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Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density
of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters
of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy
that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be
of significant importance for the interpretation of many astrophysical observations and, in particular, dark
matter detection experiments. With this purpose in mind, we develop a general theoretical framework to
describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any
assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with
correlation functions in the action-angle space, we can fully account for the hierarchical structure
(predicting a two-point correlation function « AJ~ 1 in the action space), as well as the primordial
discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation
signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal
debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total
annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of
the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing.
Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure

can dominate this effect at low redshifts.
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I. INTRODUCTION

Cosmological N-body simulations show that dark matter
(DM) haloes that form in a ACDM Universe contain a
large number of subhaloes of all sizes and masses. What
remains outside the subhaloes are ungrouped individual
particles whose masses set the resolution limit of the
simulation. If the simulations were to have enough resolu-
tion to resolve every single subhalo, then it is expected that
the smallest subhaloes would be microhaloes of about
107°M, [1-3]. Does all the mass of a given halo reside
inside the gravitationally bound subhaloes? As a subhalo
falls through the gravitational field of its host halo, it
becomes tidally disrupted. A tidal stream extends along
the orbit of the subhalo and can contain a large fraction of
the satellite mass. Therefore, a significant fraction of a DM
halo is expected to be in the form of streams and caustics.
Depending on their length, the density of the streams can
vary and is relatively not very large. However, as a stream
folds back on itself, zones of higher density, i.e. caustics,
form (see e.g. [4-8]. In principle, these are not true caustics
but only smeared-out caustics due to finite DM velocity
dispersion, however, it is convenient to refer to them
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simply as DM caustics. Hereafter, we shall refer to un-
bound streams and caustics jointly as tidal debris.

Dark matter tidal debris, so far mostly unresolved in
cosmological N-body simulations, are expected to popu-
late our own halo. Many stellar counterparts to such debris
have been detected so far (e.g. [9,10]) and many more are
expected to be detected with future missions like GAIA.
The hierarchical growth of the host halo from the disrup-
tion of satellite haloes reflects in a hierarchical structure of
the phase space. The true lowest cutoff to this hierarchy is
not set by the microhaloes but by primordial dark matter
velocity dispersion. The hierarchical phase structure indi-
cates that after removing all bound subhaloes from a given
DM halo, its phase space remains still unsmooth due to
debris from disrupted subhaloes. The tidal debris are never
smeared out because of conservation of phase space den-
sity and volume, although they become less dense as they
wrap around the halo. It is this phase structure which we
study here.

Secondary infall or self-similar accretion model pro-
vides a solid theoretical base for the study of halo forma-
tion, and models the phase structure of DM haloes [11,12].
However, since this model assumes continuous accretion, it
cannot capture the hierarchical nature of halo formation.
On the other hand, numerical simulations still lack enough
resolution to fully resolve the hierarchical phase structure,
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although progress is being made in this direction [8,13—
15].

Here, we aim at capturing the hierarchical phase struc-
ture of dark matter haloes and its intrinsically discrete
nature, without resorting to any assumption of spherical
symmetry or smooth and self-similar accretion. We divide
the structure of a dark matter halo into three categories:
(1) the primordial and intrinsically discrete phase structure,
formed prior to any merger or accretion and entirely due to
the coldness of the initial condition; (2) the hierarchical
phase structure of tidal debris from disrupted satellites, and
(3) the hierarchical phase structure of undisrupted subha-
loes. We leave the study of the undisrupted substructures to
a companion paper [16] and in this work we only study
cases (1) and (2).

To study phase structure induced by debris from dis-
rupted satellites, we assume that at a given level in the
hierarchy, all structures added earlier and which lie at
smaller scales are smooth. This sets the lowest level of
the hierarchy at the scale determined by the velocity dis-
persion of earliest dark matter haloes. However, this is not
entirely correct since the earliest dark matter haloes them-
selves are not smooth and have a structure that is due to the
coldness of the initial condition. Thus, there is a funda-
mental discreteness scale, which is determined by primor-
dial dark matter velocity dispersion (see Fig. 1).

This complicated process is studied here through corre-
lation functions in the action-angle space where
Hamiltonian is only a function of the adiabatic invariants,
i.e. the action variables. Their conjugate variables, the
angle variables increase linearly in time. The action-angle
variables are extremely useful for studying tidal streams
[17-21]. However, working with the action-angle varia-
bles, we are restricted to regions within the virial radius
(with a quasistatic potential), and hence the phase struc-
tures that might arise outside the virial radius (e.g. between
the virial and the turnaround radii) cannot be studied in the
present framework [22]. For direct DM detection and
cosmic-ray signal of DM annihilation, only the nearby
phase structure plays a role and our method is valid (see
e.g. [23]). However, for lensing experiments and 7y-ray
emission from DM annihilations, for example, from other
galaxies, the structures outside the virial radius can be
rather important (see e.g. [24]).

