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In this paper we discuss some general aspects of the gravitational wave background arising from

postinflationary short-lasting cosmological events such as phase transitions. We concentrate on the

physics which determines the shape and the peak frequency of the gravitational wave spectrum. We

then apply our general findings to the case of bubble collisions during a first order phase transition and

compare different results in the recent literature.
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I. INTRODUCTION

In cosmology there are several situations in which a
stochastic gravitational wave (GW) background can be
generated. For example, inflation leads to the quantum
generation of gravitons which are relevant at very large
wavelength. Here we are interested in gravitational waves
produced after inflation, e.g. during preheating [1] or dur-
ing the electroweak phase transition [2–6]. In these situ-
ations the gravitational waves are sourced by a transverse
(tensor type) anisotropic stress in the cosmic fluid. As these
stresses are generated causally after inflation, they have a
finite correlation length R which is limited by the Hubble
scale. In the cases we want to discuss in this work, the
anisotropic stress is nonvanishing for a finite duration ��1

which is assumed to be smaller than the Hubble time, � �
H ðt�Þ. Here t� denotes the (conformal) time when the
phase transition (or preheating) begins and ends at t� þ
��1. The time scale ��1 and the correlation length are
related by some velocity v � 1, R� v=�. In the literature,
the peak of the energy spectrum of the GWs has been found
both at wave number k ’ � [3–5] and k ’ R�1 [6,7], and
the question of the correct peak frequency of the GW
spectrum from cosmological sources is still under debate
[8]. While it is not contested that causality implies that the

GW spectrum scales as d�ðkÞ
d logk / k3 for small frequencies,

k < �, it is still unclear what precisely determines the
position of the peak and how the GW power spectrum
decays for large frequencies.

In this paper we want to address these questions. We
shall clearly identify the properties of the anisotropic stress
which determine the peak position and the decay law at
large frequencies and we shall clarify several specific
examples.

In the next section we relate the gravity wave energy
spectrum to the diagonal of the anisotropic stress spectrum.
In Sec. III we discuss several possibilities for the unequal
time correlator of the stress tensor and determine the
resulting peak frequency. In Sec. IV we study in detail
the case of bubble collisions which has been discussed in
two recent papers [5,6] with conflicting results. We clarify
the difference of the two treatments and argue that an
unphysical assumption in [6] (discontinuity of the aniso-
tropic stress at the end of the transition) leads to a peak
position that is not at kpeak ’ �, as found in [5]. We also

reveal the origin of the mild 1=k decay of the spectrum
obtained in [5] and show that it is quite fragile to small
modifications in the modeling. In Sec. V we conclude.
Notation: We work in conformal time called t, so that

the perturbed metric is given by

ds2 ¼ a2ðtÞð�dt2 þ ð�ij þ hijÞdxidxjÞ
where hij is transverse traceless, i.e. a gravitational wave

perturbation. We define the conformal Hubble parameter
H ¼ da

dt =a � _a=a ¼ aH. The scale factor is normalized

to unity today, so that conformal wave number k becomes
the physical wave number/frequency today.

II. GW ENERGY DENSITY SPECTRUM FROM A
STOCHASTIC SHORT-LASTING SOURCE

We consider a gravitational wave source, i.e., a tensor
type (transverse) anisotropic stress coming from either
colliding bubbles, or turbulence, or a stochastic scalar or
vector (e.g., magnetic) field, etc., �ijðx; tÞ. This leads to
the generation of gravitational waves via the linearized
Einstein equation

hhij ¼ 32�Ga2�X

3
�ij; (1)

where

h ¼ @2t þ 2H@t � @2x (2)
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is the d’Alembert operator (in a cosmological back-
ground), �ij is the dimensionless anisotropic stress, and

�X the energy density of the source. We consider this
source to be a statistically homogeneous and isotropic
random variable with a power spectrum Psðk; t; t0Þ defined
by

�ijðk; tÞ ¼
X

A¼1;2

eAijðkÞ�Aðk; tÞ; (3)

h�Aðk; tÞ��
Bðk0; t0Þi ¼ ð2�Þ3�ðk� k0Þ�ABPsðk; t; t0Þ:

(4)

Here eAijðkÞ is a normalized polarization tensor (e.g. the

helicity basis) and we assume parity invariance so that both
helicities have the same spectrum and are mutually
uncorrelated.

We want to consider short-lived sources. In the cosmo-
logical context, a source is called short lived if it is nonzero
from some initial time t� until some final time t� þ 1=�
with 1=� � H�1� ¼ H�1ðt�Þ. In the short-lasting case,
we can neglect the Hubble damping during the time when
the source is active and we can write the wave equation in
the form (we suppress the index A since the result is the
same for both polarizations), a� ¼ aðt�Þ

ð@2t þ k2Þhðk; tÞ ¼ 32�Ga2��X

3
�ðk; tÞ: (5)

At times t > t� þ 1=� but still during the radiation era, the
solution on subhorizon scales, k � H , is

hðk; tÞ ¼ 32�iGa3��X�
6ak

�
e�ikt

Z t�þ1=�

t�
eikt

0
�ðk; t0Þdt0

þ eikt
Z t�þ1=�

t�
e�ikt0�ðk; t0Þdt0

�

¼ 32�iGa3��X

6ak
½e�ikt�ðk; kÞ � eikt�ðk;�kÞ�: (6)

At times t < t� þ 1=� the integral in the above expression
only extends until t and the prefactor a�=a can be ne-
glected. Here

�ðk; !Þ ¼
Z 1

�1
ei!t�ðk; tÞdt ¼

Z t�þ1=�

t�
ei!t�ðk; tÞdt

is the time Fourier transform of �ðk; tÞ. Gravitational
waves are only sensitive to the diagonal of the Fourier
transform of the anisotropic stress, j!j ¼ k.

