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We study cosmologies in modified theories of gravity considering Lagrangian density fðRÞ which is a

polynomial function of scalar curvature ðRÞ in the Einstein-Hilbert action in vacuum. The field equation

obtained from the modified action corresponding to a Robertson-Walker metric is highly nonlinear and not

simple enough to obtain analytic solution. Consequently we adopt a numerical technique to study the

evolution of the Friedmann-Robertson-Walker universe. A number of evolutionary phases of the Universe

including the present accelerating phase are found to exist in the higher derivative theories of gravity. The

cosmological solutions obtained here are new and interesting. We study a modified theory of gravity as a

toy model to explore the past and the present, and to predict the future evolution. It is found that all the

models analyzed here can reproduce the current accelerating phase of expansion of the Universe. The

duration of the present accelerating phase is found to depend on the coupling constants of the gravitational

action. The physical importance of the coupling parameters considered in the action are also discussed.
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I. INTRODUCTION

The last couple of years witnessed a modest progress in
our understanding of the observed universe because of the
advent of new cosmological precision tests, capable of
providing physics at very large redshifts. The luminosity
curve of type Ia supernovae [1], the large scale structure
[2], and the anisotropy of the cosmic microwave back-
ground radiation [3] favor a spatially flat universe. The
recent decade is witnessing a paradigm shift in cosmology
from speculative to experimental science due to a large
number of observational inputs. It has been predicted that
the present universe is passing through a phase of the
cosmic acceleration. It is also believed that the Universe
might have emerged from an inflationary phase in the past.
A large number of cosmological models were proposed in
Einstein’s gravity with an early inflationary scenario in the
last three decades which works well. However, the recent
prediction that the present universe is passing through an
accelerated phase of expansion is interesting and a proper
cause is yet to be understood. It is thought that the cause of
the present acceleration of the Universe might be due to
dark energy in the Universe. However, the concept of dark
energy in Einstein’s gravity with normal matter or fields
cannot be implemented. Consequently it is a challenging
job in the theoretical physics to frame a theory for cosmo-
logical evolution which could address the origin of dark
energy also. It is known from the cosmological observa-
tions that the dark energy content of the Universe is about
70% of the total energy budget of the Universe. As men-
tioned earlier, the usual fields available in the standard
model of the particle physics are not enough to account
for the huge dark energy reservoir in the Universe. A

modification to the Einstein’s field equation either in the
gravitational or in the matter sector, therefore, is essential
to accommodate the present cosmological observations.
The issue of dark energy has been taken up in a gravita-
tional theory in the presence of a cosmological constant
[4,5]. However, the vacuum energy density in such a theory
remains constant in the course of cosmic evolution and it is
also true that there are known contributions into vacuum
energy which are several orders of magnitude greater than
the allowed cosmological values. These observations led us
to look for an alternative model or a new physics [6–8]. It
has been proposed recently that gravity itself, if properly
modified, could account for the recent cosmic acceleration
[9,10]. The standard Einstein’s gravity may be modified at
low curvature by including the terms those are important
precisely at low curvature. The simplest possibility is to
consider a 1

R term in the Einstein-Hilbert action (it may

originate from M theory) [11]. Carroll et al. [12] also
suggested that such a theory may be suitable to derive
cosmological models with late accelerating phase.
Although a theory with 1

R term in Einstein’s gravity ac-

counts satisfactorily the present acceleration of the
Universe, it is realized that inclusion of such terms in the
Einstein-Hilbert action leads to instabilities [13].
Subsequently, it has been shown that further addition of
an R2 term [14] or lnðRÞ term [15] to Einstein’s gravita-
tional action leads to a consistent modified theory of
gravity which may satisfactorily pass solar system tests,
and be free from an instability problem. It is known that the
modified gravity with a positive power of the curvature
scalar (namely, R2 term) [15–18] in the Einstein-Hilbert
action admits early inflation. The modified gravity with
negative powers of the curvature in the Einstein-Hilbert
action has recently become popular as it might effectively
behave as a dark energy candidate. Consequently, the
theory might satisfactorily describe the recent cosmic ac-
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celeration [9–11]. So it is reasonable to explore a theory
which could accommodate an inflationary scenario of the
early universe and an accelerating phase of expansion at
late time followed by a matter dominated phase. As a
result, modified theory of gravity which contains both
positive and negative powers of the curvature scalar (R),
namely, fðRÞ ¼ Rþ �Rm þ � 1