We assume that the satellite orbits are integrable in the
host DM potential (although, in Sec. V we remark on chaos
and nonintegrable systems). Therefore, the phase space
distribution can be described in terms of the action-angle
variables, {J;, 6;}, so that
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FIG. 1 (color online). The top horizontal panel shows the
phase space of the merger of two dark matter haloes, each of
which has its own hierarchy of phase structure. The times on the
top panel refer to the crossing times. The zooming shows that
each hierarchy contains a lower level and so on. The hierarchy is
cut at the scale of the smallest dark matter halo that has been
accreted to the final halo. However, the phase space is not
smooth below this scale. Indeed, the phase space is intrinsically
discrete due to the coldness of dark matter shown by the last
zooming on the left. (Top panel: courtesy of Vlasov-Poisson
simulation [33].)

where the Hamiltonian, { = J{[J], is only a function of
action variables, J; and ();s are the angular frequencies.
Figure 2 shows a cartoon picture of phase mixing in the
action-angle space, and its correspondence to the real
space.

t=0 t=2 t=7
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FIG. 2. A one-dimensional cartoon of the evolution of tidal
streams in both phase and action-angle spaces. As structure
wraps around the phase space, more streams cross the same
angle coordinate, which leads to a discrete latticelike structure in
the action space.
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The hierarchical phase structure and its fundamental
discreteness set by primordial DM velocity dispersion are
captured by the correlation function of the phase density.
Since, after a long time, the distribution in the angle space
is uniform, the phase density is only a function of the
action variables. This can be easily seen by writing the
collisionless Boltzmann equation for the equilibrium dis-
tribution in the action-angle space

W 50 5y 3)
ot 00, aJ;
which, combining with Eq. (2), implies that the equilib-
rium phase space density can only be a function of action
variables (and is known as the strong Jeans theorem [25]).

This enables us to evaluate the density-density correla-
tion function. Our results are only valid statistically for
typical haloes and thus may not agree with results obtained
for individual haloes in the simulations.

The nature of DM remains a mystery. Supersymmetry
and extra-dimensional extensions of the standard electro-
weak model provide a natural candidate in the form of a
weakly interacting and massive particle (hereafter WIMP).
These species should fill up the galactic halo. If DM
consists of WIMP’s, they are expected to strongly annihi-
late in the dense regions of our halo and generate, in
particular, gamma rays and charged cosmic rays. Hence,
hierarchical structure of phase space can lead to the en-
hancement of DM annihilation signal [26]. We also evalu-
ate the boost to the annihilation signal due to tidal debris
and discreteness of the phase structure. We show that the
boost due to tidal debris is of order one, whereas the boost
from the discrete phase structure can be up to 1 order of
magnitude higher.

In Sec. II, we review a few basic relations for action-
angle variables. In Sec. III A and IIIB we describe the
correlation functions that would account for the phase
structure due to tidal debris and their discreteness. In
Sec. IVA, we evaluate the boost on the annihilation signal
due to tidal debris. In Sec. IV B, we evaluate the boost of
the annihilation signal from intrinsic discreteness of the
phase structure, and finally Sec. V concludes the paper.

II. STREAMS AND COHERENCE VOLUME OF
THE PHASE SPACE

We use the definition of action-angle variables (2) and
assume that the frequencies are not degenerate, i.e. the
Hessian matrix

_*H 9,

“

has nonzero eigenvalues, or equivalently, a nonvanishing
determinant

FEA 5)
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with the possible exception of a zero measure region of the
phase space. Note that, this implies that the halo potential
cannot be assumed to be exactly spherically symmetric, as
two of the frequencies would be equal.

If a satellite galaxy has originally a small spread in the
action variables, AJ;, its spread in the angle variables
increases as

AH,- = (g{ijAJj)tacc,p + AGO’ (©)

where 7, , is the time since accretion of the progenitor of
the debris into the halo. The last term, the initial extent of
the debris, is subdominant at large times. We set this term
to zero for now, but at the end of Sec. IV B, we discuss
when it can become important and how it could affect our
results. Therefore, the total volume swept in the angle
space grows as

A39 = (lj-[ilez’])t?zcc,p = (ABQ)tZCC»P’ (7)

where we used the definition of ;in Eq. (4), and A3Qis
the volume occupied by the debris of satellite particles in
the frequency space.

As the total volume of the angle space is (277)3, the
number of streams passing through each angular coordi-
nate is

t,.n\3
Nstream = (A3Q)<M) . (8)
2

Thus, the total mass of each stream m .., is the mass of
the debris m divided by Ny cam

m m taccp -3
= = : . 9
Ngiream <A3Q)( 2m ) ®

Put another way, the action space is divided into cells of
volume

mstream

FIG. 3. The action-space distribution of debris in a unit 2d
torus with unit particle mass and no potential. The debris is
originally within 0 <x, y <0.1, and —10 <w,, v, <10. The
figures show a cut through the action space with 0.09 <x, y <
0.1, which is characterized by fp(J, X, tyee,p) [EQ. (14)] in our
formalism.
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3
A e = (t ) PR (10)

acc,p

as a result of phase space mixing (e.g. [20]).