The spectrum of the tensor perturbations at t > t� þ
1=�, k � H ðtÞ becomes

hhðk; tÞh�ðk0; tÞi ¼ 2ð16�Ga3��X�Þ2
9a2k2

ð2�Þ3�3ðk� k0Þ
	 Re½Psðk; k; kÞ � e2iktPsðk; k;�kÞ�

(7)

¼ ð2�Þ3�3ðk� k0ÞHðk; tÞ; (8)

where

Psðk;!;!0Þ �
Z 1

�1
dt

Z 1

�1
dt0Psðk; t; t0Þeið!t�!0t0Þ: (9)

The second term in (7), which is multiplied by e2ikt,
averages to zero over an oscillation period (see also [8]).
Note that apart from the fact that the source is short lasting,
we do not make any assumption about its time structure so
far.
The gravitational wave energy density is defined as

�gwðxÞ ¼ h _hijðxÞ _h�ijðxÞi=ð8�Ga2Þ. Fourier transforming

this expression and using _h ’ kh we obtain

d�gw

d logðkÞ ’ k5Hðk; tÞ
2ð2�Þ3a2G ¼ 32Ga6�

9�a4
�2
X�k3 Re½Psðk; k; kÞ�;

so that

d�gw

d logðkÞ ’ 4�rad

3�2

�
�X

�rad

�
2
H 2�k3 Re½Psðk; k; kÞ�: (10)

Here we assume that the gravitational wave is generated
during the radiation dominated era.
To determine the gravitational wave spectrum it suffices

therefore to studyH 2�k3 Re½Psðk; k; kÞ�, which is a dimen-
sionless quantity [note that k3Psðk; t; t0Þ is dimensionless,
hence Psðk;!;!0Þ has the dimension of time to the fifth
power, we work in units with c ¼ @ ¼ 1].
Equation (10) is physically equivalent to Eq. 10.4.16 and

the following in Weinberg’s book [9], if one normalizes the
latter to the critical energy density in the Universe, ex-
presses it per logarithmic unit of frequency, integrates it
over directions, and considers a stochastic source which is
statistically homogeneous and isotropic such that

h�ij;lmðk̂ÞT�
ijðk̂; !ÞTlmðk̂; !Þi corresponds to Psðk; k; kÞ.

The result (10) is very general for scales which enter the
horizon during the radiation dominated era (i.e. frequen-
cies larger than about 10�11 Hz). We now analyze different
physical situations and discuss the features of the expected
gravitational wave spectrum.

III. SOME GENERAL EXAMPLES

In this section we discuss four different forms for the
unequal time power spectrum Psðk; t; t0Þ defined in Eq. (4).
These forms are quite general and have been proposed
already in Ref. [6] in the context of bubble collisions. We
analyze the GW spectrum that arises in each of these cases,
and we are mainly concerned with the time structure of
Psðk; t; t0Þ. To determine the gravitational wave spectrum
we need the double time Fourier transform given in Eq. (9).
We want to maintain statistical homogeneity and isotropy
of the source in space, because it is always justified in the
cosmological context. From these properties it follows that
the k dependence of Psðk; k; kÞ due to the spatial structure
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of the source is given simply by the space Fourier trans-
form of the source itself: statistical homogeneity and iso-
tropy imply

h�ðx; tÞ��ðx0; t0Þi ¼ Psðjx� x0j; t; t0Þ (11)

and therefore (with z ¼ x� x0, z ¼ jzj)
h�ðk; tÞ��ðk0; t0Þi ¼ ð2�Þ3�3ðk� k0Þ

	
Z

d3zeik
zPsðz; t; t0Þ; (12)

and

Psðk; t; t0Þ ¼ 4�
Z 1

0
dzz2

sinðkzÞ
kz

Psðz; t; t0Þ: (13)

More specifically, for the illustrative purpose of this
section, we assume that the anisotropic stress power spec-
trum at equal time is separable,

Psðk; t; tÞ ¼ jFðkÞj2jgðtÞj2: (14)

If the source generating the gravitational waves is causal,
this correlation function has compact support in space
given by the correlation scale R, i.e. Psðjzj; t; t0Þ ¼ 0 for
jzj> R. Then its Fourier transform is analytic at k ¼ 0
which generically means that it is white noise on large
scales (note that the tensor structure of the correlator can
impose a different behavior, e.g. for magnetic fields, which
have a k2 spectrum on large scales [10]). Furthermore, for
the total energy in gravitational waves to remain finite,
k3jFðkÞj2 has to decay for k ! 1. A simple ansatz which
satisfies these requirements and which has the correct
dimensions is

jFðkÞj2 ¼ R3

1þ ðkRÞ4 ; (15)

where R denotes the characteristic scale of the problem,
typically the correlation scale. As we shall see in the
example of colliding bubbles, it is more realistic to assume
that R is time dependent, and this time dependence can
affect the spectrum. The assumption of separability has
some immediate consequences, namely, that the slope of
the spectrum changes at the frequency k� 1=R. With the
above choice the change in slope is k�4.

We relate the characteristic length scale R to the char-
acteristic time scale � by a velocity v, R ¼ v=�. In the
following, we analyze three forms for the function gðtÞ.
The first one is discontinuous1:

g1ðtÞ ¼
�
1 t� < t < t� þ 1

�

0 else;
(16)

the second one is continuous but not differentiable at t ¼ t�
and t ¼ t� þ 1=�, i.e. gðtÞ is in C0 (but not in C1)

g2ðtÞ ¼
�
4�2ðt� t�Þð1� � ðt� t�ÞÞ t� < t < t� þ 1

�

0 else;

(17)

and the third one is in C1 (but not in C2) at t� and t� þ 1=�,

g3ðtÞ ¼
� ½4�2ðt� t�Þð1� � ðt� t�ÞÞ�2 t� < t < t� þ 1

�

0 else:

(18)

We now go on to analyze four different possibilities for
the unequal time correlation function Psðk; t; t0Þ which at
equal times reproduce the form given in Eq. (14) with the
functions FðkÞ and gðtÞ given above.