Rn where � and� represent

coupling constants with arbitrary constants m and n are
considered for exploring cosmological models. It is known
that the term Rm dominates and it permits power law
inflation if 1<m � 2 in the large curvature limit. It may
be mentioned here that an inflationary scenario driven by a
vacuum trace anomaly, which corresponds to m ¼ 2 and
� ¼ 0, was first obtained by Starobinsky [17] for describ-
ing early inflation. Recently, in the low curvature limit, a
number of fðRÞ models have been proposed in order to
accommodate a universe with late acceleration using a
modified gravity, namely, fðRÞ ¼ R� �

Rn with n > 0

[11,12]. In the metric approach, it was shown that the
model is not suitable because it does not permit a matter
era [19]. Recently, it is known that modified gravity,
namely, fðRÞ ¼ Rþ �Rm is also not cosmologically via-
ble because it does not permit a consistent scenario ac-
commodating a matter dominated era at late time. It is
found that instead of matter era, one ends up with a
radiation era [aðtÞ � ffiffi

t
p

]. On the other hand, Rm model

permits a matter dominated universe [aðtÞ � t2=3] but it
fails to connect to a late accelerating phase. In Ref. [19], it
was shown that the models of the type where Lagrangian
density, fðRÞ ¼ R� �

Rn with n > 0 and fðRÞ ¼ �Rm with

m � 1 are not viable for a realistic cosmological scenario
as they do not permit matter epoch although late accelera-
tion can be realized [20]. Recently, modified gravity with
power law in R, i.e., fðRÞ gravity, was examined, and it was
found that a large class of models including Rm model does
not permit a matter dominated universe. Capozziello et al.
[21] criticized the claim made in Ref. [19]. Tsujikawa [22]
derived an observational signature of fðRÞ dark energy
models that satisfy cosmological and local gravity con-
straints fairly well. The modified fðRÞ gravity is found to
be consistent with realistic cosmology in some cases [23].
However, no definite physical criteria are known so far to
select a particular kind of theory capable of matching the
data at all scales. However, modified gravity, namely,
fðRÞ � eR, or logR may be useful to build a viable cos-
mological model as they permit a matter dominated phase
before an accelerating phase of expansion. The motivation
of the paper is to obtain cosmological solutions consider-
ing nonlinear terms in R in the Einstein-Hilbert action. We
explore different phases of expansion of the Universe from
early era to the present and would like to understand the
future evolution in the framework of higher derivative
gravity. The corresponding field equation obtained from
the above gravitational action is a fourth order differential
equation of the scale factor of the Universe [aðtÞ]. As the

field equation is highly nonlinear and not simple enough to
obtain an analytic solution, we adopt here a numerical
technique to solve it. Our approach here is similar to that
adopted earlier in Ref. [24] which was recently employed
by two of us in Ref. [25]. In this approach the field
equations are first expressed in terms of two functions,
namely, the deceleration parameter (q) and the Hubble
parameter (H) and its derivatives, respectively, which are
then solved numerically.
The plan of the paper is as follows: in Sec. II, we set up

the relevant field equations in the modified theory of
gravity. In Sec. III, cosmological evolutions are predicted
in different models depending upon the coupling parame-
ters of the action adopting numerical technique. Finally in
Sec. IV, we summarize the results obtained.

II. THE MODEL

We consider a gravitational action with nonlinear terms
in the scalar curvature (R) which is given by

I ¼ �
Z �

1
2fðRÞ þ Lm

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where 8�G ¼ c ¼ 1, g is the determinant of the four
dimensional metric, and R is the scalar curvature. Here
fðRÞ is a function of R and its higher power and Lm

represents the matter Lagrangian. Variation of the action
(1) with respect to the metric yields

G�� ¼ R�� � 1
2Rg�� ¼ Tc

�� þ TM
��; (2)

where TM
�� represents the contribution from matter fields

scaled by a factor of 1
f0ðRÞ and Tc

�� denotes the contribution

that originates from the curvature to the effective stress
energy tensor. Here, Tc

�� is actually given by

Tc
�� ¼ 1

f0ðRÞ
�
1

2
g��ðfðRÞ � Rf0ðRÞÞ

þ f0ðRÞ;��ðg��g�� � g��g��Þ
�
; (3)

where prime represents the derivative with respect to the
Ricci scalar (R). We are interested to study the role of the
geometry alone in driving cosmological evolution in this
paper, so we set Lm ¼ 0 which leads to TM

