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We demonstrate that the Sommerfeld correction to cold dark matter (CDM) annihilations can be

appreciable if even a small component of the dark matter is extremely cold. Subhalo substructure provides

such a possibility given that the smallest clumps are relatively cold and contain even colder substructure

due to incomplete phase space mixing. Leptonic channels can be enhanced for plausible models and the

solar neighborhood boost required to account for PAMELA/ATIC data is plausibly obtained, especially in

the case of a few TeV mass neutralino for which the Sommerfeld-corrected boost is found to be

�104–105. Saturation of the Sommerfeld effect is shown to occur below �� 10�4, thereby making

this result largely independent on the presence of substructures below �105M�. We find that the

associated diffuse gamma-ray signal from annihilations would exceed EGRET constraints unless the

channels annihilating to heavy quarks or to gauge bosons are suppressed. The lepton channel gamma rays

are potentially detectable by the FERMI satellite, not from the inner galaxy where substructures are tidally

disrupted, but rather as a quasi-isotropic background from the outer halo, unless the outer substructures are

much less concentrated than the inner substructures and/or the CDM density profile out to the virial radius

steepens significantly.
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I. INTRODUCTION

The motivation for studying dark matter annihilation
signatures (see, e.g., [1]) has received considerable recent
attention following reports of a 100 GeV excess in the
PAMELA data on the ratio of the fluxes of cosmic ray
positrons to electrons [2]. In the absence of any compelling
astrophysical explanation, the signature is reminiscent of
the original prediction of a unique dark matter annihilation
signal [3], although there are several problems that demand
attention before any definitive statements can be made. By
far the most serious of these is the required annihilation
boost factor. The remaining difficulties with a dark matter
interpretation, including most notably the gamma-ray sig-
nals from the Galactic center and the inferred leptonic
branching ratio, are, as we argue below, plausibly circum-
vented or at least alleviated. Recent data from the ATIC
balloon experiment provides evidence for a cutoff in the
positron flux near 500 GeV that supports a Kaluza-Klein-
like candidate for the annihilating particle [4] or a neutra-
lino with incorporation of suitable radiative corrections [5].

In a pioneering paper, it was noted [6] that the annihi-
lation signal can be boosted by a combination of coanni-
hilations and Sommerfeld correction. We remark first that
the inclusion of coannihilations to boost the annihilation
cross section modifies the relic density, and opens the 1–
10 TeV neutralino mass window to the observed (WMAP5-

normalized) dark matter density. As found by [7], the
outstanding problem now becomes that of normalization.
A boost factor of around 100 is required to explain the
HEAT data in the context of a 100 GeV neutralino. The flux
is suppressed by between one and two powers of neutralino
mass, and the problem becomes far more severewith the 1–
10 TeV neutralino required by the PAMELA/ATIC data
[8], a boost of 104 or more being required. These latter
authors included a Sommerfeld correction appropriate to
our � � v=c ¼ 0:001 dark halo and incorporated channel-
dependent boost factors to fit the data, but the required
boosts still fell short of plausible values by at least an order
of magnitude.
Here we propose a solution to the boost problem via

Sommerfeld correction in the presence of a model of
substructure that incorporates a plausible phase space
structure for cold dark matter (CDM). We reassess the
difficulty with the leptonic branching ratio and show that
it is not insurmountable for supersymmetric (SUSY) can-
didates. Finally, we evaluate the possibility of independent
confirmation via photon channels.
Substructure survival means that as much as 10% of the

dark matter is at much lower �. This is likely in the solar
neighborhood and beyond, but not in the inner galaxy
where clump destruction is prevalent due to tidal interac-
tions. Possible annihilation signatures from the innermost
galaxy such as the WMAP haze of synchrotron emission
and the EGRET flux of diffuse gamma rays are likely to be
much less affected by a clumpy substructure than the
positron flux in the solar neighborhood. We show in the
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following section that incorporation of the Sommerfeld
correction means that clumps dominate the annihilation
signal, to the extent that the initial clumpiness of the dark
halo survives.