A. Totally incoherent sources

Let us first assume that the source at different times is
not correlated, i.e., it is a sequence of very short events. We
call such a source totally incoherent. In this case

h�ðk; tÞ��ðk; t0Þi ¼ ð2�Þ3�ðk� k0Þ�ðt� t0Þ
�

Psðk; t; tÞ:
(19)

We have introduced the time scale 1=�, the duration of the
source, to take care of dimensions. For the anisotropic
stress power spectrum we obtain

Psðk; t; t0Þ ¼ �ðt� t0Þ
�

jFðkÞj2jgðtÞj2

Psðk; k; kÞ ¼ jFðkÞj2
�

Z 1

�1
dtjgðtÞj2:

In this situation, the spectrum Psðk; k; kÞ is not affected by
the time Fourier transform of gðtÞ. The time integration
only contributes a multiplicative constant and the gravita-
tional wave spectrum is entirely determined by FðkÞ (the
Fourier transform of the spatial structure of the source).
From Eq. (10) we find in this case the generic expression,
y � �ðt� t�Þ
d�gw

d logðkÞ ’ 4�rad

3�2

�
�X

�rad

�
2
�
H �
�

�
2
k3jFðkÞj2

Z 1

0
dyjgðyÞj2:

(20)

In Fig. 1 we show the second line of the above equation,
namely �2k3 Re½Psðk; k; kÞ�, as a function of k=�. This
quantity determines the spectral shape of the GW spec-
trum. We plot it for the three different forms of gðtÞ
Eqs. (16)–(18), with jFðkÞj2 given by Eq. (15) and we
choose two different velocities v ¼ 1 and v ¼ 0:01.
Clearly, the shape of the GW spectrum is entirely deter-
mined by k3jFðkÞj2. The peak frequency corresponds to
k� R�1 ¼ �=v, the low frequency slope is k3 and the high
frequency one is 1=k. The different choices for g only

1This time dependence is unphysical as it implies that the
energy momentum tensor is discontinuous, but it is possible to
have situations where the energy momentum tensor changes very
rapidly and which can therefore be approximated by a
discontinuity.
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slightly affect the amplitude but not the spectral shape
which is entirely given by jFðkÞj2.

B. Totally coherent sources

Let us now consider the opposite extreme, when the
source at different times is perfectly correlated, which we
call totally coherent. We then have

h�ðk; tÞ��ðk; t0Þi ¼ ð2�Þ3�ðk� k0Þ
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psðk; t; tÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psðk; t0; t0Þ

q
; (21)

so that

Psðk; t; t0Þ ¼ jFðkÞj2jgðtÞjjgðt0Þj and

Psðk; k; kÞ ¼ jFðkÞj2
��������
Z 1

�1
dteiktjgðtÞj

��������
2 (22)

¼ jFðkÞj2jĝðkÞj2: (23)

In this case the spectrum Psðk; k; kÞ is the product of the
square of the space Fourier transform and the time Fourier
transform of the source. Therefore, the k dependence of the
gravitational wave spectrum, namely, the position of the
peak and the power of decay at high frequency, depends on
the properties of the Fourier transform of gðtÞ, denoted
ĝð!Þ. Since the correlator has compact support in both,
space and time, its Fourier transform is analytic in both k
and! hence typically starts with a constant. This plateau is
expected to extend to the inverse of the duration of the
source, �, in frequency and to the inverse of the correlation
scale, R�1 ¼ �=v in wave number.

Since v � 1, the diagonal k ¼ ! always leaves the
plateau at k ¼ ! ¼ �. Between �< k ¼ !<�=v (the

part of the diagonal between the horizontal and the vertical
dashed lines in Fig. 2), the function Psðk; k; kÞ decays with
a power law depending on the assumptions on the continu-
ity of gðtÞ. For large !, the Fourier transforms decay faster
the smoother the function is: we find the behaviors !�1,
!�2, and !�3 for the three functions g1, g2, and g3,
respectively, defined in (16)–(18).
For k > �=v, Psðk; !;!Þ decays even faster due to the

additional suppression coming from the contribution of the
spatial Fourier transform. In Fig. 2 we show schematically
the behavior of Psðk;!;!Þ in Fourier space.
In Fig. 3, we plot the GW spectral shape

�2k3 Re½Psðk; k; kÞ�, for the coherent case, as a function
of k=�, with FðkÞ from Eq. (15) and gðtÞ from Eqs. (16)–
(18), and for two choices of v. The plots confirm the
qualitative expectations: for intermediate frequencies, �<
k < �=v, the slope of k3 Re½Psðk; k; kÞ� is linear in k if gðtÞ
is discontinuous; it behaves like 1=k if gðtÞ is continuous,
but the first derivative has discontinuities, and like 1=k3 if
gðtÞ is continuously differentiable once but the second
derivative has discontinuities. It is interesting to note that
only the behavior of the correlator close to the least differ-
entiable points, i.e. the beginning and the end of the source
is relevant for the behavior at large frequencies.
For high frequencies k > �=v we have the same behav-

ior discussed above, but multiplied by the decay of jFðkÞj2
(which behaves as 1=k4). These features are clearly seen in
the plot with v ¼ 0:01, where the intermediate and high
frequency regimes are well separated. It is important to

P
s
(k, ω, ω)

k = β/v

ω = β
~ ω-n

~ k
-m~ const

~ ω-n

~ ω-n
 k

-m

k = β

ω = β/v

FIG. 2. The qualitative behavior of the function Psðk;!;!Þ is
shown for the totally coherent case. The diagonal Psðk; k; kÞ is
also plotted. In the region!< � and k < �=v we expect a white
noise spectrum of the anisotropic stress. For!>� and k > �=v
the spectrum is expected to decrease. Since the gravity wave
spectrum only probes the diagonal ! ¼ k, we expect, in the
separable case with constant R�1 ¼ �=v a first change of slope
at ! ¼ k ¼ � and a second at ! ¼ k ¼ �=v. Whether the first
or the second is the peak frequency depends on the space and
time continuity and differentiability properties of Psðk; !;!Þ.

