of the
Bianchi I model in LQC did not have this functional
dependence because they lacked the correspondence
between LQG and LQC we used. Rather, they pro-
ceeded by analogy. As we noted above, in the iso-
tropic case there is a single �� and a single p and the

two are related by �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘2Pl=jpj

q
. The most

straightforward generalization of this relation to

Bianchi I models is ��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘2Pl=jpij

q
. This expres-

sion was simply postulated and then used to con-
struct quantum dynamics [36,37]. The resulting
analysis has provided a number of useful technical
insights. However, this quantum dynamics suffers
from the problems mentioned above [40]. The pos-
sibility that the correct generalization of the iso-
tropic results to Bianchi I models may be given by
(3.9) was noted in [38,50] and in Appendix C of
[37]. However, for reasons explained in the next
section, construction of the quantum Hamiltonian
operator based on (3.9) was thought not to be fea-
sible. Therefore, this avenue was used only to gain
qualitative insights and was not pursued in the full
quantum theory.

C. The quantum Hamiltonian constraint

With the curvature operator F̂ab
k at hand, it is straight-

forward to construct the quantum analog of the
Hamiltonian constraint (2.6) because the triad operators
can be readily constructed from the three p̂i. Ignoring for a
moment the factor ordering issues, the gravitational part of
this operator is given by

Ĉgrav ¼ � 1

8�G�2�‘2Pl
½p1p2jp3j sin ��1c1 sin ��2c2

þ p1jp2jp3 sin ��1c1 sin ��3c3

þ jp1jp2p3 sin ��2c2 sin ��3c3�; (3.14)

where for simplicity of notation here and in what follows
we have dropped hats on pi and sin ��ici. Towrite the action
of this operator onH grav

kin , it suffices to specify the action of

the operators expði ��iciÞ on the kinematical states
�ðp1; p2; p3Þ. The expression (3.9) of ��i and the Poisson
brackets (2.5) imply

expð�i ��1c1Þ ¼ exp

�
	8��

ffiffiffiffi
�

p
‘3Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� p1

p2p3

��������
s

d

dp1

�
(3.15)

and its cyclic permutations. At first sight this expression

seems too complicated to yield a manageable Hamiltonian
constraint.
Remark.—In the isotropic case, the corresponding ex-

pression is simply

expð�i ��cÞ ¼ exp

�
	8��

ffiffiffiffi
�

p
‘3Pl

ffiffiffiffiffiffiffiffiffiffiffiffi��������1

p

��������
s

d

dp

�
:

Since 1ffiffiffi
p

p d
dp � d

dv , where v� jpj3=2 is the physical volume

of the fiducial cell V , this operator can be essentially
written as expðd=dvÞ and acts just as a displacement
operator on functions �ðvÞ of v. In the operator (3.15)
by contrast, all three pi feature in the exponent. This is why
its action was deemed unmanageable. As we noted at the
end of Sec. III B, progress was made [36,37] by simply
postulating an alternative, more manageable expression

��i ¼ ð ffiffiffiffi
�

p
‘Pl=

ffiffiffiffiffiffiffiffijpij
p Þ, the obvious analog of �� ¼

ð ffiffiffiffi
�

p
‘PlÞ=

ffiffiffiffiffiffiffijpjp
in the isotropic case [10]. Then each

expð�i ��iciÞ can be expressed essentially as a displace-

ment operator expðd=dviÞ with vi � jpij3=2 and the proce-
dure used in the isotropic case could be implemented on
states �ðv1; v2; v3Þ. Bianchi I quantum dynamics then
resembled three copies of the isotropic dynamics.
However, as noted above this solution is not viable [40].
Our new observation is that the operator (3.15) can in

fact be handled in a manageable fashion. Let us first make
an algebraic simplification by introducing new dimension-
less variables 	i:

	i ¼ sgnðpiÞ
ffiffiffiffiffiffiffiffijpij

p
ð4�j�j ffiffiffiffi

�
p

‘3PlÞ1=3
; (3.16)

[so that sgnð	iÞ ¼ sgnðpiÞ]. Then, we can introduce a new
orthonormal basis j	1; 	2; 	3i in H grav

kin by an obvious

rescaling. These vectors are again eigenvectors of the
operators pi:

pij	1; 	2; 	3i ¼ sgnð	iÞð4�j�j
ffiffiffiffi
�

p
‘3PlÞ2=3	2

i j	1; 	2; 	3i:
(3.17)

We can expand out any ket j�i in H grav
kin as j�i ¼

�ð	1; 	2; 	3Þj	1; 	2; 	3i and reexpress the right side of

(3.15) as an operator on wave functions �ð ~	Þ,

expð�i ��1c1Þ ¼ exp

�	sgnð	1Þ
	2	3

d

d	1

�
¼: E	

1 ; (3.18)

where the notation E�
i has been introduced as shorthand.

[Here, we have used the property � ¼ sgnðp1p2p3Þj�j of
the Barbero-Immirzi parameter from the Appendix.] To

obtain the explicit action of E�
i on wave functions�ð ~	Þwe

note that, since the operator is an exponential of a vector

field, its action is simply to drag the wave function �ð ~	Þ a
unit affine parameter along its integral curves.
Furthermore, since the vector field d=d	1 is in the 	1

direction, the coefficient 1=	2	3 is constant along each
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of its integral curves. Therefore it is possible to write down
the explicit expression of E�

i :

ðE�
1 �Þð	1; 	2; 	3Þ ¼ �

�
	1 � sgnð	1Þ

	2	3

; 	2; 	3

�
: (3.19)

The nontriviality of this action lies in the fact that while the
wave function is dragged along the 	1 direction, the affine
distance involved in this dragging depends on 	2, 	3. This
operator is well defined because our states have support
only on a countable number of 	i. In particular, the image

ðE�
1 �Þð ~	Þ vanishes identically at points 	2 ¼ 0 or 	3 ¼ 0

because � does not have support at 	1 ¼ 1. Thus the
factor 	2	3 appearing in the denominator does not cause
difficulties.

We can now write out the gravitational part of the
Hamiltonian constraint:

Ĉ grav ¼ Ĉð1Þgrav þ Ĉð2Þgrav þ Ĉð3Þgrav; (3.20)

with

Ĉð1Þgrav ¼ ��@‘2Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j	1	2	3j

q
½sin ��2c2 sgn	2j	1	2	3jsgn	3

� sin ��3c3 þ sin ��3c3 sgn	3j	1	2	3jsgn	2

� sin ��2c2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j	1	2	3j

q
; (3.21)

where we have used the simplest symmetric factor ordering
that reduces to the one used in [11] in the isotropic case.