II. THE SOMMERFELD ENHANCEMENT

Dark matter annihilation cross sections in the low-
velocity regime can be enhanced through the so-called
‘‘Sommerfeld effect’’ [9–15]. This nonrelativistic quantum
effect arises because, when the particles interact through
some kind of force, their wave function is distorted by the
presence of a potential if their kinetic energy is low
enough. In the language of quantum field theory, this
corresponds to the contribution of ‘‘ladder’’ Feynman dia-
grams like the one shown in Fig. 1 in which the force
carrier is exchanged many times before the annihilation
finally occurs. This gives rise to (nonperturbative) correc-
tions to the cross section for the process under considera-
tion. The actual annihilation cross section times velocity
will then be:

�v ¼ Sð�vÞ0 (1)

where ð�vÞ0 is the tree-level cross section times velocity,
and in the following we will refer to the factor S as the
‘‘Sommerfeld boost’’ or ‘‘Sommerfeld enhancement.’’1

In this section we will study this process in a semi-
quantitative way using a simple case, namely, that of a
particle interacting through a Yukawa potential. We con-
sider a dark matter particle of mass m. Let c ðrÞ be the
reduced two-body wave function for the s-wave annihila-
tion; in the nonrelativistic limit, it will obey the radial
Schrödinger equation:

1

m

d2c ðrÞ
dr2

� VðrÞc ðrÞ ¼ �m�2c ðrÞ; (2)

where � is the velocity of the particle and VðrÞ ¼
� �

r e
�mVr is an attractive Yukawa potential mediated by

a boson of mass mV .
The Sommerfeld enhancement S can be calculated by

solving the Schrödinger equation with the boundary con-
dition dc =dr ¼ im�c as r ! 1. Equation (2) can be
easily solved numerically. It is however useful to consider
some particular limits in order to gain some qualitative
insight into the dependence of the Sommerfeld enhance-
ment on particle mass and velocity. First of all, we note that
for mV ! 0, the potential becomes Coulomb-like. In this
case the Schrödinger equation can be solved analytically;
the resulting Sommerfeld enhancement is:

S ¼ ��

�
ð1� e���=�Þ�1: (3)

For very small velocities (� ! 0), the boost S ’ ��=�:
this is why the Sommerfeld enhancement is often referred
to as a 1=v enhancement. On the other hand, S ! 1 when
�=� ! 0, as one would expect.
It should however be noted that the 1=v behavior breaks

down at very small velocities. The reason is that the
condition for neglecting the Yukawa part of the potential
is that the kinetic energy of the collision should be much
larger than the boson mass mV times the coupling constant
�, i.e., m�2 � �mV , and this condition will not be ful-
filled for very small values of �. This is also evident if we
expand the potential in powers of x ¼ mVr; then, neglect-
ing terms of order x2 or smaller, the Schrödinger equation
can be written as (the prime denotes the derivative with
respect to x):

c 00 þ �

"

c

x
¼

�
��2

"2
þ �

"

�
c ; (4)

having defined " ¼ mV=m. The Coulomb case is recovered
for �2 � �", or exactly the condition on the kinetic

energy stated above. It is useful to define �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mV=m

p
such that � � �� is the velocity regime where the
Coulomb approximation for the potential is valid.
Another simple, classical interpretation of this result is

the following. The range of the Yukawa interaction is given
by R ’ m�1

V . Then the crossing time scale is given by
tcross ’ R=v ’ 1=�mV . On the other hand, the dynamical

time scale associated to the potential is tdyn ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3m=�

p ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=�m3

V

q
. Then the condition � � �� is equivalent to

tcross � tdyn, i.e., the crossing time should be much smaller

than the dynamical time scale. Finally, we note that since in
the Coulomb case S� 1=� for � � �, the region where
the Sommerfeld enhancement actually has a 1=v behavior
is �� � � � �. It is interesting to notice that this region
does not exist at all when m & mV=�.
The other interesting regime to examine is � � ��.

Following the discussion above, this corresponds to the
potential energy dominating over the kinetic term.
Referring again to the form (4) for x � 1 of the
Schrödinger equation, this becomes:

c 00 þ �

"

c

x
¼ �

"
c : (5)

FIG. 1. Ladder diagram giving rise to the Sommerfeld en-
hancement for �� ! X �X annihilation, via the exchange of
gauge bosons.