With this picture in mind, we can write the distribution
in the action space as the sum of the contributions from
individual progenitors

F30) =1, 0:tace. ), (11)
14

where each f, has a cellular structure characterized by
Eq. (10), as shown in Fig. 3, which gets finer and finer with
time. Equation (11) is the phase space analog of the widely
used halo model in cosmology [27,28], where the density is
assumed to be the sum of contributions from individual
haloes with given profiles. Correspondingly, f, character-
izes the profile of individual progenitors in our picture.
We can now write the real space density as

p(x, 1) = Z[d3jd30fp(,], 0: tacep) O3[x — X(J, 0)]
P
- Z [d3JfP(J’ X, tacc,p)ﬁ(X;J), (12)
P

where p(x;J) is the density of a distribution of unit mass,
with a fixed action variable J, and uniform angle distribu-
tion

) [ a0 3
p(x;J) = e Splx — %(6, )] (13)
while
~ a6
fp(J: X, tacc,p) = ﬁ(X;J)_l Wfp(t]’ 0r tacc,p)
X 83[x — %(6,J)] (14)

An example of f » 18 shown in Fig. 3 for debris in a toy
model of a unit torus. As we will explicitly show in
Sec. IVA, projecting this discrete structure in the action
space of the debris into the real space leads to discrete,
(nearly) singular, caustics that are only smoothed by the
original velocity dispersion of the progenitor.

III. CLUSTERING IN THE PHASE SPACE

Averaging over different possible realizations of the
debris within a halo, the mean phase space density can
be written as an integral

(SF0 0% tuep)) = [[AN,g D0 = 3, % 100 (15)
14

where gV and J p are the profile and mean action of
individual progenitors, while
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dn
acep dmpd3det

acc,p

dN, = dmpd3det (16)
is the differential progenitor number density per units of
progenitor mass m,, its action-space volume d>J > and its
accretion time 7, ,. We now follow an analogy with the
cosmological halo model [27,28] to write the clustering in
the action space as a superposition of one- and two-
progenitor terms

< Z ];pl (Jl! X, taCC,p])fpz(JZ’ X, tacc,p2)>

PuD2
= dep(l-prog) + [del [dez(Z-prog). (17)

The one-progenitor term characterizes the self-clustering
of individual progenitor action-space profiles.

(I'PTOg) = g(l)(Jl - Jp) X, [acc,p)g(l)(JZ - Jp’ X, tacc,p)’
(18)

while the two-progenitor terms characterize the correlation
between phase space density at different action variables,
within different progenitors:

(2‘Pr0g) = 8(2)(Jl - Jpp J, - pr X, tacc,pl’ tacc,pZ)
= gg))n(Jl - Jp]; J2 - Jpz, X, tacc,p,; tucc,pz)
+ g(l)(Jl - Jp]’ X, tacc,p])

X g(l)(J2 - Jpzl X, tacc,pz)- (19)

In the limit that the mean actions of different progenitors
are not correlated, the connected part of the (two-prog.)
term goes to zero: gf:%)n — 0, and thus the two-progenitor
term reduces to the correlation within the smooth halo.
Note that this limit cannot be strictly realized, as due to
phase space conservation, phase streams tend to avoid each
other, leading to g < 0 at small separations J P P
However, Liouville’s theorem is not valid for coarse-
grained phase space density, and thus coarse-grained pro-
genitors can overlap in the action space.

The connected part of the two-progenitor term originates
from the clustering of the initial conditions of the progen-
itors of the host halo, which is generally expected from the
clustering of cosmological haloes. However, the structure
of the one-progenitor term is more subtle: In addition to the
cellular structure described in the previous section (Fig. 3),
the internal structure of each progenitor prior to its accre-
tion onto the host halo would introduce a hierarchy within
each cell. In fact, in a hierarchical picture of structure
formation, one expects the subcellular structure of the
one-progenitor term to be inherited from the two-
progenitor terms within progenitors prior to their accretion
onto the main halo (see Fig. 1). The key difference between
the two hierarchies, however, is that phase mixing only
continues in the action space of the main halo, and (follow-
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ing the tidal disruption) has stopped in the action spaces of
the progenitors.

For statistically self-similar initial conditions, we expect
the subcellular and two-progenitor terms to blend into one
roughly self-similar structure in the action space, although
individual realizations have periodic structures with the
characteristic volume given in Eq. (10). We provide a
scaling ansatz for this structure in Sec. III A. However,
the self-similarity is cutoff by the free streaming of dark
matter particles on small separations, due to their finite
intrinsic velocity dispersion. This is responsible for the
fundamental discreteness of the phase space distribution
(see Fig. 1), which we model in Sec. III B.

A. Hierarchical phase structure from tidal debris

We first consider the phase structures due to tidal debris.
Once again, we emphasize that these are the tidal streams
that have fallen into the gravitational field of the host halo
and are no longer bound to the original satellite.

The first level of approximation that we will use to study
phase space clustering of cold dark matter (CDM) is to
assume a (statistically) hierarchical formation history,
where any trace of the cold initial conditions has been
wiped out through phase mixing. Furthermore, we ignore
the possibility of gravitationally bound structures in this
paper (see the companion paper [16] on this subject). The
impact of cold initial conditions will be addressed in sub-
sequent sections.