(Ĉð2Þgrav and Ĉð3Þgrav are given by the obvious cyclic permuta-

tions.) In the Appendix, we show that, under the action of

reflections �̂i on H grav
kin , the operators sin ��ici have the

same transformation properties that ci have under reflec-

tions �i in the classical theory. As a consequence, Ĉgrav is
also reflection symmetric. Therefore, its action is well

defined on H grav
kin : Ĉgrav is a densely defined, symmetric

operator on this Hilbert space. In the isotropic case, its
analog has been shown to be essentially self-adjoint [51].
In what follows we will assume that (3.20) is essentially
self-adjoint on H grav

kin and work with its self-adjoint

extension.
Finally, it is straightforward to write down the quantum

analog of the full Hamiltonian constraint (2.6):

� @
2@2T�ð ~	; TÞ ¼ ��ð ~	; TÞ; (3.22)

where� ¼ �Cgrav. As in the isotropic case, one can obtain
the physical Hilbert space H phy by a group averaging

procedure and the result is completely analogous.
Elements of H phy consist of ‘‘positive frequency’’ solu-

tions to (3.22), i.e., solutions to

� i@@T�ð ~	; TÞ ¼
ffiffiffiffiffiffiffiffi
j�j

p
�ð ~	; TÞ; (3.23)

which are symmetric under the three reflection maps �̂i,
i.e., satisfy

�ð	1; 	2; 	3; TÞ ¼ �ðj	1j; j	2j; j	3j; TÞ: (3.24)

The scalar product is given simply by

h�1j�2i ¼ h�1ð ~	; ToÞj�2ð ~	; ToÞikin
¼ X

	1;	2;	3

��1ð ~	; ToÞ�2ð ~	; ToÞ; (3.25)

where To is any ‘‘instant’’ of internal time T.
Remark.—In the isotropic LQC literature [10,16,17] one

began in the classical theory with proper time t (which
corresponds to the lapse function NðtÞ ¼ 1) and made a

transition to the relational time provided by the scalar field
only in the construction of the physical sector of the
quantum theory. If we had used that procedure here, the
factor ordering of the Hamiltonian constraint would have
been slightly different. In this paper, we started out with the

lapse N ¼ jp1p2p3j1=2 already in the classical theory be-
cause the resulting quantum Hamiltonian constraint is
simpler. In the isotropic case, for example, this procedure
leads to an analytically soluble model (the one obtained in
[11] by first starting out with NðtÞ ¼ 1, then going to

quantum theory, and finally making some well-motivated
but simplifying assumptions). It also has some conceptual
advantages because it avoids the use of ‘‘inverse scale
factors’’ altogether.

D. Simplification of Ĉgrav
It is straightforward to expand out the Hamiltonian

constraint Ĉgrav using the explicit action of operators

sinð ��iciÞ given by (3.19) and express it as a linear combi-
nation of 24 terms of the type

Ĉ ��
ij

:¼
ffiffiffiffiffiffi
jvj

p
E�
i sgnð	iÞjvjsgnð	jÞE�

j

ffiffiffiffiffiffi
jvj

p
; (3.26)

(where i � j and as before there is no summation over i, j).
Unfortunately, the sgnð	iÞ factors in this expression and in
the action of E�

i make the result quite complicated. More
importantly, it is rather difficult to interpret the resulting
operator. The expression can be simplified if we introduce
the volume of V as one of the arguments of the wave
function. In particular, this would make quantum dynamics
easier to compare with that of the Friedmann models. With
this motivation, let us further rearrange the configuration
variables and set

v ¼ 2	1	2	3: (3.27)

The factor of 2 in (3.27) ensures that this v reduces to the v
used in the isotropic analysis of [10] (if one uses the value
of � used there). As the notation suggests, v is directly
related to the volume of the elementary cell V :

V̂�ð	1; 	2; vÞ ¼ 2�j�j
ffiffiffiffi
�

p
jvj‘3Pl�ð	1; 	2; vÞ: (3.28)

One’s first impulse would be to introduce two other vari-
ables in a symmetric fashion, e.g., following Misner [52].
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Unfortunately, detailed examination shows that they make
the constraint (3.20) even less transparent.4

Let us simply use 	1, 	2, and v as the configuration
variables in place of 	1, 	2, and 	3. This change of
variables would be nontrivial in the Schrödinger represen-
tation but is completely tame here because the norms on
H grav

kin are defined using a discrete measure on R3. As a

consequence, the scalar product is again given by the sum
in (3.25), the only difference is that 	3 is now replaced by
v. Since the choice ð	1; 	2; vÞ breaks the permutation
symmetry, one might have first thought that it would not
be appropriate. Somewhat surprisingly, as we will now
show, it suffices to make the structure of the constraint
transparent. (Of course, the simplification of the constraint
would have persisted if we had chosen to replace either 	1

or 	2—rather than 	3—with v.) Finally, note that the
positive octant is now given by 	1 � 0, 	2 � 0, and v � 0.

To obtain the explicit action of the constraint, it is
extremely convenient to use the fact that states � in
H grav

kin satisfy the symmetry condition (3.24) and that

Ĉgrav has a well-defined action on this space. Therefore,

to specify its action on any given � it suffices to find the

restriction of the image	ð	1; 	2; vÞ :¼ ðĈgrav�Þð	1; 	2; vÞ
to the positive octant. The value of 	 in other octants is
determined by its symmetry property. This fact greatly
simplifies our task because we can use it to eliminate the
sgnð	iÞ factors in various terms which complicate the
expression tremendously.
For concreteness let us focus on one term in the con-

straint operator (which turns out to be the most nontrivial
one for our simplification):

ðĈ��
21 �Þð	1; 	2; vÞ :¼ ð

ffiffiffiffiffiffi
jvj

p
E�
2 sgnð	2Þjvjsgnð	1ÞE�

1

ffiffiffiffiffiffi
jvj

p
�Þð	1; 	2; vÞ

¼
� ffiffiffiffiffiffi

jvj
p

sgn

�
	2

�
1� 2 sgn	2

v

��
jv� 2 sgn	2jsgnð	1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv� 2 sgn	1 � 2 sgn	2j

q �
��

�
v� 2 sgn	1 � 2 sgn	2

v� 2 sgn	2

	1;
v� 2 sgn	2

v
	2; v� 2 sgn	1 � 2sgn	2

�
: (3.29)

If we now restrict the argument of ðĈ��
12 �Þ to the positive

octant, the expression simplifies:

ðĈ��
21 �Þjþoctant ¼ ½ ffiffiffi

v
p ðv� 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv� 4j

p
�

��

�
v� 4

v� 2
	1;

v� 2

v
	2; v� 4

�
: (3.30)

Now the action of this operator is more transparent: the
wave function is multiplied by functions only of volume
and, in the argument of the wave function, volume simply
shifts by �4 and 	1, 	2 are rescaled by multiplicative
factors which also depend only on the volume. Since the
full constraint is a linear combination of terms of this form,
its action is also driven primarily by volume. As we will
see, this key property makes the constraint manageable and
greatly simplifies the task of analyzing the relation be-
tween the LQC quantum dynamics of Bianchi I and

Friedmann models. From now on, unless otherwise stated,
we will restrict the argument of the images ðĈ�ij�Þ to lie in
the positive octant; its value in other octants is given
simply by ðĈ��

ij �Þð	1; 	2; vÞ ¼ ðĈ��
ij �Þðj	1j; j	2j; jvjÞ.