1In the case of repulsive forces, the Sommerfeld ‘‘enhance-
ment’’ can actually be S < 1, although we will not consider this
possibility here.
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The positiveness of the right-hand side of the equation
points to the existence of bound states. In fact, this equa-
tion has the same form as the one describing the hydrogen

atom. Then bound states exist when
ffiffiffiffiffiffiffiffiffi
�="

p
is an even

integer, i.e., when

m ¼ 4mVn
2=�; n ¼ 1; 2; . . . (6)

From this result, we expect that the Sommerfeld enhance-
ment will exhibit a series of resonances for specific values
of the particle mass spaced in a 1:4:9: . . . fashion. The
behavior of the cross section close to the resonances can
be better understood by approximating the electroweak
potential by a well potential, for example: VðrÞ ¼
��mV�ðR� rÞ, where R ¼ m�1

V is the range of the
Yukawa interaction, and the normalization is chosen so
that the well potential roughly matches the original
Yukawa potential at r ¼ R. The external solution satisfy-
ing the boundary conditions at infinity is simply an incom-
ing plane wave, c outðrÞ / eikoutr, with kout ¼ m�. The
internal solution is: c inðrÞ ¼ Aeikinr þ Be�ikinr, where

kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2out þ �mmV

p ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mmV

p
(the last approximate

equality holds because � � ��). The coefficients A and
B are as usual obtained by matching the wave function and
its first derivative at r ¼ R; then the enhancement is found
to be

S ¼
�
cos2kinRþ k2out

k2in
sin2kinR

��1
: (7)

When coskinR ¼ 0, i.e., when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m=mV

p ¼ ð2nþ 1Þ�=2,
the enhancement assumes the value k2in=k

2
out ’ ��2=�2 �

1. This is however cut off by the finite width of the state.
In summary, the qualitative features that we expect to

observe are
(i) at large velocities (� � �) there is no enhancement,

S ’ 1;
(ii) in the intermediate range �� � � � �, the en-

hancement goes like 1=v: S ’ ��=�, this value
being independent of the particle mass;

(iii) at small velocities (� � ��), a series of resonances
appear, due to the presence of bound states. Close to
the resonances, S ’ ð��=�Þ2. In this regime, the
enhancement strongly depends on the particle
mass, because it is this that determines whether we
are close to a resonance or not. Similar results have
been independently obtained in Ref. [16].

We show the result of the numerical integration of Eq. (2)
in Fig. 2, where we plot the enhancement S as a function of
the particle mass m, for different values of �. We choose
specific values of the boson massmV ¼ 90 GeV and of the
gauge coupling � ¼ �2 ’ 1=30. These values correspond
to a particle interacting through the exchange of a Z boson.

We note however that, as can be seen by the form of the
equation, the enhancement depends on the boson mass
only through the combination " ¼ mV=m, so that a differ-

ent boson mass would be equivalent to rescaling the ab-
scissa in the plot. Moreover, the evolution of the wave
function only depends on the two quantities �=" and
�=", so that a change � ! �0 in the gauge coupling would
be equivalent to: � ! �0 ¼ �0

� �, " ! "0 ¼ �0
� ". This

shows that Fig. 2 does indeed contain all the relevant
information on the behavior of the enhancement S.
We see that the results of the numerical evaluation agree

with our qualitative analysis above. When � ¼ 10�1 (bot-
tom curve), we are in the �>� ’ 3� 10�2 regime and
there is basically no enhancement. The next curve � ¼
10�2 is representative of the � * �� regime, at least for m
larger than a few TeV. The enhancement is constant with
the particle mass and its value agrees well with the ex-
pected value ��=� ’ 10. The drop of the enhancement in
the mass region below �3 TeV is due to the fact that here
� & ��, and that there are no resonances for this value of
the mass. Decreasing � again (top three curves, corre-
sponding to � ¼ 10�3, 10�4, 10�5 from bottom to top)
we observe the appearance of resonance peaks. The first
peak occurs for m ¼ �m ¼ 4:5 TeV, so that expression (6)
based on the analogy with the hydrogen atom overesti-
mates the peak position by a factor 2. However, the spacing
between the peaks is as expected, going like n2, as the next
peaks occur roughly at m ¼ 4; 9; 16 �m. The height of the
first peak agrees fairly well with its expected value of
ð��=�Þ2. The other peaks are damped; this is particularly
evident for � ¼ 10�3, and in this case it is due to the fact
that �� decreases as m increases, so that for m� 100 TeV
we return to the nonresonant, 1=� behavior, and the en-
hancement takes the constant value ��=� ’ 100.
Complementary information can be extracted from the

analysis of the upper panel of Fig. 3, where we plot the
Sommerfeld enhancement as a function of �, for different
values of the particle mass. Far from the resonances, the
enhancement factor initially grows as 1=� and then satu-
rates to some constant value. This constant value can be