0.1 1 10 100 1000

k / β

10
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β2
k3   R

e[
 P

s(k
,k

,k
) 

]

g
1
(t), v=1.0 

g
2
(t), v=1.0 

g
3
(t), v=1.0 

g
1
(t), v=0.01

g
2
(t), v=0.01

g
3
(t), v=0.01 

FIG. 1 (color online). The function �2k3 Re½Psðk; k; kÞ� for the
incoherent case, as a function of k=�. The three curves corre-
spond to gðtÞ given by (16)–(18), and the velocities are v ¼ 1:0
(left curves) and v ¼ 0:01 (right curves).
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notice that the property of differentiability of gðtÞ influen-
ces the peak position, changing it from k ¼ � to k ¼ �=v
if the source is discontinuous in time.

C. Sources with a ‘‘top hat’’ correlation function

This case represents an intermediate possibility with
respect to the two situations considered above: for a given

wave number k, the source is correlated only if the time
separation is sufficiently small. Given a parameter xc of
order unity, the correlation is different from zero if jt�
t0j � xc=k. To realize this behavior we set

h�ðk; tÞ��ðk; t0Þi ¼ ð2�Þ3
2

�ðk� k0Þ
�
Psðk; t; tÞ�ðt0 � tÞ�

�
xc
k
� ðt0 � tÞ

�
þ symmetric t $ t0

�
;

thus

Psðk; t; t0Þ ¼ jFðkÞj2
2

�
jgðtÞj2�ðt0 � tÞ�

�
xc
k
� ðt0 � tÞ

�
þ symmetric t $ t0

�
;

Psðk; k; kÞ ¼ jFðkÞj2 Re
�Z t�þð1=�Þ

t�
dteiktjgðtÞj2

Z minft�þð1=�Þ;ðxc=kÞþtg

t
dt0e�ikt0

�
:

(24)

In this case again, the GW spectrum bears no direct relation
to the time Fourier transform of gðtÞ, but it has a more
involved behavior. In particular, if k is large, the upper
bound of the second integral is always given by xc=kþ t
and we find

Psðk; k; kÞ !k�xc�jFðkÞj2 sinðxcÞ
k

Z t�þð1=�Þ

t�
dtjgðtÞj2: (25)

The remaining time integral only contributes as a constant.
This is indeed what is shown in Fig. 4, where
�2k3 Re½Psðk; k; kÞ� is plotted as a function of k=�, again
with the same choices for FðkÞ, gðtÞ, and v as in the
previous examples. The situation is similar to the incoher-
ent case, in particular, the peak position is always k ¼
�=v; a change in the slope from k3 to k2 is observed when
k > � and approximation (25) becomes relevant.

D. Stationary sources

Although it seems contradictory to call a source ‘‘sta-
tionary’’ which by definition is active only in a finite period
of time, 1=�, this assumption has been considered in the
literature [11], and so it is interesting to study it also here.
Furthermore, on time scales which are much shorter than
the duration of the source, stationarity may be a viable
approximation.2 A stationary source is one where the un-
equal time correlator only depends on the time difference,

h�ðk; tÞ��ðk; t0Þi ¼ ð2�Þ3�ðk� k0ÞPsðk; t� t0Þ; (26)

and therefore
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FIG. 3 (color online). The function �2k3 Re½Psðk; k; kÞ� for the coherent case, as a function of k=�: left panel, v ¼ 1, right panel,
v ¼ 0:01. The three curves correspond to gðtÞ given by (16)–(18). Notice the different peak positions for g1 with respect to the other
two.

2Note that here we only consider stationarity of the source and
not of the induced gravitational waves as done in [11].
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Psðk; t; t0Þ ¼ jFðkÞj2jgðt� t0Þj2; (27)

where the function gðtÞ now has a different meaning. In
principle it is still a function with compact support, since
the argument satisfies�1=� � t� t0 � 1=�, but continu-
ity at the boundaries is no longer an issue. A straightfor-
ward calculation gives for the spectrum (with t0 � t ¼ �)

Psðk; k; kÞ ¼ jFðkÞj2
Z t�þð1=�Þ

t�
dt

Z t�þð1=�Þ�t

t��t
d�eik�jgð�Þj2:

(28)

However, this is not the expression used in the literature,
where instead, exploiting the stationarity, the above double
integral is simplified to

Psðk; k; kÞ ¼ jFðkÞj2
�

Z 1

�1
d�eik�jgð�Þj2: (29)

This approximation holds if g is negligibly small for � <
t� � t and � > t� þ 1=�� t for all t� < t < t� þ 1=�.
Then the second integral can be extended to infinity and
the first integral contributes just the duration of the source,
1=�. In the literature usually a Gaussian function is
chosen, gð�Þ ¼ expð�ð��Þ2=2Þ (possibly with an extra k
dependence, cf. [11]). In this case, the spectral function
decays exponentially for k > � while it behaves like
jFðkÞj2 for small k.