The form (3.30) of the action of operators Ĉ��
ij enables

us to discuss singularity resolution. For completeness, let
us first write out the four terms corresponding to i, j ¼ 1, 2

(which are the most complicated of the 24 terms in Ĉgrav):

ðĈþþ
21 �Þð	1; 	2; vÞ ¼ ðvþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðvþ 4Þ

p

�

�
vþ 4

vþ 2
	1;

vþ 2

v
	2; vþ 4

�
;

(3.31)

ðĈþ�
21 �Þð	1; 	2; vÞ ¼ vðvþ 2Þ


�
�

v

vþ 2
	1;

vþ 2

v
	2; v

�
; (3.32)

ðĈ�þ
21 �Þð	1; 	2; vÞ ¼ vðv� 2Þ


�
�

v

v� 2
	1;

v� 2

v
	2; v

�
; (3.33)

ðĈ��
21 �Þð	1; 	2; vÞ ¼ ðv� 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vjv� 4j

p

�

�
v� 4

v� 2
	1;

v� 2

v
	2; v� 4

�
:

(3.34)

4Misner-like variables—volume and logarithms of metric
components—were used in the brief discussion of Bianchi I
models in [38]. This discussion already recognized that the use
of volume as one of the arguments of the wave function would
lead to simplifications. Dynamics was obtained by starting with
the Hamiltonian constraint in the �o scheme from [35] and then
substituting ��i of (3.9) for �

i
o in the final result. This procedure

does simplify the leading order quantum corrections to dynam-
ics. In contrast, our goal is to simplify the full constraint. More
importantly, constraint (3.20) is an improvement over that of [38]
because we introduced ��i from the beginning of the quantization
procedure and systematically defined the operators sinð ��iciÞ (in
Sec. III C).
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Recall that, since v is proportional to the volume of the
elementary cell, it vanishes when any one of the three
directional scale factors ai vanish. Thus, the classical
singularity corresponds precisely to the points at which v
vanishes. Now suppose that the function �ð	1; 	2; vÞ has
no support on points v ¼ 0 at an initial internal time To. As
it evolves via (3.22), can it end up having support on such
points? We will argue that this is impossible.

Let us decompose H grav
kin as H grav

kin ¼ H grav
sing �H grav

reg ,

where �ð	1; 	2; vÞ is in H grav
sing if it has support only on

points with v ¼ 0 and it is inH grav
reg if it has no support on

points with v ¼ 0. Now, all the operators Ĉ��
ij have a factor

of
ffiffiffi
v

p
acting on the right [see Eq. (3.26)]. It ensures that

each Ĉ��
ij annihilates every state in H grav

sing . Therefore

H grav
sing is left invariant by the evolution. More importantly,

because of the prefactors of v� 2 and v� 4 the action of
the 4 operators in (3.31), (3.32), (3.33), and (3.34) preserves

H grav
reg . This property is shared also by Ĉ��

ij for other values

of i, j and hence by Ĉgrav and all its powers.
5 Therefore, the

relational dynamics of (3.22) decouples H grav
sing from

H grav
reg . In particular, if one starts out with a ‘‘regular’’

quantum state at T ¼ 0, it remains regular throughout the
evolution. In this precise sense, the singularity is resolved.
Next, let us write out explicitly the full Hamiltonian

constraint (3.22):

@2T�ð	1; 	2; v;TÞ ¼ �G

2

ffiffiffi
v

p ½ðvþ 2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
vþ 4

p
�þ

4 ð	1; 	2; v;TÞ � ðvþ 2Þ ffiffiffi
v

p
�þ

0 ð	1; 	2; v;TÞ

� ðv� 2Þ ffiffiffi
v

p
��

0 ð	1; 	2; v;TÞ þ ðv� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv� 4j

p
��

4 ð	1; 	2; v;TÞ�; (3.35)

where ��
0;4 are defined as follows:

��
4 ð	1; 	2; v;TÞ ¼ �

�
v� 4

v� 2

 	1;

v� 2

v

 	2; v� 4;T

�
þ�

�
v� 4

v� 2

 	1; 	2; v� 4;T

�
þ�

�
v� 2

v

 	1;

v� 4

v� 2

 	2; v� 4;T

�
þ�

�
v� 2

v

 	1; 	2; v� 4;T

�
þ�

�
	1;

v� 2

v

 	2; v� 4;T

�
þ�

�
	1;

v� 4

v� 2

 	2; v� 4;T

�
; (3.36)

and

��
0 ð	1; 	2; v;TÞ ¼ �

�
v� 2

v

 	1;

v

v� 2

 	2; v;T

�
þ�

�
v� 2

v

 	1; 	2; v;T

�
þ�

�
v

v� 2

 	1;

v� 2

v

 	2; v;T

�
þ�

�
v

v� 2

 	1; 	2; v;T

�
þ�

�
	1;

v

v� 2

 	2; v;T

�
þ�

�
	1;

v� 2

v

 	2; v;T

�
; (3.37)

where, as before, we have given the restriction of the image
of Ĉgrav to the positive octant. BecauseH

grav
reg is left invari-

ant by evolution we can in fact restrict 	1, 	2, and v to be
strictly positive. On the right sides of (3.36) and (3.37),
arguments of � can take negative values. However, since
�ð	1; 	2; vÞ ¼ �ðj	1j; j	2j; jvjÞ, we can just introduce
absolute value signs on these arguments. Consequently,
knowing the restriction of � to the positive octant, (3.36)
and (3.37) enable us to directly calculate its image under
Ĉgrav. In particular, numerical evolutions can be carried out
by restricting oneself to the positive octant.

Let us now examine the structure of this equation. As in
the isotropic case, the right side is a difference equation. As
far as the v dependence is concerned, the steps are uni-
form: the argument of the wave function involves v� 4, v,

and vþ 4 exactly as in the isotropic case. The step sizes
are also the same as in [10] because, as noted above, our
variable v is in precise agreement with that used in the
isotropic case. There is again superselection. For each � 2
½0; 4Þ, let us introduce a ‘‘lattice’’ L� consisting of points
v ¼ 4n if � ¼ 0 and v ¼ 2nþ � if � � 0.6 Then the
quantum evolution—as well as the action of the Dirac
observables—preserves the subspaces H �

phy consisting of

states with v support on L�. The most interesting of these
sectors is the one labeled by � ¼ 0 since it contains the
classically singular points, v ¼ 0. Therefore in what fol-
lows, unless otherwise stated, we will restrict ourselves to
this sector.

The dependence of Ĉgrav� on 	1, 	2, by contrast, is

much more difficult to control technically because the first
two arguments of the wave function cannot be chosen to lie
on a regular lattice in any simple way. In particular, even if

5To make this argument mathematically rigorous one would
have to establish that Ĉgrav is essentially self-adjoint and its self-
adjoint extension also shares this property (or a suitable general-
ization thereof).

6As in the isotropic case, the lattice is doubled if � � 0 or 2
because of the symmetry property of our wave functions.
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we started out with a wave function which has support only

on a lattice, say 	1 ¼ n	o for some 	o, the action of Ĉgrav
shifts support to points such as 	1 ¼ ½ðv� 2Þ=v�n	o

which do not lie on this lattice. Thus, there is no obvious
superselection with respect to 	1 and 	2; we have to work
with the entire R2 they span. Had it been permissible to set

��i / =
ffiffiffiffiffiffiffiffijpij

p
, we could have restricted 	i to lie on a regular

lattice [36]. Then, following [40], we could have repeated
the strategy used successfully in the isotropic case in [11]
to simplify dynamics by carrying out a Fourier transform to
pass to variables which are conjugate to 	1, 	2. However,
as remarked earlier, that choice of ��i is inadmissible and
hence the strategy cannot be repeated in the Bianchi I case.
Nonetheless, it is still feasible to carry out numerical
simulations. For, if one knows the support of the quantum
state at an initial time To and the number of time steps
across which one wants to evolve, one can calculate the
number of points on a (irregular) grid in the 	1-	2 plane on
which the wave function will have support. Numerical
work has in fact already commenced [41]. It would be
interesting to investigate whether the efficient algorithms
that have been introduced in the context of regular lattices
[53] can be extended to this case.