FIG. 2 (color online). Sommerfeld enhancement S as a func-
tion of the dark matter particle massm, for different values of the
particle velocity. Going from bottom to top � ¼ 10�1, 10�2,
10�3, 10�4, 10�5.
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estimated by solving the Schrödinger equation with� ¼ 0.
We find that a reasonable order of magnitude estimate is
given by Smax � 6�="; the corresponding value of ��
0:5". The 1=� behavior holds down to smaller velocities
for larger particle masses, leading to larger enhancement
factors. However, when the particle mass is close to a
resonance, S initially grows like 1=� but at some point
the 1=�2 behavior ‘‘turns on,’’ leading to very large values
of the boost factor, until this also saturates to some constant
value.

It is clear from the discussion until this point that the best
hope for obtaining a large enhancement comes from the
possibility of the dark matter mass lying close to a reso-
nance; for the choice of parameter used above this would
mean m ’ �m ’ 4:5 TeV. However, one could be interested
in knowing how close the mass should be to the center of
the resonance in order to obtain a sizeable boost in the
cross section. In order to understand this, we show in Fig. 3
the enhancement as a function of � � jm� �mj=m, i.e., of
the fractional shift from the center of the resonance.
Clearly, for � 	 10�3, a boost factor of * 100 can be
obtained for � & 0:2, i.e., for deviations of up to 20%
from �m, corresponding to the range between 3.5 and
5.5 TeV. This is further reduced to the 4 to 5 TeV range
if one requires S * 103.

III. THE LEPTONIC BRANCHING RATIO

The relevance of the Sommerfeld enhancement for the
annihilation of supersymmetric particles was first pointed
out in Refs. [10,11], in the context of the minimal super-
symmetric standard model where the neutralino is the
lightest supersymmetric particle. A winolike or
Higgsinolike neutralino would interact with the W and Z
gauge bosons due to its SUð2ÞL nonsinglet nature. In

particular, the wino ~W0 is the neutral component of a
SUð2ÞL triplet, while the Higgsinos ð ~H0

1; ~H
0
2Þ are the neutral

components of two SUð2ÞL doublets. The mass (quasi-)
degeneracy between the neutralino and the other compo-
nents of the multiplet leads to transitions between them,
mediated by the exchange of weak gauge bosons; this gives
rise to a Sommerfeld enhancement at small velocities. On
the other hand, the binolike neutralino being a SU(2)
singlet, would not experience any Sommerfeld enhance-
ment, unless a mass degeneracy with some other particle is
introduced into the model.
The formalism needed to compute the enhancement

when mixing among states is present is slightly more
complicated than the one described above, but the general
strategy is the same. As shown in the paper by Hisano et al.
[11] through direct numerical integration of the
Schrödinger equation, the qualitative results of the pre-
vious section still hold: for dark matter masses * 1 TeV,
a series of resonances appear, and the annihilation cross
section can be boosted by several orders of magnitude.
An interesting feature of this ‘‘multistate’’ Sommerfeld

effect is the possibility of boosting the cross section for
some annihilation channels more than others. This happens
when one particular annihilation channel is very sup-
pressed (or even forbidden) for a given two-particle initial
state, but not for other initial states. This can be seen as
follows. The general form for the total annihilation cross
section after the enhancement has been taken into account
is

�v ¼ N
X
ij

�ijdiðvÞd�j ðvÞ; (8)

whereN is a multiplicity factor, �ij is the absorptive part of

the action, responsible for the annihilation, the di are
coefficients describing the Sommerfeld enhancement, and