Assuming uniform distribution in angles (or complete
phase mixing), the density at each point in the halo is given
by

px) = Q) [dsr@pxn. 0
where f(J) is the phase space density, while p(x;J) was
defined in Eq. (13). Note that in (20), the function p has the
dimension of inverse volume, 1/V(J).

We shall assume adiabatic invariance; the action remains
constant as new structures are added on larger scales.
Hence, the distribution function in the action space f(J)
does not change with time, except when new structures are
added due to satellites that are newly accreted inside the
virial radius.

The assumption of uniformity in the angle space allows
us to separate the effect of phase mixing from that of
hierarchical structure formation. While the former is the
cause of original caustic formation, too much phase mixing
(within a fixed potential) will eventually smooth out the
real space density distribution. The assumption of a smooth
f(J) distribution, implies that phase mixing is complete.

On the other hand, the effect of hierarchical structure
formation is captured in f(J), through the fact that struc-
ture in f(J) is added on different scales, at different times
in the history of the halo. A statistical measure of this
history is the two-point correlation function of the action-
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space density. We thus hypothesize that the correlation
function

ff(Jp Jo) = A (2D

should be a power law for statistically self-similar initial
conditions

FADFT2D gebris = AT — Tl 74 (22)

aslongas |J; — J,| < [J| withJ = (J; + J,)/2. The form
of the correlation function uses the symmetry between J;
and J,. It also guarantees that small scale structures are
captured, as structures are added on different scales at
different times (see Fig. 1 for a demonstration).
Moreover, since actions remain constant in the adiabatic
invariance approximation dA/dt =0 on small scales. In
other words, the correlation function & /(J;, J,) grows in-
side out in the J;, J, space.

The mean phase space density of a virialized halo,
assuming a virial overdensity of ~200, is given by

2
N RS Y
10H
= (fJ) ~ M (24)

where M is the halo virial mass. The virial action variable
is also roughly

(GM)2/3

(10H)'/3"
Given that M o 3 and H o« a3/ when perturba-
tions grow during the matter-dominated era, with a being

the cosmological scale factor, and n.y the slope of the
linear power spectrum, we conclude

(25)

Jvir ~ IOyir

_ B(neg +7)

<f(J)> o J_[(3(neff+7))/(”eff+11)] = a
Neagr + 11

~ 1.6 £0.1, (26)

where we have assumed n. =~ —2.5 = 0.5 for cosmologi-
cal haloes.

An alternative way to derive (26) is to consider the self-
similar collapse models of Fillmore and Goldreich [11],
where they calculate the actions and use adiabatic invari-
ance to find the outcome of spherical cold secondary infall
in an Einstein-de Sitter universe. For the spherical self-
similar linear initial condition of

SM
M | init

they find the action at the turnaround radius scales as

o« M2, 27)

Jm o« Mtsa+1/3t(2/93)_(1/3)’ Mta e t2/38 (28)

for £ < 2/3, where M,, is the mass within the turnaround
radius. Although (28) is only for the radial action, and the
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two other action variables vanish due to spherical symme-
try, one may imagine that for triaxial CDM haloes, the
three actions would become comparable: J, ~ Jy ~
€./, ~ €.J,,, Where €, characterizes the triaxiality of
the halo [not to be confused with the self-similar profile
index ¢ in (27)]. Therefore, eliminating time from the two
equations in (28), the phase space density, f(J) scales as

ta
Assuming that the self-similar linear density profile has the
same radial/mass scaling as the variance of the cosmologi-
cal density fluctuations, (M) o M~ t3/6 yields g =~
(negr +3)/6 (<2/3 for CDM Harrison-Zel’dovich pri-
mordial power spectrum), which, plugging into (29), re-
produces (26).

We should point out that the correlation function in the
action space [Eqgs. (21) and (22)] is, to our knowledge, first
introduced in the present work. While this function could
be a very useful tool for statistical description of tidal
debris in (stellar or dark matter) collisionless systems, its
thorough understanding requires further numerical study,
and may involve different potential subtleties. For ex-
ample, separating the correlations due to gravitationally
bound subhaloes, or a numerical definition for ensemble
average of a multivariable correlation function in a 6D
phase space, may prove difficult in practice. We postpone
a numerical investigation of clustering in the action space,
and its potential applications to stellar systems (e.g. [29])
to future studies.

B. Fundamental discreteness of the phase space
structure

In the previous section, we considered the hierarchical
addition of tidal debris to a DM halo. However, the hier-
archy has a lower cutoff set by the velocity dispersion of
the smallest accreted satellite. Microhaloes of ~107° solar
mass could indeed determine such a cutoff [1-3]. However,
this cutoff is far above the primordial velocity dispersion of
DM itself. Therefore, the primordial velocity dispersion
introduces a fundamental discreteness in the phase struc-
ture. In other words, the smooth phase space distribution of
the last section ignores the discrete nature of multiple
streams in the phase space due to the presence of a cutoff
in the CDM hierarchy. This discreteness shows up as a
cellular or lattice structure in the action space, with a
characteristic cell volume given in (10) [see Figs. 2 and 3
for 1d and 2d cartoons; More realistic simulated examples
are discussed in [20]]. After averaging over different spac-
ings, expected for different accretion times of different
debris, the discreteness would only show up as the zero-
lag of the action-space correlation function

2

U = 53,850 =), (G0)
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where Myeqm and A3Jge,m Were defined in Egs. (9) and
(10), and here we have assumed a zero initial temperature
for CDM particles. A finite CDM velocity dispersion (cor-
responding to less than ~1072(1 + z) cm/s for GeV scale
WIMP dark matter) will smoothen the delta function, as
the phase space density cannot exceed its primordial value
(see Fig. 1 for a cartoon). Note that the minimum virial
velocities for first CDM haloes (or microhaloes) with M ~
107°M,, is ~10%> cm/s, which would characterize the
minimum spacing between fundamental streams.