We conclude this discussion by noting that it is possible
to read off some qualitative features of dynamics from
(3.35), (3.36), and (3.37). Since the steps in v of this
difference equation are the same as those in the isotropic
case, the dynamics of volume—and also of the matter
density �̂matt, since p̂ðTÞ is a constant of motion—would

be qualitatively similar to that in the isotropic case. What
about anisotropies? The 	I (I ¼ 1, 2) do not feature in the
overall numerical factors in (3.35); they appear only in the

argument of the wave functions. Under the action of Ĉgrav,
these arguments get rescaled by factors v� 4=v� 2, v�
2=v, and v=v� 2. For large volumes, or more precisely
low densities, these factors go as 1þOð�matt=�PlÞ. Hence,
to leading order, we will recover the classical result that
a1a2a3ðHi �HjÞ are constants, where ai are the direc-

tional scale factors and Hi :¼ d lnai=dt, the directional
Hubble parameters. Since quantum corrections go as
�=�Pl they are utterly negligible away from the Planck
regime.

In the next section we discuss three important features of
dynamics dictated by (3.35) which provide significant
physical intuition in complementary directions.

IV. PROPERTIES OF THE LQC QUANTUM
DYNAMICS

This section is divided into three parts. Since we have
used the same general procedure as in the isotropic case it
is natural to ask how the quantum dynamics of (3.35)
compares to that in [10]. In the first part we show that
there is a natural projection from a dense subspace of the
physical Hilbert space of the Bianchi I model to that of the

Friedmann model which maps the Bianchi I Hamiltonian
constraint to that of the Friedmann model. This result
boosts confidence in the overall coherence and reliability
of the quantization scheme used in LQC. In various iso-
tropic models [10,14–16,18], one can derive certain effec-
tive equations. Somewhat surprisingly, for states which are
semiclassical at a late initial time, they faithfully capture
quantum dynamics throughout the entire evolution, includ-
ing the bounce. The same considerations lead to effective
equations in Bianchi I models which were already ana-
lyzed by Chiou and Vandersloot in Appendix C of [37]. In
the second section we briefly discuss these equations and
their consequences. In the third, we show that, as in the
isotropic case [10,11], there is a precise sense in which the
LQC quantum dynamics reduces to that of the Wheeler-
DeWitt theory in the low curvature regime.

A. Relation to the LQC Friedmann dynamics

The problem of comparing dynamics of a more general
system with that of a restricted, symmetry reduced one has
been discussed in the literature in several contexts. In the
classical theory, symmetric states often provide symplectic
submanifolds �Res of the more general phase spaces �Gen.
Furthermore �Res are preserved by the dynamics on �Gen.
Therefore, it is tempting to repeat the same strategy in the
quantum theory. Indeed, sometimes it is possible to find
natural subspacesH Res of states with additional symmetry
in the full Hilbert spaceH Gen of the more general system.
However, generically H Res is not left invariant by the
more general dynamics (see, e.g., [42,43]). In our case,
one can introduce an isotropic subspace of H Res in the
quantum theory based on any given fiducial cell V : iso-
tropic states correspond to wave functions �ð	1; 	2; vÞ
which have support only at points 	1 ¼ 	2 ¼ ðv=2Þ1=3.
(But note that this subspace is not invariantly defined; it
is tied to V .) It is easy to check that the space H Res of
these states is not left invariant by the Bianchi I quantum
dynamics (3.35).
However, this fact cannot be interpreted as saying that

there is no simple relation between the quantum dynamics
of the two theories: since restriction toH Res amounts to a
sharp freezing of anisotropic degrees of freedom, in view
of the quantum uncertainty principle, this procedure is not
well suited to compare the quantum dynamics of the two
systems. As pointed out in Sec. I, a better strategy is to
integrate out the extra, anisotropic degrees of freedom.
This would correspond to a projection map from H Gen

to H Res rather than an embedding of H Res into H Gen.
Consider first, as an elementary example, a particle

moving in R3. Suppose that the potential depends only
on z so that dynamics has a symmetry in the x, y directions.
In the classical theory, there are several natural embed-
dings of the phase space �Res into �Gen. For example, we
can set ðz; pzÞ ! ðx ¼ xo; y ¼ yo; z;px ¼ 0; py ¼ 0; pzÞ
and the Hamiltonian vector field of the full theory is then
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tangential to the images of each of these embeddings.
However, in the quantum theory the Hilbert space H Gen

of the full system is L2ðR3; d3xÞ and there is no natural
embedding c ðzÞ ! �ðx; y; zÞ. The classical strategy
would suggest setting �ðx; y; zÞ ¼ �ðx; xoÞ�ðy; yoÞc ðzÞ
but this is not a normalizable state in H Gen for any
c ðzÞ. Even if one were to ignore this fact and try to evolve
these states, one would find that they are not preserved by

the full Hamiltonian operator Ĥ.

Note however that there is a natural projection P̂ from a
dense subspace in H Gen to that in H Res:

�ðx; y; zÞ ! ðP̂�ÞðzÞ :¼
Z

dx
Z

dy�ðx; y; zÞ � c ðzÞ:
(4.1)

(For example, we can choose the dense subspace to be the
space of smooth functions of compact support.)
Furthermore, under this projection, the Hamiltonian opera-
tor

Ĥ ¼ �ð@2=2mÞ�þ VðzÞ
of the general system is mapped to the Hamiltonian opera-
tor

ĥ :¼ �ð@2=2mÞd2=dz2 þ VðzÞ
of the reduced system. Hence solutions �ð ~x; tÞ of the
Schrödinger equation of the full system are mapped to
solutions c ðz; tÞ of the reduced system. Finally, this pro-
jection strategy continues to work for more general
Hamiltonians of the type fiðzÞpi þ VðzÞ which again
have a symmetry in the x, y directions.