FIG. 3 (color online). Top panel: Sommerfeld enhancement S as a function of the particle velocity � for different values of the dark
matter mass. From bottom to top: m ¼ 2, 10, 100, 4.5 TeV, the last value corresponding to the first resonance in Fig. 2. The black
dashed line shows the 1=v behavior that is expected in the intermediate velocity range (see text for discussion). Bottom panel:
Sommerfeld enhancement S as a function of the relative distance from the first resonance shown in Fig. 2, occurring at m ’ 4:5 TeV,
for different values of �. From top to bottom: � ¼ 10�4, 10�3, 10�2.
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the indices i, j run over the possible initial two-particle
states. Let us consider for definiteness the case of the
winolike neutralino: the possible initial states are
f�0�0; �þ��g. The neutralino and the chargino are as-
sumed to be quasidegenerate, since they are all members
of the same triplet. What we will say can anyway be easily
generalized to the case of the Higgsinolike neutralino. Let
us also focus on two particular annihilation channels: the
WþW� channel and the eþe� channel. It can be assumed
that, close to a resonance, d1 � d2. This can be inferred, for
example, using the square well approximation as in
Ref. [11], where it is found that, in the limit of small

velocity, d1 ’
ffiffiffi
2

p ðcos ffiffiffi
2

p
pcÞ�1 � ffiffiffi

2
p ðcoshpcÞ�1 and d2 ’

ðcos ffiffiffi
2

p
pcÞ�1 þ 2ðcoshpcÞ�1, where pc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2m=mW

p
.

The elements of the � matrix for the annihilation into a
pair of W bosons are ��2

2=m
2
�, so that we can write the

following order of magnitude estimate:

�vð�0�0 ! WþW�Þ � jd1j2 �
2
2

m2
�

: (9)

On the other hand, the nonenhanced neutralino annihila-
tion cross section to an electron-positron pair �22 �
�2
2m

2
e=m

4
�, so that it is suppressed by a factor ðme=m�Þ2

with respect to the gauge boson channel. This is a well-
known general feature of neutralino annihilations to fer-
mion pairs and is due to the Majorana nature of the
neutralino. The result is that all low-velocity neutralino
annihilation diagrams to fermion pairs have amplitudes
proportional to the final state fermion mass. The chargino
annihilation cross section to fermions, however, does not
suffer from such an helicity suppression, so that it is again
�11 � �2

2=m
2
� � �22. Then:

�vð�0�0 ! eþe�Þ � jd1j2 �
2
2

m2
�

: (10)

Then we have that, after the Sommerfeld correction, the
neutralino annihilates to W bosons and to eþe� pairs (and
indeed to all fermion pairs) with similar rates, apart from
Oð1Þ factors. This means that while the W channel is
enhanced by a factor jd1j2, the electron channel is en-
hanced by a factor jd1j2m2

�=m
2
e. The reason is that the

annihilation can proceed through a ladder diagram like

the one shown in Fig. 4, in which basically the electron-
positron pair is produced by annihilation of a chargino pair
close to an on shell state. This mechanism can be similarly
extended to annihilations to other charged leptons, neutri-
nos, or quarks.

IV. CDM SUBSTRUCTURE: ENHANCING THE
SOMMERFELD BOOST

There is a vast reservoir of clumps in the outer halo
where they spend most of their time. Clumps should sur-
vive perigalacticon passage over a fraction (say �) of an
orbital time scale, td ¼ r=vr, where vr is the orbital ve-
locity (given by v2

r ¼ GM=rÞ. It is reasonable to assume
that the survival probability is a function of the ratio
between td and the age of the halo tH, and that it vanishes
for td ! 0. Thus, at linear order in the (small) ratio td=tH, a
first guess at the clump mass fraction as a function of
galactic radius would be fclump / td. We conservatively

adopt the clump mass fraction �cl ¼ �rv�1
r t�1

H with � ¼
0:1–1. This gives a crude but adequate fit to the highest
resolution simulations, which find that the outermost halo
has a high clump survival fraction, but that near the Sun
only 0.1%–1% survive [17]. In the innermost galaxy, es-
sentially all clumps are destroyed.