�� ¼ 0 in the

subsequent sections. The flat Robertson-Walker spacetime
is given by

ds2 ¼ dt2 � a2ðtÞ½dr2 þ r2ðd�2 þ sin2�d�2Þ�; (4)

where aðtÞ is the scale factor of the Universe. Using the
metric (4) in the field Eq. (2) (see also Ref. [24]) we obtain

3
_a2

a2
¼ 1

f0

�
1

2
ðf� Rf0Þ � 3

_a

a
_Rf00

�
; (5)
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2
€a

a
þ _a2

a2
¼ � 1

f0

�
2
_a

a
_Rf00 þ €Rf00 þ _R2f000 � 1

2
ðf� Rf0Þ

�
;

(6)

where an over dot indicates derivative with respect to the
cosmic time t. The scalar curvature is given by

R ¼ �6

�
€a

a
þ _a2

a2

�
: (7)

The Ricci scalar R involves a second order time deriva-
tive of the scale factor a. As the Eq. (6) contains €R terms,
one actually has a system of fourth order differential
equations of scale factor. In the next sections we consider
modified gravity with fðRÞ of the forms: (A) fðRÞ ¼
Rþ �R2 � �4

R , (B) fðRÞ ¼ Rþ b lnðRÞ, and (C) fðRÞ ¼
Rþme½�nR� to explore cosmic evolution. In the above, �,

�, b,m, and n are constants and� has a dimension of R1=2

[26], i.e., that of ðtimeÞ�1, � has a dimension of R�1, i.e.,
ðtimeÞ2.

III. COSMOLOGICAL SOLUTIONS

Using Eqs. (5) and (6) we obtain

_H ¼ 1

2f0
½ðH _R� €RÞf00 � _R2f000�; (8)

whereH ¼ _a
a is the Hubble parameter. As both R andH are

functions of a and its derivatives, Eq. (8) is highly non-
linear and a differential equation of fourth order in scale
factor [aðtÞ]. It is not simple to determine the analytic
solution of the scale factor of the Universe with cosmic
time in closed functional form. Hence we adopt a numeri-
cal technique to study the behavior of the cosmological
models based on the parameters of the modified gravita-
tional action. For simplicity we consider fðRÞ of three
different forms in the next sections.

Case A: In this case we consider modified gravitational
action where fðRÞ is given by

fðRÞ ¼ Rþ �R2 ��4

R
: (9)

The corresponding field Eq. (8) becomes

_H¼ 1

1þ 2�Rþ �4

R2

�
�4

R2

� €R
R
�H _R

R
� 3

_R2

R2

�
þ�ðH _R� €RÞ

�
:

(10)

The above equation is highly nonlinear; however, one can
obtain asymptotic solutions corresponding to different
epoch which are

(i) an exponential expansion aðtÞ � eHot is permitted
when q ¼ �1 in the early era,

(ii) an accelerating universe with aðtÞ � t2 at a later
epoch admitting q ¼ � 1

2 . The variation of q with

aðtÞ in linear evolutionary and exponential phase are
shown in Figs. 1 and 2 respectively.

Now using the deceleration parameter (q)

q ¼ � €aa

_a2
¼ � _H

H2
� 1; (11)

one can study the evolution of the Universe numerically.
Since, q is a function ofH and its derivative, we can rewrite
the Eq. (10) in terms of a second order differential equation
in q and H to begin with. Since q contains terms with €a,
one can replace terms with the fourth order derivative of
the scale factor in Eq. (10) by €q½H�. The functions q andH
are, however, not independent. The time derivatives in the
above equations may now be replaced by the derivatives
with respect to H using Eq. (11). We get the following
nonlinear differential equation

q00 þ uðq;HÞq02 þ vðq;HÞq0 þ wðq;HÞ ¼ 0; (12)

where

0 2 4 6 8 10
D
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q

FIG. 1. The plot of q vs aðtÞ in the unit of lnðtÞ.
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FIG. 2. The plot of H with t for different D.