Let us return to the Bianchi I model and define a pro-

jection P̂ from states�ð	1; 	2; vÞ of the Bianchi I model to
the states c ðvÞ of the Friedmann model of [10] as follows:

�ð	1; 	2; vÞ ! ðP̂�ÞðvÞ :¼ X
	1;	2

�ð	1; 	2; vÞ � c ðvÞ:

(4.2)

(The idea of using such a map already appeared in [44]
where the map was defined between elements of Cyl? of
the locally rotationally symmetric Bianchi I model and that

of the Friedmann model.) Again, P̂ is a well-defined
projection from a dense subspace of the Bianchi I Hilbert
space to a dense subspace of the Friedmann Hilbert space,
consisting, for example, of states which have support only
on a finite number of points. As is manifest from (4.2), its
effect is to focus on volume by integrating out the aniso-
tropic degrees of freedom with the same volume. Applying

this projection map P̂ to Eq. (3.35), we find

@2Tc ðv;TÞ ¼ 3�G½ðvþ 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðvþ 4Þp

c ðvþ 4;TÞ
� 2v2c ðv;TÞ þ ðv� 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðv� 4Þ

p
� c ðv� 4;TÞ�: (4.3)

This is precisely the quantum constraint describing the

LQC dynamics of the Friedmann model with lapse7 N ¼
jpj3=2. The reason for the exact agreement is twofold. First,

the Hamiltonian constraint Ĉgrav of the Bianchi I model is a

difference operator whose coefficients depend only on v
and, second, the shift in the argument is dictated only by v.
Thus, conceptually, 	1, 	2 are ‘‘inert directions’’ in the
same sense that x, y are in the elementary example dis-
cussed above. To summarize, there is a simple—and ex-
act—relation between quantum dynamics of the two
theories. It would be interesting to investigate if this result
admits a suitable extension to other Bianchi models
[33,54].
In completely general situations, of course, this exact

agreement will not persist: the projected dynamics will
provide extremely nontrivial corrections to the dynamics
of the simpler system. However, the BKL conjecture says
that the dynamics of general relativity greatly simplifies
near spacelike singularities: In this regime, the time evo-
lution at any one spatial point is well modeled by that of
Bianchi I cosmology. Therefore, in a large class of situ-
ations there may well be a sense in which the quantum
dynamics in the deep Planck regime can be projected to
that of the Friedmann model with only small corrections. If
so, the Planck scale quantum dynamics of the isotropic,
homogeneous degree of freedom in the full theory will be
much simpler than what one would have a priori expected.

B. Effective equations

Physically, the most interesting quantum states are those
that are sharply peaked at a classical trajectory at late
times. As explained in Sec. I, in the isotropic case such
states remain peaked at certain effective trajectories at all
times, including the epoch during which the Universe
undergoes a quantum bounce. Thus, even in the deep
Planck regime quantum physics is well captured by a
smooth metric although its dynamics can no longer be
approximated by the classical Einstein’s equations and its
components now contain large, @-dependent terms. The
effective equations obeyed by these geometries were first
derived using ideas from geometrical quantum mechanics
[55,56]. However, the assumptions made in these deriva-
tions break down in the deep Planck regime. Therefore a
priori there was no reason to expect these equations to
describe quantum dynamics so well also in the Planck
regime. That they do was first shown by numerical simu-
lations of the exact quantum equations [9,10] in the k ¼ 0,
� ¼ 0 case. It was then realized that this model is in fact
exactly soluble [11,57] and the power of the effective

7As noted at the end of Sec. III C, the analysis in [10] began
with the lapse N ¼ 1 and therefore leads to a slightly different
factor ordering. Had one used N ¼ jpj3=2 from the beginning as
in the current paper, one would have obtained the factor ordering
used in [11]. Equation (4.3) matches exactly with that constraint.
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equations could be attributed to this property. However,
k ¼ 0 models with nonzero cosmological constant and the
closed k ¼ 1 models do not appear to be exactly soluble.
Yet, numerical solutions of the exact quantum equations
show that the effective equations continue to capture full
quantum dynamics extremely well [14–16].

New light was shed on this phenomenon by recent work
on a path integral formulation of quantum cosmology [58].
The idea here is to return to the original derivation of path
integrals due to Feynman and Hibbs [59] starting from
quantum mechanics. In the isotropic case, then, the strat-
egy is to begin with the kinematics and dynamics of LQC
and then rewrite the transition amplitudes as path integrals.
The resulting framework has several novel features. First,
because the LQC kinematics relies on quantum geometry,
paths that feature in the final integral are different from
what one would have naively expected from the Wheeler-
DeWitt theory. Second, the action that features in the
measure is not the Einstein-Hilbert action but contains
nontrivial quantum corrections. When expressed in the
phase space language, L ¼ p _q�Hðp; qÞ, the ‘‘Hamil-
tonian’’ H turns out to be precisely the effective
Hamiltonian constraint derived in [55,56], even though
this casting of the LQC transition amplitudes in the path
integral language is exact and does not presuppose that we
are away from the Planck regime. Now, in the path integral
approach, we have the following general paradigm.
Consider the equations obtained by varying the action
that appears in the path integral. (Generally these are just
the classical equations but in LQC they turn out to be the
effective equations of [10,16,56].) Fix a path representing a
solution to these equations. If the action evaluated along
this path is large compared to @ then that solution is a good
approximation to full quantum dynamics. If one applies
this idea to isotropic LQC, one is led to conclude that
solutions to the effective equations of [55,56] should be
good approximations to full quantum dynamics also in the
k ¼ 0, � � 0, and k ¼ 1 cases. This is precisely what one
finds in numerical simulations. Thus, the path integral
approach may well provide a deeper explanation of the
power of effective equations. While such a path integral
analysis is yet to be carried out in detail in the anisotropic
case, because of the situation in the simpler cases it is of
interest to find analogous effective equations and study
their implications.

This task was carried out already by Chiou and
Vandersloot in Appendix C of [37]. We will summarize
the relevant results and briefly comment on the general
picture that emerges.

Without loss of generality, we can restrict ourselves to
the positive octant. Then the effective Hamiltonian con-
straint is given simply by the direct classical analog of
(3.14):

1
2p

2
ðTÞ þ Ceffgrav ¼ 0; (4.4)

where

Ceffgrav ¼ � p1p2p3

8�G�2�
½sin ��1c1 sin ��2c2 þ sin ��2c2 sin ��3c3

þ sin ��3c3 sin ��1c1�: (4.5)

Since sinx is bounded by 1 for all x, these equations
immediately imply that the matter density, �matt ¼
p2
ðTÞ=2V

2 � p2
ðTÞ=2p1p2p3, can never become greater

than the critical density �crit � 0:41�Pl, first found in the
isotropic case [10–12,16,18]. Since � becomes infinite at
the big-bang singularity in the classical evolution, there is a
precise sense in which the singularity is resolved in the
effective theory.
Effective equations are obtained via Poisson brackets as

in Sec. II but using (4.4) in place of the classical
Hamiltonian constraint. This gives, for example,

dp1

d�
¼ p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

pffiffiffiffi
�

p
�‘Pl

cosð ��1c1Þðsin ��2c2 þ sin ��3c3Þ;
(4.6)

and

dc1
d�

¼ � p2p3

��‘2Pl

�
sin ��1c1 sin ��2c2 þ sin ��1c1 sin ��3c3

þ sin ��2c2 sin ��3c3

þ ��1c1
2

cos ��1c1ðsin ��2c2 þ sin ��3c3Þ

� ��2c2
2

cos ��2c2ðsin ��1c1 þ sin ��3c3Þ

� ��3c3
2

cos ��3c3ðsin ��1c1 þ sin ��2c2Þ
�
: (4.7)