Suppose the clump survival fraction SðrÞ / fclump / r3=2

to zeroth order. The annihilation flux is proportional to
	2 � Volume� SðrÞ / SðrÞ=r. This suggests we should
expect to find an appreciable gamma-ray flux from the
outer galactic halo. It should be quasi-isotropic with a
�10% offset from the center of the distribution. The flux
from the Galactic center would be superimposed on this.
High resolution simulations demonstrate that clumps ac-
count for as much luminosity as the uniform halo [18,19].
However much of the soft lepton excess from the inner halo
will be suppressed due to the clumpiness being much less
in the inner galaxy.
We see from the numerical simulations of our halo,

performed at a mass resolution of 1000M� that the subhalo
contribution to the annihilation luminosity scales as
M�0:226

min [19]. For Mmin ¼ 105M�, this roughly equates

the contribution of the smooth halo at r ¼ 200 kpc from
the center. This should continue down to the minimum
subhalo mass. We take the latter to be 10�6M� clumps,
corresponding the damping scale of a binolike neutralino
[20,21]. We consider this as representative of the damping
scale of neutralino dark matter, although it should be noted
that the values of this cutoff for a general weakly interact-
ing massive particle (WIMP) candidate can span several
orders of magnitude, depending on the details of the under-
lying particle physics model [22,23]. It should also be
taken into account that the substructure is a strong function
of the galactic radius. Since the dark matter density drops
precipitously outside the solar circle (as r�2), the clump
contribution to boost is important in the solar neighbor-
hood. However absent any Sommerfeld boost, it amounts

FIG. 4. Diagram describing the annihilation of two neutralinos
into a charged lepton pair, circumventing helicity suppression.
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only to a factor of order unity. Incidentally the simulations
show that most of the luminosity occurs in the outer parts
of the halo [19] and that the boost here due to substructure
is large, typically a factor of 230 at r200.

However there is another effect of clumpiness, namely,
low internal velocity dispersion. In fact, the preceding
discussion greatly underestimates the clump contribution
to the annihilation signal. This is because the coldest
substructure survives clump destruction albeit on micro-
scopic scales. Within the clumps, the velocity dispersion �
initially is low. Thus, the annihilation cross section is
further enhanced by the Sommerfeld effect in the coldest
surviving substructure. We now estimate that including this
effect results in a Sommerfeld-enhanced clumpiness boost
factor at the solar neighborhood of 104 to 105.

To infer � from the mass M of the clump is straightfor-
ward. The scalings can be obtained by combining dynami-
cally self-consistent solutions for the radial dependence of
the phase space density in simulated CDM halos [24] as
well as directly from the simulations [25] 	=�
 / r��,
combined with our ansatz about clump survival that relates
minimum clump mass to radius and the argument that
marginally surviving clumps have density contrast of order
unity. With 
 ¼ 3 and � ¼ 1:875 [26], we infer (for the

isotropic case) that � / 	1=
r�=
 /� M1=4. This is a com-
promise between the two exact solutions for nonlinear
clumps formed from hierarchical clustering of CDM:
spherical (M / r3) or Zeldovich pancakes (M / r), and
is just the self-similar scaling limiting value. The numeri-
cal simulations of [17] suggest a scalingMsub / v3:5

max down
to the resolution limit of �103M�, somewhat steeper than
self-similar scaling.

So one can combine this result with the previous scaling
to compute the total boost, i.e., taking into account both the
clumpiness and the Sommerfeld enhancement. We know
from the analysis of Springel et al. [19] that for a minimum
halo mass of 10�6M� the luminosity of the subhalo com-
ponent should more or less equate to that of the smooth
halo at the galactocentric radius, i.e., L0

sh ’ L0
sm at r ¼

8 kpc, where the superscript 0 stands for the luminosity
in the absence of any Sommerfeld correction. Thus the
boost factor with respect to a smooth halo is of order unity,
after the presence of subhalos is taken in consideration.
Next we take into account the Sommerfeld enhancement.
The velocity dispersion in the halo is �� 10�3, while the
velocity dispersion in the subhalos is �� 10�5 for a
105M� clump, and can be scaled down to smaller clumps

using the � /� M1=4 relation. From the discussion in
Sec. II and, in particular, from Figs. 2 and 3 it appears
that, if the dark matter mass is & 10 TeV and far from the
resonance occurring for m ’ 4:5 TeV: (1) the Sommerfeld
enhancement is the same for the halo and for the subhalos,
since it has already reached the saturation regime; (2) it is
of order 30 at most, so that the resulting boost factor still
falls short by at least 1 order of magnitude with respect to

the value needed to explain the PAMELA data. On the
other hand, if the dark matter mass is close to its resonance
value, then a larger value of the boost can be achieved
inside the cold clumps, since (1) the enhancement is grow-
ing like 1=v2 and (2) it is saturating at a small value of �.
Referring for definiteness to the top curve in the top panel
of Fig. 3 (m ¼ 4:5 TeV), one finds S ’ 104–105 for all
clumps with massM & 109M� (that is roughly the mass of
the largest clumps) while the smooth halo is enhanced by a
factor of 1000. Then the net result is that the boost factor is
of order 104–105 and is mainly due to the Sommerfeld
enhancement in the cold clumps (the enhancement in the
diffuse halo only contributing a fraction 1%–10%). Of
course the details will be model dependent; it should also
be stressed that the enhancement strongly depends on the
value of the mass when this is close to the resonance.