ACCELERATING UNIVERSE IN MODIFIED THEORIES OF . . . PHYSICAL REVIEW D 79, 083534 (2009)

083534-3



uðq;HÞ ¼ � ð2qþ 4Þ�4 þ 216�ðq� 1Þ4H6

ðq2 � 1Þ½�4 � 216�ðq� 1Þ3H6� ; vðq;HÞ ¼ � ð4qþ 7Þ�4 þ 216�ð8qþ 5Þðq� 1Þ3H6

ðqþ 1ÞH½�4 � 216�ðq� 1Þ3H6� ;

wðq;HÞ ¼ ðq� 1Þ½3�4ð2qþ 1Þ þ 1296�ðqþ 1Þðq� 1Þ3H6 � 36ðq� 1Þ2H4�
ðqþ 1ÞH2½�4 � 216�ðq� 1Þ3H6� ;

where the prime indicates a differentiation with respect to
H and the functions u, v, and w depend on � and �4. The
above equation, although highly nonlinear, is a second
order differential equation in q. Here both q and H are
time dependent and cannot be solved exactly to obtain a
known functional form. We solve it numerically in the next
section following the approach adopted in Ref. [24]. As 1

H
is a measure of the age of the Universe and H is a mono-
tonically decreasing function of the cosmic time, Eq. (12)
may be used to qualitatively study the evolution of the
Universe in terms of q. Since Eq. (12) is a second order
differential equation, to solve it numerically we assume
two initial conditions (here, q½H� and q0½H�), for a given
value ofH. We choose units so thatHo, the present value of
H, is unity and pick up sets of values of q and q0 forH ¼ 1
(i.e. the present values) from the observationally consistent
region [5]. We plot q with H for different configuration of
the system. As the inverse ofH gives us an estimate for the
cosmic age, future evolution is understood from the region
H < 1 and the past from H > 1 in the ðq–HÞ plane. Since
the present universe is accelerating, we use a negative q at
the present epoch, H ¼ H0 ¼ 1 and the Universe has
entered into this q negative phase (i.e. acceleration) of
expansion, only in the recent past. The model may be
used to also predict the future course of the evolution of
the Universe. We note the following:

(i) For a given value of � and �, the variation of q with
H is shown in Fig. 3. We choose � ¼ 2, �4 ¼ 12. In
the graph time increases from right to left along the
horizontal H axis. The upper half of the H axis
represents decelerating phase and the lower half
represents the accelerating phase of the Universe. It

is evident that the Universe entered into the present
accelerating phase in the recent past, and the rate of
acceleration will increase further which will attain a
maximum, thereafter it decreases. There will be
slowing down of the cosmic acceleration leading to
an epoch when the Universe expands without accel-
eration (which is transient and occurs at H ¼ 0:375)
followed by another phase of expansion. In this case
the expansion of the Universe will be accelerating
once again. The Universe transits from decelerating
to accelerating phase at H ¼ 1:36. We note that, in
this case, the Universe remains in the accelerating
phase once it transits from the decelerating phase.

(ii) For a given set of values of � and � we plot q vs H
for different initial values of q0½1� with q½1� ¼
�0:05, when �4 ¼ 12 and � ¼ 2, and the curves
are shown in Fig. 4. It is evident that the Universe
entered into the accelerating phase in the recent past
followed by another phase of deceleration. The
duration for which the Universe transits from the
present accelerating phase depends on the initial
values of q0½1�, and the duration increases with
increasing initial values of q0½1�. We note the fol-
lowing: (i) for q0½1� ¼ 1 the Universe transits from
deceleration to acceleration at H ¼ 1:43 and accel-
eration to deceleration at H ¼ 0:587; (ii) as initial
value of q0 is increased, the critical point shifts
toward left, i.e. occurs at a later epoch.

(iii) We plot q vs H for different values of � using
q½1� ¼ �0:5, q0½1� ¼ 1:2, and �4 ¼ 12 which is
shown in Fig. 5. The figure shows how the nature of

0 0.5 1 1.5 2 2.5

H

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

q

FIG. 3. The plot of q with H for �4 ¼ 12 and � ¼ 2. Here we
choose the initial conditions as q½1� ¼ �0:5, q0½1� ¼ 1:655.

0.4 0.6 0.8 1 1.2 1.4
H

-0.6

-0.4

-0.2

0

0.2

0.4

q

q ' 1.2

q ' 1.5
q ' 1

FIG. 4. The plot of q with H for different initial conditions
q0½1� ¼ 1, q0½1� ¼ 1:2, q0½1� ¼ 1:5 with q½1� ¼ �0:5.
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the curves depend on the initial conditions and that
there will be another sign change of q in the near
future. It is evident that the Universe transits from
decelerated phase to accelerated phase only in the
recent past (H ¼ 1:4). The Universe may transit
again to a decelerating phase followed by another
accelerating phase if �> 0:815 otherwise it will be
always in the accelerating phase. However, the rate
of acceleration depends on the coupling constant �.
It is evident that as the values of � is increased the
corresponding duration of present accelerating
phase will get reduced, however, the late decelerat-
ing phase in future will be enhanced. The Universe
in the remote future once again might enter into an
accelerating phase as there will be one more sign
flip in q. The plot for � ¼ 0:815 is interesting as it
decides whether the Universe will have another
phase of acceleration or not.

