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In this paper we study the impact of the fractional matter density uncertainty in the reconstruction of the

equation of state of dark energy. We consider both standard reconstruction methods, based on the

dynamical effect that dark energy has on the expansion of the Universe, as well as nonstandard methods,

in which the evolution of the dark energy equation of state with redshift is inferred through the variation of

fundamental couplings such as the fine-structure constant, �, or the proton-to-electron mass ratio, �. We

show that the negative impact of the matter density uncertainty in the dark energy reconstruction using

varying couplings may be very small compared to standard reconstruction methods. We also briefly

discuss other fundamental questions which need to be answered before varying couplings can be

successfully used to probe the nature of the dark energy.
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I. INTRODUCTION

Multiple observations in the past decade have provided
very strong evidence for a recent acceleration of the uni-
verse [1–6]. In the context of Einstein general relativity,
such an acceleration can only be explained by an exotic
dark energy component violating the strong energy condi-
tion. From a purely phenomenological point of view, the
cosmological constant appears to be the simplest dark
energy candidate. Still, a dynamical scalar field is expected
to be a more plausible explanation particularly in face of
the very large discrepancy between the observationally
inferred vacuum energy density and theoretical
expectations.

If the dark energy is dynamical then a fundamental
question immediately arises regarding the characterization
of the evolution of its properties with redshift and, in
particular, of its equation of state. Standard methods to
reconstruct the dark energy equation of state as a function
of the redshift rely on the dynamical effect that dark energy
has on the expansion of the universe [7]. However, dark
energy is dynamically relevant mainly at recent times
which makes the task of accurately determining the evo-
lution of its equation of state at z * 1 an almost impossible
one, at least using standard methods.

On the other hand, cosmological variations of funda-
mental couplings can be probed over a wide redshift range.
At high redshift cosmic microwave background tempera-
ture and polarization anisotropies [8–15] and light element
abundances [9,14,16,17] constrain the value of � at z�
103 and z� 1010 to be within a few percent of its present-
day value. Positive results suggesting a cosmological varia-
tion of the fine-structure constant, �, and the proton-to-

electron mass ratio, �, at about the 10�5 have been re-
ported in the redshift range z ¼ 1–4 [18–21].
Unfortunately, other analyses have found no evidence for
such variations [22–24]. At even lower redshifts laboratory
experiments and the Oklo natural nuclear reactor provide
very stringent limits on the time variation of � and � [25–
28].
If the dark energy is described by a quintessence field,

�, nonminimally coupled to the electromagnetic field [29–
41], then the dynamics of � is coupled to the evolution of
�. It was shown [42] that, under certain assumptions,
varying couplings may be used to probe the nature of
dark energy over a larger redshift range than that spanned
by standard methods (such as supernovae [1–4] or weak
lensing [43–45]). However, a perfect knowledge of �m0

was assumed which cannot be realized in practice. In the
present paper we eliminate this shortcoming by studying
the impact that the matter density uncertainty has on the
dark energy reconstruction using varying couplings.
This paper is organized as follows. In Sec. II we start by

quantifying the impact of the fractional matter density
uncertainty in the determination of the evolution of the
dark energy equation of state with redshift using standard
reconstruction methods. In Sec. III we perform a quantita-
tive analysis of the same problem now assuming that
varying couplings are used to probe the nature of dark
energy. We consider a broad class of models for the evo-
lution of � and � where the gauge kinetic function is a
linear function of a quintessence-type real scalar field
described by a Lagrangian with a standard kinetic term
and a scalar field potential, Vð�Þ. We conclude in Sec. IV
with a brief summary of our results and a discussion of
future prospects.
Throughout this paper we shall use units with @ ¼ c ¼

8�G ¼ 1 and a metric signature ðþ;�;�;�Þ.*ppavelin@fc.up.pt
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II. STANDARD DARK ENERGY
RECONSTRUCTION

Consider a flat homogeneous and isotropic Friedmann-
Robertson-Walker universe whose dynamics is described
by

H2 ¼ �

3
; (1)

HH0 ¼ �1
2ð�þ pÞ; (2)

where � is the total density, p is the total pressure, a is the
scale factor, a prime represents a derivative with respect to
lna, H ¼ _a=a is the Hubble parameter, and a dot repre-
sents a derivative with respect to physical time, t.
Equations (1) and (2) can also be combined to give

w � p

�
¼ � 2

3

H0

H
� 1: (3)

Equation (3) tells us that a precise knowledge of the uni-
verse dynamics (and therefore of the evolution of H) is all
that is required in order to determine the evolution of w. If
the universe contains only minimally coupled fluids
energy-momentum conservation implies that the equation

�0 þ 3ð�þ pÞ ¼ 0 (4)

is satisfied not only by the mixture but also by each
individual fluid. In this paper we will make the simplifying
assumption that the universe is constituted solely by matter
and dark energy with energy densities �m and ��, thus

neglecting the residual (at recent times) radiation compo-
nent. Consequently, � ¼ �m þ �� and p ¼ p� (taking

pm ¼ 0) so that

w ¼ w�

1þ�m=��

¼ w�ð1��mÞ; (5)

where �m ¼ �m=�, �� ¼ ��=�, and �m þ�� ¼ 1

since we are considering a flat universe.
Standard methods to reconstruct the dark energy equa-

tion of state rely on the dynamical effect that dark energy
has on the expansion of the universe. They are faced with
two main limitations. The first is related to the fact that the
dynamics of the universe is not known with infinite preci-
sion. Hence, at each redshift, z, the value of w will have an
uncertainty �w that will translate into a much larger
uncertainty in �w�:

�w� ¼ �w

�
1þ�m

��

�
¼ �w

1��m

: (6)

For the moment we are assuming no uncertainty in�m (i.e.
��m ¼ 0).