IV. EXAMPLE: DARK MATTER ANNIHILATION
MEASURE

A. DM annihilation in tidal debris

In this subsection, we consider the enhancement in the
expectation value of the annihilation measure due to hier-
archical structures built in the phase space from tidal
debris.

For a uniform distribution in the angle space, the expec-
tation value of the annihilation measure is given by

¢=[fmmw

= (277')6[d3J1d3J2§f(J1,Jz)fd3xﬁ(X;J1)ﬁ(X;J2)-
(3D

We remark that the above integral can also be relevant for
the direct detection of DM, as it quantifies the variance of
the density field.

In order to investigate the impact of caustics, near the
apocenters and pericenters of the orbits, we make a simple
analogy with a one-dimensional harmonic oscillator

H= z(pf + p§ + p?) + %wzxz. (32)

For concreteness, we also assume the other two dimensions
are compact with the length L, and L, although the
Hamiltonian has no explicit dependence on y and z coor-
dinates. As the evolution in the three spatial directions
decouple, we can simply read off three action variables
from the areas of phase diagrams for each direction:

2
pi 1
= 4 -
J, Y zwx , 33)
L, L
J, = —2>py, J, = 2sz. (34)

From these relations, we can find p(x; J) using its defini-
tion in Eq. (13)

f)(X; J) - (xmax - xmin)

= , (35)
WV\/(X - xmin)(xmax - X)

where
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Xmax = ~ Xmin — V2Jx/wr (36)
V= LyLz(xmax - xmin)' (37

Notice that the square root singularity in the projection
kernel p(x;J) is very similar to the singularity expected
near CDM caustics. However, for a smooth distribution in
the action-space f(J), the real space density p(x) is an
integral over the kernel [Eq. (20)], which would lead to a
smooth p(x). Therefore, a discrete distribution in the ac-
tion space is necessary to produce caustic singularities in
the real space (otherwise known as fold catastrophes or
Zel’dovich pancakes).

We then notice that the toy model of Eq. (32) is similar
to the motion in a nearly spherical potential, in the sense
that the motion in one direction (x or radial) is limited by
requiring constant action variables, while the two other
directions (y and z, or angular directions) are compact.
Based on this analogy, we will use

[rmax(J) - rmin(J)]
VAW = Fain @) rmax @) — 71

where we have assumed an integrable nearly spherical
potential, with small angular momentum (and third inte-
gral), while V(J) is the spatial volume occupied by the
stream of action J. The radii r,;;, and r,,,, are the minimum
and maximum radii of all orbits with the same action
variable. However, the general structure of the singularity
close to boundaries does not change in other geometries.

Using Eq. (38), we can evaluate the x integral in the
emission measure (31). For J; = J,, the integral is loga-
rithmically divergent around 7 = rp,(J;) = rm(J2) as
well as r = rpin(J)) = rmin(J2). Focussing on the outer
caustic r,, we find

p(x;J) ~ (38)

47Tr%1ax(rmax - rmin)

V2(J)

cosh™!

[ Pxp(x:)p(x:T,) =

rmax(Jl) + rmax(JQ)
39
rmax(Jl) - rmax(JZ) ( )
This yields
FAJ;
fdsxﬁ(X;Jl)ﬁ(X;JZ) -~ V(J)il |1n< |j| l) ’ (40)

where F' ~ 1/4|J|01nr,,,/dJ; and can be calculated,
given the gravitational potential of the host halo.
Therefore, the annihilation measure takes the form

(FIAJl)
Inl —= .
1]

We see that since 3 — a > 0, the integral is finite and
dominated by large AJ’s. The boost to the annihilation
signal, which is introduced by small scale clustering in the
action space (i.e. that & > 0) is thus given by

O~ A [ PN (R f BAJIAT| @1
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Busyis = —
debris @ smooth
JEIV@) T [P AJATIIn(5)]
J @IV 1T [ AT In()
9
~ 7(a 3y Fe = 0O(1), (42)

given that F ~ 9 Inrp,./d InJ is a dimensionless number of
order unity.

Therefore, we see that the boost factor obtained here for
the tidal debris is dominated by larger separations, as seen
from expression (42), whereas our approximation (38) is
valid for small separations. To emphasize, (38) is valid in
the vicinity of caustics, whereas the integral (42) demon-
strates that most contributions come from large separations
in the action space.