Equations for p2, c2 and p3, c3 are obtained by cyclic
permutations. These effective equations include ‘‘leading
order quantum corrections’’ to the classical evolution equa-
tions (2.13) and (2.14). In any solution, these corrections
become negligible in the distant past and in the distant
future. As we noted in Sec. II, the shear � defined in
Eq. (2.21) is a constant of motion in the classical theory.
This is no longer the case in the effective theory. However,
one can show that it remains finite throughout the evolution
and becomes approximately constant in the low curvature
region both in the distant past and in the distant future.
Furthermore, its value in the distant future is the same as
that in the distant past along any effective trajectory in the
phase space.
Vandersloot (personal communication) has also carried

out numerical integration of these equations. In the iso-
tropic case each effective trajectory undergoes a quantum
bounce when the matter density �matt achieves a critical
value �crit � 0:41�Pl. As one might expect, now the situ-
ation is more complicated because of the additional de-
grees of freedom. First, there are now several distinct
‘‘bounces.’’ More precisely, in addition to �matt (or the
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scalar curvature), we now have to keep track of the three
Hubble rates Hi which directly control the Weyl curvature.
In the backward evolution toward the classical big bang,
Einstein’s equations approximate the effective equations
extremely well until the density of one of the Hi enters the
Planck regime. Then the quantum corrections start rising
quickly. Their net effect is to dilute the quantity in ques-
tion. Once the quantity exits the Planck regime as a result
of this dilution, quantum geometry effects again become
negligible. Thus, as in the isotropic case, one avoids the
ultraviolet-infrared tension [21] because the quantum ge-
ometry effects are extremely strong in the Planck regime
but die off extremely quickly as the system exits this
regime. Secondly, the volume or the density bounce occurs
when the matter density is lower than �crit. This is not
surprising because what matters is the total energy density
and now there is also a contribution from gravitational
waves. Finally, although there are distinct bounces for
density (or scalar curvature) and the Hi (or the Weyl
curvature invariants), they all occur near each other in
the relational time T.

There are indications that the general scenario provided
by effective equations captures the qualitative features of
the full quantum evolution. However, the arguments are not
conclusive. For conclusive evidence for (or against) this
picture, one needs numerical simulations [41] of the exact
quantum equations of Sec. III D, or a detailed, path integral
treatment of the Bianchi I models along the lines of [58].

C. Relation to the Wheeler-DeWitt dynamics

Quantum dynamics of LQC is governed by a differ-
ence—rather than a differential—equation because of the
quantum geometry effects. However, we will now show
that, as in the isotropic case [10,11,16], the LQC quantum
dynamics is well approximated by the WDW differential
equation away from the Planck regime where quantum
geometry effects become negligible.
In the WDW theory the directional scale factors and

hence the three 	i can assume any real value and it is
simpler to work with the three 	i rather than with 	1, 	2,
and v ¼ 2	1	2	3. Let us therefore set �ð	1; 	2; 	3;TÞ ¼
�ð	1; 	2; v;TÞ and assume that � admits a smooth exten-
sion to all real values of 	i. The idea is to pair various terms
in Eqs. (3.36) and (3.37) in such a way so that two of the
three arguments of � are the same. For example, one such
pair is

�

�
vþ 4

vþ 2

 	1;

vþ 2

v

 	2; 	3;T

�
and

�

�
v

vþ 2

 	1;

vþ 2

v

 	2; 	3;T

�
: (4.8)

Next, let us define v0 ¼ vþ 2 and 	0
2 ¼ v0	2=ðv0 � 2Þ so

that we have

ffiffiffiffiffiffiffiffiffiffiffiffi
vþ 4

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0 þ 2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
	1 þ 1

	0
2	3

�
	0
2	3

s
: (4.9)

Ignoring the common prefactors in Eqs. (3.36) and (3.37),
the two paired terms in Eq. (4.8) can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0 þ 2

p
�

�
	1 þ 1

	0
2	3

; 	0
2; 	3;T

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0 � 2

p
�

�
	1 � 1

	0
2	3

; 	0
2; 	3;T

�
¼ 2

	0
2	3

@

@	1

ffiffiffiffiffi
v0p
�ð	1; 	

0
2; 	3;TÞ þO

��
1

	0
2	3

�
n @n

@	n
1

ffiffiffiffiffi
v0p
�

�
¼ 4	1

v0
@

@	1

ffiffiffiffiffi
v0p
�ð	1; 	

0
2; 	3;TÞ þO

��
1

	0
2	3

�
n @

@	n
1

ffiffiffiffiffi
v0p
�

�
;

(4.10)

where n > 1. [Notice that the v0 in the denominator in front of the partial derivative will cancel the vþ 2 prefactor in
Eq. (3.35).] One can suitably pair all terms in (3.36) and (3.37) and express them as differential operators with corrections
which are small for large values of 	i. Let us ignore these corrections—i.e., assume that the ð1=	i	jÞn@nk

ffiffiffi
v

p
� is negligible

for n > 1 because� is slowly varying and we are in the low density, large scale-factor regime. Then we find that the LQC
Hamiltonian constraint (3.35) reduces to a rather simple differential equation:

@2T�ð	1; 	2; 	3;TÞ ¼ 8�Gffiffiffi
v

p
�
	1

@

@	1

	2

@

@	2

þ 	1

@

@	1

	3

@

@	3

þ 	2

@

@	2

	1

@

@	1

þ 	2

@

@	2

	3

@

@	3

þ 	3

@

@	3

	1

@

@	1

þ 	3

@

@	3

	2

@

@	2

�
ð ffiffiffi

v
p

�ð	1; 	2; 	3;TÞÞ: (4.11)

This equation can be further simplified by introducing 
i ¼ log	i and 	 ¼ ffiffiffi
v

p
�. The result is

@2T	ð
1; 
2; 
3;TÞ ¼ 16�G

�
@2

@
1@
2

þ @2

@
1@
3

þ @2

@
2@
3

�
	ð
1; 
2; 
3;TÞ; (4.12)
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where v is now given by 2 expðP 
iÞ. This is precisely the
equation we would have obtained if we had started from
the classical Hamiltonian constraint, used the Schrödinger
quantization and the ‘‘covariant factor ordering’’ of the
constraint as in the WDW theory. Thus, the LQC
Hamiltonian constraint reduces to the WDW equation
under the assumption that� is slowly varying in the sense
that ð1=	i	jÞn@nk

ffiffiffi
v

p
� can be neglected for n > 1 relative

to the term for n ¼ 1. Since ð	i	jÞ2 is essentially the area
of the i-j face of the fiducial cell V in Planck units, this
should be an excellent approximation well away from the
Planck regime. However, in the Planck regime itself the
terms which are neglected in the LQC dynamics are com-
parable to the terms which are kept whence, as in the
isotropic case, the WDW evolution completely fails to
approximate the LQC dynamics.

V. DISCUSSION

In this paper we extended the improved LQC dynamics
of Friedmann space-times [10] to obtain a coherent quan-
tum theory of Bianchi I models. As in the isotropic case,
we restricted the matter source to be a massless scalar field
since it serves as a viable relational time parameter
(a la Leibniz) both in the classical and quantum theories.
However, it is rather straightforward to accommodate addi-
tional matter fields in this framework.

To incorporate the Bianchi I model, we had to overcome
several significant obstacles. First, using discrete symme-
tries we showed that to specify dynamics it suffices to
focus just on the positive octant. This simplified our task
considerably. Second, in Sec. III B we introduced a more
precise correspondence between LQG and LQC and used it
to fix the parameters ��i that determine the elementary
plaquettes, holonomies around which define the curvature

operator F̂ab
k. This procedure led us to the expressions

��2
1 ¼ ðjp1j�‘2PlÞ=jp2p3j, etc. They reduce to the expres-

sion ��2 ¼ ð�‘2PlÞ=jpj of the isotropic models [10,16,18].