(iv) The variation of q with H for different values of
coupling constant �4 is shown in Fig. 6 for � ¼ 2.

It is evident that if the inverse Ricci scalar term in
the action is absent, then it permits a universe which
transits from a decelerating phase to an accelerating
phase in the recent past (H ¼ 1:4), allowing a
further sign flip in q leading to a transition from
accelerating to decelerating phase only. However,
for �4 � 0, an interesting evolutionary behavior of
a universe with three sign flips of q leading to a
universe from accelerating to decelerating followed
by a phase decelerating to accelerating and in future
deceleration to acceleration might happen.
However, the rate of acceleration changes with �.
As �4 increases, the period of deceleration to an-
other acceleration in recent future will decrease and
finally the period vanishes at �4 ¼ 26:46.

Special Case: We consider here � ¼ 0, i.e., fðRÞ ¼ R�
�4

R . Equation (12) now takes the form

q00 � 2qþ 4

q2 � 1
q02 � ð4qþ 7Þ

ðqþ 1ÞH q0 � 3ðq� 1Þð2qþ 1Þ
ðqþ 1ÞH2

þ 36ðq� 1Þ3H2

�4ðqþ 1Þ ¼ 0: (13)

This case was considered earlier by Das et al. [24].
However, the equation [see Eq. (12) in Ref. [24] ] consid-
ered by them is not correct as some of the terms are
missing. Consequently the q vs H curve shown in Fig. 7
here is found to differ significantly allowing more phases
of expansion. We note that the Universe in the past may
have started from a constant decelerating phase then tran-
sits to an accelerating phase, thereafter once again because
of sign flip in q, the Universe may transit to a decelerating
phase. It has been shown for �4 ¼ 0:01 that in the future
the Universe may attain a constant decelerating phase and
thereafter there will be a sign flip of q once again. As�4 is
increased the corresponding duration of the present accel-
erating phase increases. For smaller values in � the accel-
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FIG. 6. The plot of q with H for different values of �4 (shown
by m4) with � ¼ 2 and choose the initial conditions as q½1� ¼
�0:5, q0½1� ¼ 1:2.
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FIG. 5. The plot of q with H for different values of � (a
represents �). Here we take �4 ¼ 12 and choose the initial
conditions as q½1� ¼ �0:5, q0½1� ¼ 1:2.
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values of �4 (shown by m4). Here we choose the initial con-
ditions as q½1� ¼ �0:5, q0½1� ¼ 1:2.
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erating phase becomes shorter. However, there are epoch
when q ¼ 1 is attained before and after the present phase
of acceleration. In all the cases the Universe will end up
with an acceleration having q ¼ �0:5. As �4 increases,
the time at which the Universe transits from deceleration to
acceleration occurs at an earlier time and the acceleration
to deceleration transition occurs at late time. The Universe
once again transits from deceleration to acceleration and
this will occur earlier as �4 is increased.

Case B: In this case we consider higher derivative theory
much discussed in recent times which has the form,
namely, fðRÞ ¼ Rþ b lnðRÞ, to look for a physically rele-
vant cosmological model. The relevant differential equa-
tion obtained from the field equation is given by

q00 � qþ 3

q2 � 1
q02 � 3

ðqþ 1ÞHq0 þ 2ðq� 1Þ2
ðqþ 1Þ

�
6

b
� 1

H2

�
¼ 0:

(14)

The above equation is highly nonlinear; consequently we
adopt a numerical technique to study the evolution of the
Universe. Here we look for the evolution for different
values of the coupling parameter b in the action. The
curves in Fig. 8 are plotted for different coupling constants
b which are interesting. We note that the Universe transits
from decelerating phase to an accelerating phase in the
recent past which will enter into decelerating phase once
again in future. For b < 0 the duration for accelerating
phase is found to be shorter than that for b > 0. However,
for b positive the duration of the accelerating phase will be
longer if b is smaller. In the case of negative b, the
Universe is found to land up at a maximum possible
acceleration at the present epoch, thereafter the rate of
acceleration will decrease and consequently transits to
decelerating phase once again. For b > 0, the maximum
rate of expansion will be achieved in near future.