V. DISCUSSION

In the previous section we have shown how it is possible
to get a boost factor of order 104–105 for a dark matter
particle mass of order 4.5 TeV. This is tantalizing because
this is roughly the value one needs to explain the PAMELA
data for a dark matter candidate with this given mass, as
can be inferred by analysis of Fig. 9 of Ref [8]. Although
we have made several approximations concerning the
clump distribution and velocity, it should be noted that
our results still hold as long as the majority of the clumps
are very cold (� & 10�4) because this is the regime in
which the enhancement becomes constant. The saturation
of the Sommerfeld effect also plays a crucial role in
showing that the very coldest clumps are unable to con-
tribute significantly to the required boost factor if the dark
matter mass is not close to one of the Sommerfeld reso-
nances. Because of saturation below �� 10�4, the
Sommerfeld boost is insensitive to extrapolations beyond
the currently resolved scales in simulations. Note however
that the precise value for the dark matter particle mass is
uncertain because of such model-dependent assumptions
as the adopted mass splitting, the multiplet nature of the
supersymmetric particles, and the possibility of different
couplings, weaker than weak.
The model presented here does not pose any problem

from the point of view of the high energy gamma-ray
emission from the center of the galaxy, since very few
clumps are present in the inner core and thus there is no
Sommerfeld enhancement. Thus there is no possibility of
violating the EGRETor HESS observations of the Galactic
center or ridge, contrary to what is argued in Ref. [27].
There is a potential problem however with gamma-ray
production beyond the solar radius out to the outer halo.
From [19], the simulations are seen to yield an additional
enhancement due to clumpiness alone above 105M� of
around 80% at r200 in the annihilation luminosity.
Extrapolating to Earth mass clumps, the enhancement is
230 in the annihilation luminosity at the same radius. This
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is what a distant observer would see. The incorporation of
the Sommerfeld factor would greatly amplify this signal by
S� 104–105.

The expected flux that would be observed by looking in
a direction far from the Galactic center can be readily
estimated. Assuming an effective cross section �v ¼ 3�
10�22 cm3 s�1, corresponding to a Sommerfeld boost of
104 on top of the canonical value of the cross section times
velocity, the number of annihilations on the line of sight is
roughly 4� 10�9ðm=TeVÞ�2 cm�2 s�1. We have assumed
a Navarro-Frenk-White profile. The effect of the clumpi-
ness is still not included in this estimate. Following the
results of the simulation in Ref. [19], this value should be
multiplied by a factor �200. Convolving with the single
annihilation spectrum of a 5 TeV dark matter particle
yields the flux shown in Fig. 5. There we show the spec-
trum that would be produced if the dark matter particle
would annihilate exclusively either toW bosons, b quarks,
or � leptons (blue, red and green curves, respectively). We
also consider a candidate that annihilates to � leptons 90%
of the time and to Ws the remaining 10% of the time
(model ‘‘Hyb1’’) and a candidate that annihilates only to
quarks and leptons, with the same cross section apart from
color factors (model ‘‘Hyb2’’).

The gamma-ray signal mostly originates from the outer
halo and should be detectable as an almost isotropic hard
gamma-ray background. Candidates annihilating to heavy

quarks or to gauge bosons seem to be excluded by EGRET.
On the other hand, a dark matter particle annihilating to �
leptons is compatible with the measurements of EGRET at
these energies [28], and within the reach of FERMI.
There are however at least two reasons that induce