But even there, the current reasoning has the advantage that
it uses only quantum geometry, avoiding reference to
classical areas even in the intermediate steps. However,
because of this rather complicated dependence of ��i on pi,
the task of defining operators sin ��ici seems hopelessly
difficult at first. Indeed, this was the key reason why the
earlier treatments [36,37,40] took a shortcut and simply set
��2
i ¼ ð�‘2PlÞ=jpij by appealing to the relation ��2 ¼

ð�‘2PlÞ=jpj in the isotropic case. With this choice, quanti-

zation of the Hamiltonian constraint became straightfor-
ward and the final Bianchi I quantum theory resembled
three copies of that of the Friedmann model. However, this
result had the physically unacceptable consequence that
significant departures from general relativity could occur
in tame situations. By a nontrivial extension of the geo-
metrical reasoning used in the isotropic case, in Sec. III C
we were able to define the operators sin ��ici for our ex-
pressions of ��i. However, the structure of the resulting

Hamiltonian constraint turned out to be rather opaque. To
simplify its form, in Sec. III D we introduced volume as
one of the arguments of the wave functions. The action of
the gravitational part of the Hamiltonian constraint then
became transparent: it turned out to be a difference opera-
tor where the multiplicative coefficients depend only on
volume and the change in the arguments of the wave
functions also depends only on volume; individual anisot-
ropies do not feature in the action of the operator [see
(3.35), (3.36), and (3.37)]. This simplification enabled us
to show that the sectorH grav

reg of quantum states which have

no support on classically singular configurations is pre-
served by quantum dynamics. In this precise sense the big-
bang singularity is resolved. Furthermore, this quantum
dynamics is free from the physical drawbacks of the older
scheme mentioned above.
In Sec. IV we explored three consequences of quantum

dynamics in some detail. First, we showed that there is a

projection map P̂: H Gen ! H Res from the Hilbert space
of the more general Bianchi I model to that of the more
restricted Friedmann model which maps the Bianchi I
quantum constraint exactly to the Friedmann quantum
constraint. This is possible because, as noted above, it is
just the volume—rather than the anisotropies—that govern
the action of the Bianchi I quantum constraint. This result
is of considerable interest because, in view of the BKL
conjecture, it suggests that near generic spacelike singu-
larities the LQC of Friedmann models may capture quali-
tative features of the full, LQG dynamics of the isotropic,
homogeneous degree of freedom. In Sec. IVB we briefly
recalled the effective equations of Chiou and Vandersloot
(see Appendix C of [37]). These equations provide intu-
ition for the rich structure of quantum bounces in the
Bianchi I model. Their analysis suggests that classical
general relativity is an excellent approximation away
from the Planck regime. However, in the Planck regime
quantum geometry effects rise steeply and forcefully
counter the tendency of the classical equations to drive
the matter density, the Ricci scalar, and Weyl invariants to
infinity. (In particular, as in the isotropic case, the matter
density is again bounded above by �crit � 0:41�Pl.) Thus
the quantum geometry effects dilute these quantities and,
once the quantity exits the Planck regime, classical general
relativity again becomes an excellent approximation. In
Sec. IVC we showed that, as in the isotropic case
[10,11,16], there is a precise sense in which LQC dynamics
is well approximated by that of the WDW theory once
quantum geometry effects become negligible.
The rather complicated dependence of ��i on pi is also

necessary to remove a fundamental conceptual limitation
of the older treatments of the Bianchi I model. Recall that,
because we have homogeneity and the spatial topology is
noncompact, we have to introduce a fiducial cell V to
construct a Lagrangian or a Hamiltonian framework. Of
course, the final physical results must be independent of
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this choice. At first this seems like an innocuous require-
ment but it turns out to be rather powerful. We will now
recall from [40] the argument that this condition is violated
with the simpler choice ��2

i ¼ ð�‘2PlÞ=jpij but respected by
the more complicated choice we were led to from LQG.

For definiteness, let us fix a fiducial metric oqab and

denote by Li the lengths of the edges of the fiducial cell
V . Suppose we were to use a different cell V 0 whose
edges have lengths L0

i ¼ �iLi (no summation over i).
Since the basic canonical fields Ai

a and Ea
i are insensitive

to the choice of the cell, Eq. (2.3) implies that the labels ci
and pi we used to characterize them change to c01 ¼ �1c1,
p0
1 ¼ �2�3p1, etc. The gravitational part of the classical

Hamiltonian constraint (2.12) is just rescaled by an overall
factor ð�1�2�3Þ2 and the inverse symplectic structure is
rescaled by ð�1�2�3Þ�1. Hence the Hamiltonian vector
field is rescaled by ð�1�2�3Þ, exactly as it should because
the lapse is rescaled by the same factor. Thus, as one would
expect, the classical Hamiltonian flow is insensitive to the
change V ! V 0. What is the situation in the quantum
theory? Physical states belong to the kernel of the

Hamiltonian constraint operator ĈH whence the two quan-

tum theories will carry the same physics only if ĈH is
changed at most by an overall rescaling. Analysis is a bit

more involved than in the classical case because Ĉgrav
involves factors of sin ��ici. Now, under V ! V 0, our ��i

transform as ��1 ! ��0
1 ¼ ��1

1 ��1, whence ��0
1c

0
1 ¼ ��1c1,

etc., and the Hamiltonian constraint (3.14) is rescaled by an
overall multiplicative factor ð�1�2�3Þ2 just as in the clas-
sical theory. What happens if we set ��2

i ¼ �‘2Pl=jpij as in
[36,37,40]? Then, we are led to ��0

1c
0
1 ¼ ð�1=

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�3

p Þ ��1c1
etc. Since the constraint (3.14) is a sum of terms of the type
p1p2jp3j sin ��1c1 sin ��2c2 it has a rather uncontrolled
transformation property and is not simply rescaled by an
overall factor. It is then not surprising that, in the Planck
regime, the dynamical predictions of the resulting quantum
theory (as well as of the effective theory) depend on the
choice of the elementary cell. It is rather remarkable that
the more complicated form of ��i that we are led to from
LQG kinematics has exactly the right form to make quan-
tum dynamics insensitive to the choice of the fiducial cell
V . As mentioned above, it also ensures that the predictions
of quantum theory are free of drawbacks of the earlier
treatments [36], such as the correlation between the bounce
and directional densities which do not have an invariant
significance.