To summarize, while we predict an O(1) boost in anni-
hilation signal due to (finite separation) clustering in action
space, the main effect comes from large structures (and not
caustics), which are not accurately captured in our frame-
work. Following the submission of our paper, this estimate
was recently confirmed by numerical simulations [30]. In
the next section, we will address the impact of the discrete-
ness of the phase space of CDM haloes.

B. DM annihilation boost due to discreteness of phase
structures and catastrophes

The primordial velocity dispersion of DM induces a
fundamental discreteness in the hierarchical phase struc-
ture and can enhance the annihilation signal. The emission
measure due to this discreteness is calculated by inserting
(30) in expression (31). Summing over all streams and
subtracting the smooth part, which is obtained by smooth-
ing over the fundamental streams, we obtain

BCI)dis = Z mztream/dSX[ﬁ(X;Jstream)z

stream

- ﬁ (X > Jstream)gmooth]

=e()" [ d3Q<d2;[151°>2 [ dxstaeay

- ﬁ(X; J)gmooth]

(43)

for the enhancement of the emission measure due to dis-
creteness of the phase structure, where p(X; J)gmoomn 1S the
stream density, smoothed to the level that different streams
overlap, and for the stream mass we assume

dm, halo [ ¢ )73

~K - ,
B3O (277'

where d3() is the volume element in the frequency space,

and factor K is the ratio of the density of debris to that of
the host halo: pgepis = M/ ~ K praio-

(44)

m stream
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The above expression is to be compared to the annihi-
lation measure for the smooth halo

Dy = [ (M) [ sy (e
% [ Brp(x:px: ), (45)

where  and €)' are functions of J and J', respectively.
Therefore, the boost associated with a given point in the
action space is given by

6q)dis

q)smooth

= ]@(L)_S
27T
) [ {6~ PO

[ PO (@) [ Bxp(x; Dp(x; J)
(46)

Bgi[J]— 1=

In order to estimate the boost factor, we should first
approximate the density integral [d®xp(x;J)p(x;J). As
we discussed in the previous section for |J — J/| < |J| the
integral is dominated by the regions around the turnaround
radii (or caustics) and thus grows as

[ 1n(l3 — 1/13D)
Bxp(x; Np(x;J) ~ , 47
R R @)
as seen in Eq. (40). In the opposite limit, |J — J'| ~ |J],
assuming that the two density kernels overlap, p(x, J) can
be approximated as roughly constant, which yields
[ @xpximpexy) = v, (48)

Now we note that in (46), the integral over ()’ (or equiv-
alently J’) in the denominator is dominated by the large
values of |J—J’|, while the numerator is in the small |J—J'|
regime. Therefore, substituting from (47) and (48), we find

d1nM, |AJcpul
By [J] - 1= K? - |l ( -~ )
dls[J] (277-) d3 QO t |AJint-stream|
1/t \3|dInM S
_ K2 ifr halo 1 ( CDM )’
3 (277') QO " <fhalo>

(49)

where |AJcpm| and |AJiy-sweam| characterize the funda-
mental CDM stream width and the interstream spacing,
respectively. The stream thickness and spacing in real
space have been calculated within the framework of self-
similar model [31]. However, to obtain the ratio, we use a
far simpler approximation. To get the last line of expres-
sion (49), we have used the fact that the volume in phase
space occupied by the fundamental streams is
Qm)3A3Jepm = Mpao/fepms While the total volume in
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phase space of the entire halo is (27) A3 Jiy-sweam =

Mhalo/<fhalo>-
The logarithmic enhancement factor is roughly

1. (feom
g ]n<<fha10>) =20+ 1n

for CDM particles of mass m, .. In arriving at (50) we have

(Jﬁ) (50)

used that fcpy ~ Qmpcrit(TX/TCMBP/U%DM and {fhai0) ~
103 Qmpcm/a'm, with Tems ~ 1074 eV, T, =
1/3m, 0%py ~ m, /40 is the CDM Kinetic decoupling
temperature.

In order to estimate the boost factor in (49), we also need
to find the volume element occupied in the frequency
space, d*(), by a given mass element. First we should
notice that for a Keplerian potential ¢(r) « —r~!, this
volume element vanishes as three frequencies are equal,
ie. Q, = Qg4 = 3, where ()3 is the frequency for the
third integral.

For a general potential, ¢(r), we have

Q, dlng’
—1=43+ ~1 51
Q¢ dlnr ( )

for a nearly circular orbit and where / indicates first de-
rivative with respect to r, i.e. ¢’ = d¢/dr. Moreover, the
extent in ()5 depends on the triaxiality of the halo

dQ3 ~ 6trQ¢>’ (52)

where €, ~ 10% characterizes the typical triaxiality of
CDM haloes. Therefore, we will approximate the volume
element as

1 /
BQO~ 477'6“(2%5(‘/3 + % - 1)dQ¢, (53)

where
GM, o
02 ~ halo __ r 54
R (54)
Hence, for a general potential we obtain
dlth 1 1 —
do — 2+ dlng'/dInr)(¢'/r)” 1/
e = 2+ ding!/dIn(e'/)
X [(\[3 + dlIng'/dInr — 1)(¢'/r — ¢")] L.
(55)

To evaluate (49) we also need to know the multiplication
factor K, which is the ratio of the density of disrupted
satellite to that of the host halo. This factor can be eval-
uated for a general spherical potential, assuming that the
debris start with the maximum density that allows them to
be tidally unbound:

K=3(¢' — re")2¢' + re")". (56)
Putting (55) and (56) in (49) we obtain
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Bgis — 1 =36m(¢' — re")2¢' + re")”!