Case C: In this case we consider gravitational action

with fðRÞ ¼ Rþme½�nR�. Consequently, using Eq. (8), we
obtain the following differential equation:

q00 þ 1� 6nðqþ 1ÞH2

qþ 1
q02 þ 8qþ 5� 24nðq2 � 1ÞH2

ðqþ 1ÞH q0

þ 2ðq� 1Þð3qþ 4Þ
ðqþ 1ÞH2

� 24nðq� 1Þ2

� 1

3n2mðqþ 1ÞH4
½enR � nm� ¼ 0: (15)

The equation is highly nonlinear; we adopt a numerical
technique to solve it as was done in earlier sections. We
note the following:
(i) The variation of q with H for different values of n is

shown in Fig. 9. It is evident that the time of tran-
sition of the Universe from decelerating to acceler-
ating phase depends on n. As n is increased, the time
at which the Universe transits from decelerating to
accelerating phase is nearer to the present epoch.
Also, the duration of the present accelerating phase
decreases as n decreases. As n increases, time be-
tween two consecutive deceleration phases is found
to increase.

(ii) We plot q vs H for different values of m taking n ¼
0:1 which is shown in Fig. 10. The curves show that
the Universe at the present epoch entered from
decelerating to acceleration and it will switch over
to decelerating phase once again in future. The
smaller values of m leads to a shorter duration of
the present accelerating phase.

From the ðq–HÞ curve as drawn in Fig. 4, we obtain a
sufficient data set from the numerical plot using
MATHEMATICA [27]. Those numerical values may be used

to find a closed analytic mathematical structure for q andH
which can be determined using a polynomial function
given by q ¼ �n

0aiH
i. We now explore for the mathemati-

cal function for qðHÞ corresponding to Fig. 4 with initial
value q0½1� ¼ 1:2. The corresponding approximate ana-
lytic function may be expressed as
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FIG. 8. The plot of q vs H for fðRÞ ¼ Rþ b lnR for different
values of b with q½1� ¼ �0:5, q0½1� ¼ 1.
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q½H� ¼ 45:063 81� 515:245 44H þ 2 478:587 63H2

� 6 555:426 02H3 þ 10 556:262 93H4

� 10 835:405 45H5 þ 7 153:274 19H6

� 2 949:716 37H7 þ 693:084 77H8

� 70:979 52H9: (16)

We compare the curves obtained numerically with those
corresponding to the curve fitted to an analytic function
given in Eq. (16). The two curves are shown in Fig. 11
which is found exactly superimposed. This comparison
holds good only when H is reasonably close to 1. Thus
we outline how one can determine the approximate relation
of q withH, which may be employed for other curves also.

IV. DISCUSSION

In this paper, we obtain cosmological solutions in higher
derivative theories of gravity. We explore different phases
of expansion that are permitted in the higher derivative
theories of gravity without matter as a toy model. Since the
field equations obtained from the action are highly non-
linear it is not simple to obtain an analytic solution in a
closed form.We adopt a numerical technique to understand
the present and future evolution of the Universe here. The
relevant field equations corresponding to modified gravi-
tational theories are rewritten in terms of two parameters:
(i) Hubble parameter (H) and (ii) deceleration parameter
(q) and its derivatives. We plot q vs H for different values
of the coupling constants of the higher derivative gravita-
tional actions, namely, (A) �, �; (B) b; and (C) m and n in
Sec. III to investigate present and future evolution of the
Universe. It is found that all the modified theories of
gravity lead to a scenario which accommodate the present

accelerating phase where the Universe transits from a
decelerating phase. In some cosmological models we
note that the Universe might once again transit from the
present accelerating phase to another decelerating phase.
In these models one can determine the duration of the
present accelerating phase in terms of coupling parameters
in the gravitational action. In Figs. 1–10, it is evident that
the present accelerating phase of the Universe once again
will change into a decelerating phase. In sections of
Figs. 5–7, new cases are observed where the Universe
from the present accelerating phase transits to a decelerat-
ing phase and then the decelerating phase again changes to
an accelerating phase which finally ends up at q ¼ �1=2
independent of the initial values of the parameter �4.
Another interesting case is evident in Figs. 1, 3, and 4
where the present rate of acceleration of the Universe will
decrease and attains zero value, where the Universe will
grow linearly with time as aðtÞ � t for a sufficient time
duration. Thereafter the Universe may once again enter
into an accelerating phase with an increasing rate of ex-
pansion. A detailed study with matter in the modified
gravity will be taken up elsewhere.
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