To summarize this section, we found that the peak
frequency is typically given by the correlation length of
the source v=� and therefore strongly depends on v, ex-
cept under the coherent approximation when it is given by
the characteristic time scale of the source 1=�. Still, in this
case, there is a kink at the frequency v=�. As for the high
frequency part of the spectrum, it typically decays as 1=k /
k3jFðkÞj2, although in the coherent case, it strongly de-

pends on the time structure of the anisotropic stress, espe-
cially its differentiability properties.

IV. GW SPECTRUM FROM COLLIDING BUBBLES

In this section we discuss the GW spectrum arising from
bubble collisions. Especially, we want to compare the
results of Refs. [5,6] and comment on the differences.
All the models in the last section have one feature in

common: Because of the assumption of separability,
Eq. (14), the slope of the spectrum changes when the
frequency surpasses the length scale of the problem,R�1 �
�=v. However, this feature is not seen in the GW spectra
resulting from numerical simulations of bubble collisions
[5]. Hence, one has to relax this assumption of separability
to model the case of colliding bubbles correctly. This was
done in the analytic approach of Ref. [6] where the length
scale corresponds to the time-dependent bubble radius,
R ¼ vðt� t�Þ. Nevertheless, this analytic approach leads
to a distinct peak at k ’ R�1� ¼ �=v, which is not seen in
the numerical simulations.
Of course, the case of colliding bubbles is quite special,

and our goal is to find an analytic description that repro-
duces most features found in the numerical simulations.
We consider a bubble from a first order phase transition

which collides with a second bubble at time ti and equili-
brates to a new, larger spherical bubble at time tf (or is

absorbed by surrounding bubbles) and tf � ti & ��1. Let

us assume that the tensor type anisotropic stress of this
collision process is given by some function fnðx� xn; t�
tnÞ ¼ fðy; �Þ, where xn is the center of one of the bubbles
which collide. We consider the function fn to be of com-
pact support in both space and time, continuous in time but
with a kink at t ¼ ti. This feature has been found in [3] and
it is confirmed in the recent simulations of Ref. [5]. The
momentum density may be in the rapidly expanding bubble
wall or it may also be in its interior. The tensor type (spin
two) anisotropic stress is due to the fact that spherical
symmetry is broken during the collision.
Let us now constrain Psðk; k; kÞ from this information.

For simplicity, we suppress the tensor indices which are
irrelevant for our considerations. The anisotropic stress
power spectrum is given by

h�ðk; tÞ��ðk0; t0Þi ¼ XN
n¼1

XN
m¼1

heiðk
xn�k0
xmÞf̂nðk; t� tnÞ

	 f̂�mðk0; t0 � tmÞi: (30)

This is the expression for the spatial Fourier transform of

�ðx; tÞ from N collision processes. Here f̂n is the Fourier
transform of the tensor anisotropic stress from the nth
collision process which is centered at xn. We assume the
center positions to be uncorrelated. Therefore

heiðk
xn�k0
xmÞi ¼ 2V�1�nm�ðk� k0Þ: (31)
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FIG. 4 (color online). The function �2k3 Re½Psðk; k; kÞ� for the
top hat case (with xc ¼ 1), as a function of k=�. The three curves
correspond to gðtÞ given by (16)–(18) and the velocities are v ¼
1:0 (left curves) and v ¼ 0:01 (right curves).
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Here the volume V is included to take care of the dimen-
sions. This is a very reasonable assumption. First, the
factor �ðk� k0Þ is required by spatial homogeneity.
Besides, bubbles that are not in contact with each other
should not lead to coherent effects and the correlation
between overlapping bubbles is approximately taken into
account by the factor 2. This assumption of noncorrelation
then also insures that the total observed radiation reaches a
constant value in the limit of large volumes.

As we shall see now, only the density of bubbles, N=V
enters in the physical result. We can write

Psðk; t; t0Þ ¼ 2

ð2�Þ3V
X
n

hf̂nðk; t� tnÞf̂�nðk; t0 � tnÞi;

Psðk;!;!0Þ ¼ 2

ð2�Þ3V
X
n

eið!�!0Þtnhf̂nðk; !Þf̂�nðk; !0Þi;

Psðk;!;!Þ ¼ 2

ð2�Þ3V
X
n

hjf̂nðk; !Þj2i

¼ 2

ð2�Þ3
N

V
jf̂ðk;!Þj2: (32)

The function f̂ in the last equation is the Fourier transform
in space and time of a ‘‘typical’’ bubble collision event. It

is independent of the direction k̂ because of the statistical
average. Therefore, once we have determined the Fourier
transform of the anisotropic stress for a typical collision
process, we can just multiply it by N=V, the density of
collision events, to obtain Psðk; k; kÞ and in turn the GW
energy density spectrum.

Notice that, because different bubbles are uncorrelated
[cf. Eq. (31)], the time Fourier transform enters in the
spectral function (32). This feature is reproduced only in
the coherent case, Eq. (22). Therefore, among the different
cases discussed in the previous section and in Ref. [6], only
the coherent case can possibly reproduce the result ob-
tained in Ref. [5].

Like in the models of the last section, the collision
process has compact support in both space and time; hence
its Fourier transform is analytic in both k and ! and
therefore typically starts with a plateau. This plateau is
expected to extend to the inverse of the collision time scale,
�, in frequency and to the inverse of the typical bubble
size, R�1� ¼ �=v in wave number, where v denotes the
speed of the bubble wall. It can be deduced from the simple

two bubble case [3] that f̂iðk; tÞ is continuous in time but
its derivative is not: in particular, it has a kink at the initial
time of action of the source. As a result, for frequencies
k� �, we expect the time Fourier transform to behave like
in the coherent case of the last section Eq. (22), in combi-
nation with the time dependence given in Eq. (17) (note
that the term ‘‘coherent’’ here refers only to the temporal
behavior, while different bubbles are spatially uncorre-

lated). In particular, f̂ðk;!Þ decays as 1=!2 for large

frequencies. The k dependence of f̂ is constant for k <

R�1 and is expected to decay for k > R�1. Hence the GW

spectrum, which is proportional to k3jf̂ðk; kÞj2, scales as k3
for small frequencies, and beyond k� � it scales as k�1, at
least up to k� R�1. Beyond R�1 we would expect it to
decay faster than k�1; this behavior depends on the spatial
dependence of the anisotropic stress.
In the following we present a simple model that modifies

the analytical model of Ref. [6], in order to reproduce most
of the features found in simulations of bubble collisions in
the envelope approximation carried out in [5]. These fea-
tures are as follows:
(i) For small wall velocities, the amplitude of the GW

spectrum scales as v3 and has a peak at a frequency
k� �. The peak position does not (or only very
weakly) depend on the wall velocity [3].