X3+ ¢ - 1)1(90//”3/2(4)3/2

877Gpcrit

1 fCDM
—1
g 3Etr n((fhalo>>’ (57)

where @ = d(Ing’)/d(Inr) and p.4 = % is the critical
density of the Universe. Moreover, we have used the fact
that the product of the present-day Hubble constant and the
age of the Universe is unity (Hyt = 1.03 = 0.04) for the
current concordance cosmology.

For a power-law potential

o(r)=—por P B#1, (58)

one can see that (57) yields
B —1= 727 (B + 2)v2(1 — B) ln(fCDM)
as 36tr (\/2 - :8 - 1) <fhalo>

-3/2
% <3phalo) ) (59)
Perit

where pp.., the local halo density for a general potential is

1
p(r) = m(sﬂ” +2¢'/r) (60)

from the Poisson equation.

For the power-law potential (58), we can find the local
density in terms of the critical density and the radius and
consequently obtain the boost factor (57) as a function of
r/ryi;» Where ry;, is the virial radius of the halo, defined as
the radius within which the mean density is 200p,;;. The
local boost factor for a power-law potential, and our nomi-
nal values of €, and fcepm/halo)s 1S

_3, B+2 <L)3(b’+2)/2
5 (=pv2-B-1 '

Bdis -1
Iyir

(61)

The above expression shows that the boost is most signifi-
cant in the outskirts of the halo, and for large values of 3.
Indeed, the local boost diverges as 8 — 1. We note that, in
the context of a Navarro-Frenk-White (NFW) potential
[32]

In(1 + x)
x s

ONFW = T @0 (62)
i.e. B ~ 1 corresponds to the outskirts of the halo and 8 ~
—1 to the central part.

Similarly to the power-law potential, we can obtain the
local boost factor (57) for an NFW potential (62). The
boost is shown in Fig. 4 as a function of r/r, and for
different values of the concentration parameter ¢ =
rvir/ 5. The boost increases as we go toward the outskirts
of the halo as the number of streams decreases, hence
increasing the density of individual caustics. As we in-
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crease the concentration, the central density of the halo
becomes large, which in turn decreases the local boost
factor.

T T TTTTm T

T T T T T T T T TTTm

LALLALLLL B L R

T

dis
| (=}
T HHHW T HHHW T HHHW TT HHH]
1 HHHA 1 HHHA 1 HHHA 1 HHHA 11 mml 1 HHHA 1 HHHA 1 HHHA L

T

S
S

T T TTTT]

T T T T T T

|

T T T
|

Bdis -1
=)

T T
L1 me‘

T T T T T TTTmm
|

|

T
|

I/t . i
vir s vir

FIG. 4 (color online). The local boost factor due to primordial
discreteness of the phase structure for an NFW potential: The
plots show how the boost in the annihilation measure of a DM
halo changes as we go from the inner part of halo to outer parts,
due to the discrete phase space structure of CDM. The local
boost increases as we go toward the outskirts of the halo and also
as we decrease the concentration. The dashed curves on the left
panel show the boost if we include corrections due to a finite
initial phase for the debris (68), which become important for
nearly degenerate frequencies. The right panel shows that most
of the boost comes from regions beyond 20% of the virial radius.
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Having evaluated the local boost, we can evaluate the
total boost from the halo, which we defined as

cbtotal
B = _— 63
total (I)smooth ( )
where
oneuss = rip} [ 4w ploa (64)
and

By = 132 [ Bu(p(Pamidy,  (65)
0

where By, is given by (57) and the density profile of the
smooth halo is given by p(x). For the NFW density profile
p = p,/[x(1 + x)?], where p is the scale density, we have
plotted the variation of the total boost with the concentra-
tion parameter c in Fig. 5. Again, the boost decreases as we
increase the concentration, since the flux becomes domi-
nated by the central part of the halo.

We saw that the boost is mostly in the outskirts of the
haloes, namely, beyond the 20% of the virial radius.
However, one has to be cautious, since in the outskirts of
the halo the gravitational field of the halo approaches a
Keplerian potential, causing the frequencies to become
degenerate and the term A6, in (6), which we have so far
ignored, can become important. Thus, we need to study the
importance of this term for our analysis and the boost.