From physical considerations, as in the isotropic case, it
would be most interesting to start at a ‘‘late time’’ with
states that are sharply peaked at a classical solution in
which the three scale factors assume values for which the
curvature is tame and pðTÞ is very large compared to @ in

classical units c ¼ G ¼ 1. One would then evolve these
states backward and forward in the internal time T. As we
just discussed, analytical considerations show that, since
the initial wave function is in H grav

reg , it will continue to be

in that subspace; there is no danger that the expectation
values of curvature, anisotropies, or density would diverge.
But several important questions remain. Are there quantum
bounces with a pre-big-bang branch again corresponding
to a large, classical universe in the distant past? Is there a
clear distinction between evolutions of data in which there
are significant initial anisotropies and data which represent
only perturbations on isotropic situations? Even in the
second case, do anisotropies grow (or decay) following
predictions of the classical theory or are there noticeable
deviations because of accumulations of quantum effects
over large time periods? Numerical simulations of the LQC
equations are essential to provide confidence in (or rule
out) the general scenario suggested by effective equations
and to supply us with detailed Planck scale physics.
Finally, let us return to full LQG. At the present stage of

development, there appears to be considerable freedom in
the definition of the quantum Hamiltonian constraint in the
full theory. Furthermore, our current understanding of the
physical implications of these choices is quite limited.
Already in the isotropic models, the improved dynamics
scheme provided some useful lessons: it brought out the
fact that these choices can be nontrivially narrowed down
by carefully analyzing conceptual issues (e.g., requiring
that the physical results should be independent of auxiliary
structures introduced in the intermediate steps) and by
working out the physical consequences of the theory in
detail (to ensure that the quantum geometry effects are not
dominant in the low energy regime). Rather innocuous
choices—such as those made in arriving at the older
�o scheme—can lead to unacceptable consequences on
both these fronts [12]. The Bianchi I analysis has sharp-
ened these lessons considerably. The fact that the kine-
matical interplay between LQG and LQC has a deep
impact on the viability of quantum dynamics is especially
revealing. A quantum analysis of inhomogeneous pertur-
bations around Bianchi I backgrounds is therefore a prom-
ising direction for understanding the physical implications
of the choices that have to be made in the definition of the
Hamiltonian constraint in full LQG. Such an analysis is
likely to narrow down choices and lead us to viable quan-
tization schemes in LQG that lead to a good semiclassical
behavior.
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APPENDIX: PARITY SYMMETRIES

In this Appendix we recall and extend results on parity
symmetries obtained in [46].

In nongravitational physics, parity transformations are
normally taken to be discrete diffeomorphisms xi ! �xi
in the physical space which are isometries of the flat 3-
metric thereon. In the phase space formulation of general
relativity, we do not have a flat metric—or indeed, any
fixed metric. However, if the dynamical variables have
internal indices—such as the triads and connections used
in LQG—we can use the fact that the internal space I is a
vector space equipped with a flat metric qij to define parity

operations on the internal indices. Associated with any unit
internal vector �I, there is a parity operator �� which

reflects the internal vectors in the 2-plane orthogonal to
�. This operation induces a natural action on triads eai ,
the connections Ai

a, and the conjugate momenta
Pa
i ¼: ð1=8�G�ÞEa

i (since they are internal vectors or
covectors). It turns out that eai are proper internal covectors
while Ai

a and P
a
i are pseudo-internal vectors and covectors,

respectively. These geometrical considerations show that
the Barbero-Immirzi parameter � must change sign under
any one of these parity operations, i.e., if it has the value
j�j for, say, positively oriented triads, it should have the
value �j�j for negatively oriented triads. Its value on
degenerate triads is ambiguous, whence on the degenerate
sector we cannot unambiguously recover the triads eai from
the momenta Pa

i . If one were to make � a dynamical field
[60–62], it follows that the field should be a pseudoscalar
under internal parity transformations; geometrical consid-
erations involving torsion have led to the same conclusion
in [62]. (For details, see [63].)

In the diagonal Bianchi I model, we can restrict our-
selves just to three parity operations�i. Under their action,
the canonical variables ci, pi transform as follows:

�1ðc1; c2; c3Þ ¼ ðc1;�c2;�c3Þ;
�1ðp1; p2; p3Þ ¼ ð�p1; p2; p3Þ;

(A1)

and the action of �2, �3 is given by cyclic permutations.
Under any of these maps�i, the Hamiltonian (2.12) is left
invariant. This is just as one would expect because �i are
simply large gauge transformations of the theory under
which the physical metric qab and the extrinsic curvature
Kab do not change. It is clear from the action (A1) that if
one knows the dynamical trajectories on the octant pi � 0
of the phase space, then dynamical trajectories on any
other octant can be obtained just by applying a suitable
(combination of)�i. Therefore, in the classical theory one
can restrict one’s attention just to the positive octant.
Let us turn to the quantum theory. We now have three

operators �̂i. Their action on states is given by

�̂ 1�ð	1; 	2; 	3Þ ¼ �ð�	1; 	2	3Þ; (A2)

etc. What is the induced action on operators? Since

�̂ 1	1�̂1�ð	1; 	2; 	3Þ ¼ �̂1ð	1�ð�	1; 	2; 	3ÞÞ
¼ �	1�ð	1; 	2; 	3Þ; (A3)

we have

�̂ 1	1�̂1 ¼ �	1: (A4)

The Hamiltonian constraint operator is given by Eqs. (3.20)
and (3.21). To calculate its transformation property under
parity maps, in addition to (A4), we also need the trans-
formation property of operators sin ��ici. An inspection of
Eq. (3.21) shows that, in view of the Bianchi I symmetries,

it is sufficient to calculate �̂i sin ��1c1�̂i. We have

�̂ 1 sin ��1c1�̂1�ð	1; 	2; 	3Þ ¼ 1

2i
�̂1

�
�

�
�	1 � sgnð�	1Þ

	2	3

; 	2; 	3

�
��

�
�	1 þ sgnð�	1Þ

	2	3

; 	2; 	3

��
¼ 1

2i

�
�

�
	1 � sgnð	1Þ

	2	3

; 	2; 	3

�
��

�
	1 þ sgnð	1Þ

	2	3

; 	2; 	3

��
¼ sin ��1c1�ð	1; 	2; 	3Þ;

(A5)

whence

�̂ 1 sin ��1c1�̂1 ¼ sin ��1c1: (A6)

An identical calculation shows that

�̂ 2 sin ��1c1�̂2�ð	1; 	2; 	3Þ ¼ 1

2i
�̂2

�
�

�
	1 � sgnð	1Þ

ð�	2Þ	3

;�	2; 	3

�
��

�
	1 þ sgnð	1Þ

ð�	2Þ	3

;�	2; 	3

��
¼ 1

2i

�
�

�
	1 þ sgnð	1Þ

	2	3

; 	2; 	3

�
��

�
	1 � sgnð	1Þ

	2	3

; 	2; 	3

��
¼ � sin ��1c1�ð	1; 	2; 	3Þ;

(A7)
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and similarly for �̂3. Therefore, we have

�̂2 sin ��1c1�̂2 ¼ � sin ��1c1; and

�̂3 sin ��1c1�̂3 ¼ � sin ��1c1:
(A8)

These transformation properties of sin ��1c1 under �̂i sim-
ply mirror the transformation properties of c1 under the
three parity operations �i in the classical theory. [Note
that, because of the absolute value signs in the expressions
(3.9), ��i do not change under any of the parity maps.]

From Eqs. (3.20) and (3.21) it now immediately follows
that the gravitational part of the Hamiltonian constraint is

left invariant under �̂i. Since p̂
2
ðTÞ is manifestly invariant,

we have

�̂ iĈH�̂i ¼ ĈH (A9)

just as in the classical theory. Because of this invariance
property, given any state � 2 H grav

kin , the restriction to the

positive octant of its image under Ĉgrav determines its

image everywhere on H grav
kin . As we saw in Sec. III D,

this property simplifies the task of finding the explicit
action of the Hamiltonian constraint considerably.
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