(ii) For large frequencies, the spectrum scales as k�1,
independent of the wall velocity [5], even beyond
k� R�1� ¼ �=v.

(iii) For large wall velocities, the amplitude and peak
frequency are slightly reduced [5] (meaning the
amplitude grows slightly slower than v3).

We model the time dependence of the collision process by
the function g2ðtÞ given in Eq. (17) which has the differ-
entiability property we are looking for. The spatial Fourier
transform might now be approximated by the expression
(15) with R ¼ vðt� t�Þ. To recover the modeling used in
Ref. [6] we slightly modify the spatial Fourier transform to

jfðk; tÞj2 ¼ R3
1þ ðkR3 Þ2

1þ ðkR2 Þ2 þ ðkR3 Þ6
: (33)

This is the result of Ref. [6] for the spatial Fourier trans-
form of the anisotropic stress, Psðk; t; tÞ. Using the above
expression for the bubble radius, it is easily seen that (33)
leads to a kink roughly at k ’ R�1� ¼ �=v, which is the
size of the largest bubbles at the end of the transition.
Because of the discontinuity of the anisotropic stress at
the end of the transition, Ref. [6] actually found a peak at
R�1� . However, the simulations only show a peak at � but
no peak nor a kink at �=v. The discrepancy between the
two approaches is due to two different time evolutions for
the correlation length.
The simulations evaluate the time evolution of the por-

tion of uncollided bubble wall. It is hereby assumed that
the anisotropic stress is localized in a thin shell close to the
bubble wall and that after the collision of neighboring
bubbles the stress vanishes inside the bubbles. Hence com-
pletely collided bubbles (whose walls are completely
within neighboring bubbles) do not contribute to the an-
isotropic stress. Close to the end of the phase transition the
relevant length scale is then given by the dimensions of the
still uncollided bubble wall regions. The correlation length
of the analytic model RðtÞ should then be replaced with this
characteristic size in order to approximate the simulation
result. Indeed, once the transition comes close to comple-
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tion, even though the bubble sizes do grow, the typical size
of colliding regions is actually decreasing and tending to
zero at the end of the phase transition (see Fig. 5).
Therefore, we replace RðtÞ by the size of a typical colliding
region, which vanishes not only at the beginning but also at
the end of the phase transition. This reflects the fact that the
source reaches a peak and eventually switches off. We
model this by introducing a new characteristic length

LðtÞ ¼ v

�
g2ðtÞ; (34)

which we insert into (33) in the place of R and into the
formula for the spectrum in the coherent approximation,
Eq. (22). However, when doing so we multiply by a factor

LðtÞ3=2, and lose the property that fðk; tÞ should be C0 but
not C1 at the end points of the transition (which would give
us the correct slope).

This problem can be fixed by arguing that the prefactor
R3, instead of being connected to the correlation length as
in [6], actually just represents a volume factor connected to
the uncollided bubble portion. Therefore, R3 should rather
be replaced by R3 ! L2�L, where �L ’ R�� is a typical
shell thickness. In this case the prefactor becomes LðtÞ	ffiffiffiffiffiffiffiffi
R��

p
. Here � < 1 is an arbitrary constant which is small in

the thin wall approximation, the case considered in simu-
lations. This (somewhat arbitrary) construction leads to

fðk; tÞ ¼ LðtÞ
�
v�

�

�
1=2

�
1þ ðkL3 Þ2

1þ ðkL2 Þ2 þ ðkL3 Þ6
�
1=2

(35)

where L ¼ LðtÞ is given in Eq. (34).
The form of the resulting GW spectrum is shown in

Fig. 6. This simple model leads to a velocity independent
peak frequency and nicely reproduces the k�1 decay for
large frequencies in accordance with the results from
simulations [5]. In particular, there is no additional sup-
pression at very large frequencies, k � �=v. The oscilla-
tory behavior should vanish if averaged over several
bubbles with slightly different nucleation times and sizes.

Even though this model reproduces all qualitative fea-
tures found in the simulations of bubble collisions in the
envelope approximation, this analysis should not be under-
stood as a derivation, since some features of the spectrum

result from the judicious choice made in Eq. (35), as we
have argued above. For example, if we choose to replace

LðtÞ ffiffiffiffiffiffiffiffi
R��

p
in the prefactor by LðtÞ3=2, which seems more

consistent, we obtain a k�3 behavior for large k since the
time dependence is now C1; see Fig. 7. On the other hand, if
we argue that the correlation scale should be the size of the
largest bubbles RðtÞ ¼ vðt� t�Þ as in [6], and we just fix
the discontinuity problem by

fðk; tÞ ¼ g2ðtÞR3=2ðtÞ
�

1þ ðkR3 Þ2
1þ ðkR2 Þ2 þ ðkR3 Þ6

�
1=2

; (36)

the spectrum has a peak at �, a 1=k behavior between �
and v=�, and an additional kink at v=� beyond which it
decays more rapidly; see Fig. 8.
Let us compare these findings with the results of [6].