LA B B R | T L B B B B |

T Ty
Lol

T T
Lol

total B, -1
dis
T TTTTHW T TTTTHW
1 lllHlM

Lol

T T

=

TR | 1 1 1

10 100
concentration

FIG. 5. The estimated total boost in the annihilation measure
of a DM halo, due to the discrete distribution in the CDM phase
space is shown for an NFW halo. The lower dashed curve shows
the total boost when we include corrections due to a finite initial
phase for the debris (68), which become important for nearly
degenerate frequencies.
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Expression (6) now becomes

1 AGO). €6)

= + =29
A6 tAQ(l YY)

Hence, the volume element in the angle space (7) should be

replaced by
1 06y;
- , 67
t&(%) 7

A30 = (A3Q)t3 det<5” +

where det stands for the determinant. For circular orbit
approximation we have (), = y/¢'/r and we use expres-
sions (51) and (52) for the volume element in the frequency
space. We thus find that the boost (57) has to be multiplied
by the inverse of the following determinant:

1 96, 1 1
®<5U+— %ﬁ=(1+————X1+—————>
t Q) we'/r €N @' /1

><(1+ L )
e /r(3FE— 1)

if the frequencies were to become near degenerate. In
obtaining (68) we have used Af,/AQ ~ 1/Q. The effect
of this factor in reducing the boost is shown for an NFW
potential (62) by the dashed lines in Figs. 4 and 5. The local
boost is reduced slightly in the outskirts as expected and
the total boost is reduced by a factor of about 2.

(68)

V. CONCLUSIONS

Working in phase space and with action-angle variables,
we have shown that the density-density correlation func-
tion can capture the hierarchical phase structure of tidal
debris and also the fundamental discreteness of the phase
structure due to the coldness of the CDM initial conditions.
The study presented here assumes no spherical symmetry,
no continuous or smooth accretion, and no self-similar
infall for the formation of dark matter haloes. It is thus a
general scheme for quantifying the statistical properties of
the phase structure of the virialized region of cosmological
haloes.

As an application, we have obtained the significance for
dark matter annihilation signal due to the hierarchical
phase structure of tidal debris and have shown that this
structure boosts the annihilation flux by order unity. On the
other hand, the total boost due to the primordial discrete-
ness of the phase space can be 1 order of magnitude higher
for low-concentration (or recently formed) dark matter
haloes.

While this paper dealt with unbound debris and caustics
in dark matter haloes, in a companion paper [16], we
calculate the boost to the annihilation signal due to the
gravitationally ~ bound  substructure or subhaloes.
Combining the results of both papers, we can write down
a concise and approximate formula for the local boost due
to all substructures:
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_0)
(p(x))*
= BdebrisBdisBsub —1

Boost — 1

. 3/2
~00) + 3 % 105<ﬂ) !

Phato(X)
oGl @

which should be valid within a factor of 3 in the virialized
region of the haloes. py,, is the local coarse-grained
density of the halo at redshift z, while p; is the critical
density of the Universe at redshift z. The first term in (69) is
due to the hierarchical structure of CDM debris that we
estimated in Sec. IVA. The second term is due to the
discrete nature of the CDM phase space, where we used
(59) with B8 ~ 0.5 and our nominal values for other pa-
rameters. Lastly, the third term is the contribution due to
gravitationally bound subhaloes [16]. We take H?/H3 =
Q,,(1+z)3 + Q, and plot (69) in Fig. 6.

One may wonder whether the discreteness of the phase
space of subhaloes could lead to an additional boost in the
annihilation signal. In other words, should we add By, — 1
and By — 1 to get the total boost, or rather should they be
multiplied? To answer this question, we notice that the
main contribution to By, is due to the smallest sub” haloes
(or microhaloes), which have the highest densities [16],
while the Bg;, is mainly due to the lowest density regions of
the haloes, which have the lowest degree of phase mixing.
Therefore, we expect the two terms By, — 1 and Bg;, — 1
to simply add incoherently, as the cross correlation be-
tween the two sources of substructure should be small.

We should point out that the results here apply to phase
structure within virial radius, and those outside the virial
radius, which we have not studied here, might yield a
bigger boost factor. It is reasonable to study the streams
and caustics that lie between the virial and the turnaround
radii by using the secondary infall model [11], as radial
approximation can be reasonably applied to regions be-
yond the virial radius (see Fig. 4).

Finally, we remark on the most instrumental assumption
in our framework, which was the integrability of orbits in
the CDM potential, since one cannot define action-angle
variables in a nonintegrable system. This is characterized
by the appearance of chaotic orbits in parts of the phase
space. First, we should point out that as CDM haloes have a
triaxial structure, a significant fraction of halo particles
cannot be on chaotic orbits. Moreover, the difference be-
tween chaotic and integrable orbits only becomes impor-
tant after many orbital times, which are only possible in the

PHYSICAL REVIEW D 79, 083526 (2009)
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FIG. 6. The estimated local boost including contributions from
the debris, discreteness and the subhaloes, given by (69) with the
first term set at its lowest value of unity, is shown for different
redshifts. At high redshifts (e.g. z = 10), the primordial caustics
dominate over all other effects. However, at low redshifts the
discreteness effect due to caustics is only important in the
outskirts of the haloes [notice that the discreteness/debris con-
tribution remains independent of redshift in the units used in this
plot, while the subhalo contribution evolves as ~H 2(z)].

inner parts of the halo. As most of the boost to the annihi-
lation caused by the discreteness in the action space comes
from the outskirts of the halo (Fig. 4), we do not expect a
significant difference due to chaotic orbits. Nevertheless,
the implications of chaos for the structure of the CDM
phase space correlation function remains an intriguing
question.
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