significant uncertainty into any estimates. First, the halo
density profile in the outer galaxy may be substantially
steeper than is inferred from an NFW profile, as current
models are best fit by an Einasto profile [29], 	ðrÞ /
exp½ð�2=�ððr=rsÞ� � 1Þ
, as opposed to the asymptotic
NFW profile 	ðrÞ / r�3. Using the Einasto profile yields
at least a 10% reduction. Another possibility is to use a
Burkert profile [30], that gives a better phenomenological
description of the dark matter distribution inside the halo,
as it is inferred by the rotation curves of galaxies [31,32].
Using a Burkert profile, the flux is reduced by a factor of 3.
Second, and more importantly, the subhalos are much less
concentrated at greater distances from the Galactic center
[33]. These effects should substantially reduce the gamma-
ray contribution from the outer halo. A future application
will be to evaluate the extragalactic diffuse gamma-ray
background where the evolution of clumpiness with red-
shift should play an interesting role in producing a possible
spectral feature in the isotropic component. Note that the
annihilation rate originating from very high redshift sub-
halo substructure and clumpiness near the neutralino free-
streaming scale [34] is mostly suppressed due to the satu-
ration of the Sommerfeld effect that we described above.
Because of the saturation of the Sommerfeld boost, it

should be possible to focus future simulations on improved
modelling of the radial profiles and concentrations of sub-
structures in the outer halo. It is these that contribute
significantly to the expected diffuse gamma if our inter-
pretation of the PAMELA and the ATIC data, and, in
particular, the required normalization and hence boost, is
correct. Of course, there are other possible explanations of
the high energy positron data, most notably the flux from a
local pulsar [35–37] that has recently been detected as a
TeV gamma-ray source.
An interesting consequence of the model proposed here

is the production of synchrotron radiation emitted by the
electrons and positrons produced in the dark matter anni-
hilations, similar to the one that is possibly the cause of the
observed ‘‘WMAP haze’’ [38,39]. For a TeV candidate,
this synchrotron emission would be visible in the � *
100 GHz frequency region. This region will be probed
by the Planck mission; the synchrotron radiation would
then give rise to a galactic foreground ‘‘Planck haze’’ in the
microwave/far infrared part of the spectrum. This quasi-
isotropic high frequency synchrotron component will be an
additional source of B-mode foregrounds that will need to
be incorporated into proposed attempts to disentangle any
primordial B-mode component in the cosmic microwave
background. Another interesting application would be to
look at the gamma-ray emission from specific objects, like

FIG. 5 (color online). Contribution to the diffuse galactic
photon background from the annihilation of a 5 TeV dark matter
particle, for different channels, when both clumpiness and the
Sommerfeld enhancement in cold clumps are taken into account,
compared with the measurements of the diffuse gamma back-
ground from EGRET [28]. The label ‘‘Hyb1’’ (solid black line)
stands for a hybrid model in which the dark matter annihilates to
� leptons 90% of the time and toW pairs the rest of the time. The
label ‘‘Hyb2’’ (dashed black line) stands for a model in which
the dark matter annihilates to leptons and quarks only, with the
same cross section apart from color factors. The latter could be
realized through the circumvention of helicity suppression.
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the Andromeda Galaxy (M31). M31 has been observed in
the relevant energy range by the CELESTE and HEGRA
atmospheric Cherenkov telescopes, and limits on the par-
tial cross section to photons, in the absence of boost, were
obtained in Ref. [40].

Finally, we note that in Sec. III we have described a
mechanism that can enhance the production of leptons
(especially light leptons) in neutralino dark matter annihi-
lations, making the leptonic channel as important as the
gauge boson channel. A dark matter candidate annihilating
mainly into leptons can simultaneously fit the PAMELA
positron and antiproton data, owing to the fact that no
antiproton excess is produced. The enhancement of the
lepton branching ratio can possibly alleviate the problem
of antiproton production following neutralino annihilation
into a pair of gauge bosons. It should however be noted that
the mechanism in question also enhances the quark chan-
nel in a similar way, thus introducing an additional source
of antiprotons. It would thus be desirable to suppress in

some way the quark annihilation channel. This could be
realized in a variation of the above mentioned mechanism,
if the lightest neutralino is quasidegenerate in mass with

the lightest slepton ~l; this is what happens, for example, in
the ~� coannihilation region. In this case, the Sommerfeld
enhancement would proceed through the creation of an

intermediate ~lþ~l� bound state that would subsequently
annihilate to the corresponding standard model lepton
pair, without producing any (tree-level) quark. This points
to the necessity of further investigating different models in
order to assess if the boost in the leptonic branching ratio is
indeed compatible with the PAMELA data.
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