First, we want to stress that bubble collisions in the ap-

t
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v

FIG. 5 (color online). Typical time evolution of the correlation
length (corresponding to the characteristic scale of the colliding
region) and therefore of the source (anisotropic stress) generat-
ing the gravitational waves calculated in numerical simulations
of bubble collisions [5].
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FIG. 6 (color online). Qualitative behavior of the GW spec-
trum for the model of Eq. (35) that reproduces the results from
numerical simulations of bubble collisions.
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proach of Ref. [6] are modeled using Wick’s theorem. The
anisotropic stress correlator comes from the product of four
velocities,

h�ijðxÞ�lmðyÞi � hviðxÞvjðxÞvlðyÞvmðyÞi
¼ �imðx� yÞ�jlðx� yÞ

þ �ilðx� yÞ�jmðx� yÞ (37)

where �imðx� yÞ ¼ hviðxÞvmðyÞi and the velocity corre-
lator is nonvanishing only if x and y are in the same bubble.
Thus, the above products are nonzero if x and y are in the
same bubble with center, say z for the first factor and with
center z0 for the second factor. The probability that z ¼ z0
is vanishingly small. Hence x and y belong to two different
bubbles which therefore must overlap. In this treatment,
the scale associated with Psðk; t; t0Þ is the size of the over-
lapping region which is of the order of the size of a typical
bubble, RðtÞ. The only difference between the approach
followed in Ref. [6] and the ansatz in Eq. (36) is the
prefactor g2ðtÞ. This prefactor is nevertheless quite impor-
tant since it renders the anisotropic stress continuous in
time. In Ref. [6] the anisotropic stress is an increasing
function up to the end of the phase transition and is then
abruptly set to zero. For the coherent case, this modifies the
spectrum especially between � and �=v, since the high
frequency behavior of a discontinuous function goes like
1=k. For this reason, in the totally coherent approximation
which is relevant here, the gravitational wave power spec-
trum found in Ref. [6] grows like k3k�2 ¼ k in the interval
�< k < �=v and decays only for k > �=v, leading to a
peak at R�1� ¼ �=v (cf. Fig. 3). This behavior is seen only
if the stresses build up dominantly toward the end of the
transition, something that is not seen in the simulations.
Once this discontinuity is removed by e.g. multiplying with
g2ðtÞ, the treatment proposed in Ref. [6] turns into the
spectrum shown in Fig. 8, for which the peak is at � (cf.

also Fig. 3), but which still has a kink at R�1� . This kink
does not appear in the simulations.
The simulations discussed in [5] show two major differ-

ences with respect to the analytic modeling presented in
Ref. [6]. First, in the simulations, the anisotropic stress
correlator goes to zero at the end of the transition and does
not decay abruptly as assumed in the analytical modeling.
Furthermore, the typical scale which enters the spectrum is
not the size of the bubbles as assumed in the analytical
modeling, but it is the size of the not yet collided region of
overlapping bubbles. This size starts small, reflecting the
initial smallness of the bubbles, and goes to zero toward the
end of the transition when most bubbles are nearly fully
collided.
In order to account for these differences, and recover the

same result for the GW spectrum, we can modify the
analytical model in [6] as explained above, leading to
Eq. (35). It is important to remark that this is the most
obvious treatment of the volume factor as L3ðtÞ does not
lead to the spectrum obtained in the simulations. To re-
cover the results of the simulations, the shell thickness R��
has to be introduced. This is not surprising, since the
simulations are performed in the envelope approximation.
Note also that the 1=k behavior found in the simulations

is very sensitive to the time differentiability of the spatial
Fourier transform of an average collision event, the func-
tion fðk; tÞ. This function has to be in C0 but not in C1. The
derivative has to have a jump (but not a divergence) at
either t� or t� þ 1=�, and the nonvanishing slope of the
right-side derivative at t� (or left side at t� þ 1=�) may not
depend on k. This behavior can be modeled with Eq. (35)
where it is important not only that LðtÞ goes to zero in a
continuous but nondifferentiable way at both ends of the
phase transition, but also that the k dependence of fðk; tÞ
vanishes at these times.
Finally, let us estimate the constant of proportionality

between the GW spectrum and the anisotropic stress

jf̂ðk; !Þj2. The total, dimensionless anisotropic stress den-
sity for a typical bubble collision event is of the order

f̂ðx; tÞ ’ �
�vac

�rad þ �vac

; (38)

where 0< �< 1 denotes the fraction of the latent heat that
is transformed into kinetic bulk motion of the plasma and
finally into anisotropic stress [2]. For infinitely thin bubbles
in vacuum, where only the Higgs field plays a role, � ¼ 1
and �rad ¼ 0. If the phase transition happens in a thermal
bath, ��vac=�tot ’ v2

f, where vf denotes the typical veloc-

ity of the thermal bath particles resulting from the interac-
tion with the bubble wall. The volume of a typical bubble is
given by

R3� ¼ v3

�3
/ V

N
: (39)

When calculating the space Fourier transform of (38) we
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FIG. 8 (color online). The qualitative behavior of the GW
spectrum is shown for the model of Eq. (36).
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obtain a volume factor of the order of the size of the
bubble. Furthermore, the time integration gives roughly a
factor 1=� so that we have

jf̂ðk ¼ 0; ! ¼ 0Þj2 � �2

�
�vac

�tot

�
2 v6

�8
: (40)

Inserting this in the anisotropic stress power spectrum
Eq. (32) yields

Psð0; 0; 0Þ � �2

�
�vac

�tot

�
2 v3

�5
: (41)

For the gravitational wave energy density given in Eq. (10)
this yields, together with the typical behavior in the wave
number obtained from the numerical simulations and from
the modeling leading to Fig. 6,

d�gw

d logðkÞ ’
4�rad

3�2
�2

�
�vac

�tot

�
2
�
H �
�

�
2
v3

� ðk=�Þ3 k < kpeak

ð�=kÞ kpeak < k:

(42)

For small wall velocities v � 1, the wave number of the
peak is roughly constant kpeak ’ �, while a slight depen-

dence on the velocity is observed in the simulation result
for big velocities.

Note, however, that the velocity v relating the character-
istic scale R� and the characteristic time ��1 corresponds
to the speed of the bubble wall only if the phase transition
proceeds through detonations. In this case, v is anyway

larger than the relativistic speed of sound, v � 1=
ffiffiffi
3

p
. In

the deflagration case, on the other hand, the speed of the
bubble wall is subsonic, and the bubble is preceded by a
shock wave in the symmetric phase (while the broken
phase fluid is at rest). It is the collision of these shock
waves that eventually leads to the generation of gravita-
tional waves. Therefore, also in the deflagration case, the
velocity relating the characteristic length and time scales of
the problem is supersonic (since it corresponds to the front
of a shock wave) [6]. In summary, values of v smaller than
the relativistic speed of sound are not realistic and have
been considered here just for illustrative purposes. This
means that the difference in the peak position between the
analytical and the simulation result, although conceptually
relevant, is probably negligible from the point of view of
observations. However, it is important to notice that since
the simulations are carried out in the envelope approxima-
tion, they can only model the detonation case and are valid
under the assumption of supersonic velocities of the bubble
wall.

V. CONCLUSIONS

In this paper we have discussed some general consid-
erations which determine the spectrum of gravitational
waves from a phase transition, or from some other short-
lasting cosmological events which lead to the formation of

anisotropic stresses. A first, a relatively known result is that
the gravitational wave energy spectrum, d�gw=d logðkÞ
always grows like k3 on a large scale, i.e. scales much
larger than all scales in the problem. Furthermore we have
seen that, if the unequal time correlator of the anisotropic
stress is totally incoherent or coherent only over less than
one wavelength, the time structure of the event does not
affect the spectral shape, which is then entirely given by
the spatial structure of the correlator. This situation
changes if the source is close to totally coherent. Then
the spectrum changes at the characteristic time scale of the
problem to turn from k3 to
(1) k, if the anisotropic stress correlator is discontinuous

(in time) at the beginning (or the end) of the source.
(2) k�1, if the anisotropic stress correlator is C0 but the

first derivative jumps at the beginning (or the end) of
the source.

(3) k�3, if the anisotropic stress correlator is C1 but the
second derivative jumps at the beginning (or the
end) of the source.

These slope changes are realized if the jump height is
independent of k; otherwise, the result is more compli-
cated. In case 1, an additional change of slope is needed at
the typical spatial scale of the problem, for the total energy
density to remain finite. Whether there is an additional
change of slope in the other cases depends on the details.
If the spatial structure does not have any intrinsic time
dependence, i.e. in the separable case (14), this is certainly
expected. However if the typical spatial scale of the prob-
lem depends on time this may affect the decay for large k.
Numerical simulations [5] indicate that for gravitational

waves from colliding bubbles the second case above is
realized, in such a way that there is no additional change
of slope at higher frequencies. This is because the typical
spatial scale of the source LðtÞ tends to zero also at the end
of the phase transition. This result, which is at odds with
the naive expectation that the typical scale would be the
bubble size, RðtÞ (which tends to R� ¼ v=� at the end of
the transition) is quite important. It implies a mild 1=k
decay of the gravitational wave signal at high frequency
which is most relevant for the detectability of the corre-
sponding gravitational waves, e.g. from the electroweak
phase transition (see Ref. [5]).
In the simulations, the typical spatial scale of the prob-

lem is connected to the portions of the uncollided bubble
wall at a given time, and therefore goes to zero both at the
beginning (when bubbles have not yet started to collide)
and at the end of the phase transition. The statistical
average is then performed by averaging the GW emitted
by a given realization over several directions. On the other
hand, in the analytical approach followed in [6], the char-
acteristic randomness of the problem is assumed from the
beginning. Therefore, what matters are correlation lengths,
and the most obvious correlation length of the problem is
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given by the bubble size. This is so in the analytical
approach of [6] which models the ‘‘overlap’’ of bubbles,
and not directly the ‘‘collisions.’’ In contrast, in the simu-
lations, the bubble size does not appear as an important
scale of the problem. Therefore, in order to recover the
simulation results from the analytical model, one needs to
identify the size of portions of the uncollided bubble wall
as the relevant characteristic scale. Consequently, the ‘‘vol-
ume’’ factor R3 coming from the spatial Fourier transform
[cf. Eq. (35)] also has to be modified; however, this cannot
be done simply by setting it to the uncollided bubble
portion size cubed. To recover the simulation spectrum,
the portions of uncollided bubble wall must only enter as a
surface portion, while the thickness should be taken as an
independent constant. This is to be understood in the
context of the thin wall approximation used in the simula-
tions. Taking into account a time-dependent finite thick-
ness of the shell of stress �LðtÞ would tame the kinks in
Fig. 5 and also introduce an additional length scale in the
GW spectrum. Consequently, using a finite wall thickness
in the simulations would most probably lead to a steeper

slope in the GW spectrum compared to the result in the thin
wall approximation for f > 1=�LðtfinÞ. Accounting for a
finite wall thickness in the analytic approach [6] leads to
the same result, but the steeper slope starts at f > 1=RðtfinÞ
[cf. Eq. (36) and Fig. 8].
It will be important to study the implications of these

results for the production of gravitational waves from
turbulence and from stochastic magnetic fields. In the first
case, the typical spatial scale of the problem most probably
does not tend to zero at the end of the turbulent phase,
while magnetic fields are likely to be long lived and there-
fore have to be treated differently.
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