The ratio �m=�� grows rapidly with redshift at recent

times and consequently we expect that �w� � �w for

z * 1 (note that 1þ z ¼ 1=a). If we assume that the dark
energy is a cosmological constant then

1þ�m

��

¼ 1þ�m

��

¼ 1þ�m0ð1þ zÞ3
��0

� 1þ 0:37ð1þ zÞ3; (7)

which becomes a very large factor at high redshift (here we
took �m0 ¼ 0:27 and ��0 ¼ 0:73 as favored by the five-
year WMAP results [6]). The subscript ‘‘0’’ indicates that
the variables are to be evaluated at the present epoch.
A second source of uncertainty in w� is due to the fact

that we do not know �m0 with infinite precision [46–48].
This uncertainty would be present even if we had a perfect
knowledge of the evolution of w (in which case �w would
be zero). Although this ideal situation cannot be achieved
in practice, we will consider it for the sake of illustration.
Still, a perfect knowledge of the dynamics of w would not
imply that the evolution of w� could also be determined

with arbitrary precision. An uncertainty in the value of
matter density, ��m, will be reflected in a corresponding
uncertainty in the value of ��, since we are unable to

determine, with absolute certainty, whether or not a frac-
tion of the matter density is really dark matter or dark
energy. The corresponding uncertainty in the dark energy
equation of state parameter is equal to

�w� ¼ 1

2

��������
p�

�� � ��m

� p�

�� þ��m

���������
jw�j��m

1��m

¼ jwj��m

ð1��mÞ2
; (8)

where ��m ¼ ��m=� > 0 and the approximation is valid
only if �w� � jw�j. If the dark energy is a cosmological

constant then we have

�m ¼ �m0

�m0 þ��0ð1þ zÞ�3
; (9)

with �� ¼ �� ¼ 1��m. On the other hand we assume

that

��m

�m

¼ ��m0

�m0

: (10)

In Fig. 1 we plot the evolution with redshift, z, of the
uncertainty in the dark energy equation of state parameter,
½w� ��w�;w� þ �w��, assuming again that �m0 ¼
0:27, ��0 ¼ ��0 ¼ 0:73, and an observational uncer-

tainty ��m0 ¼ 0:01 in the fractional matter density. The
dashed line represents the correct value of the dark energy
equation of state parameter (equal to �1 independently of
z, in this particular case). The figure clearly shows that a
small uncertainty in the value of �m0 at z ¼ 0 originates a
very large uncertainty in the evolution of the dark energy
equation state, specially at high redshift.
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III. DARK ENERGY RECONSTRUCTION USING
VARYING COUPLINGS

In this section we shall consider a class of models, where
a quintessence field is nonminimally coupled to the elec-
tromagnetic field. These models are defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L; (11)

where

L ¼ L� þL�F þLother; (12)

L� ¼ X � Vð�Þ,
X ¼ 1

2r��r��; (13)

Vð�Þ is the scalar field potential,

L �F ¼ �1
4BFð�ÞF��F

��; (14)

BFð�Þ is the gauge kinetic function, F�� are the compo-

nents of the electromagnetic field tensor, and Lother is the
Lagrangian density of the other fields. The fine-structure
constant is given by

�ð�Þ ¼ �0

BFð�Þ (15)

and, at the present day, one has BFð�0Þ ¼ 1.
We will also assume that the gauge kinetic function is a

linear function of � so that one has

��

�
¼ ���; (16)

where �� ¼ �0 � �, �� ¼ �0 ��, and � is a constant.
The evolution of � induced solely by its coupling to

electromagnetically interacting matter is so small (given
weak equivalence principle constraints [30,49,50]) that the
resulting time variation of � can be neglected. Hence,
throughout this paper we shall assume that the dynamics
of � is fully driven by the scalar field potential, Vð�Þ (and
damped by the expansion). Throughout this paper we shall
also neglect the spatial variations of� which was shown to
be a good approximation in this context [40,51,52].
The relation between the variations of � and � is model

dependent but, in general, we expect that

_�

�
¼ R

_�

�
(17)

where R is a model dependent constant (see [53–59] for a
detailed discussion of specific models).

Taking into account that � ¼ �m þ ��, �� ¼ _�2=2þ
Vð�Þ, p� ¼ _�2=2� Vð�Þ, pm ¼ 0, and _� ¼ �0H,

Eqs. (1) and (4) can be written as

H2 ¼ 1
3ð�m þ ��Þ; (18)

�0
� ¼ �3H2�02; (19)

or alternatively

H2 ¼ H2
0�m0ð	þ a�3Þ; (20)

	0

	0
0

¼
�
H

H0

�
2
�
�0

�0
0

�
2
; (21)

where 	 ¼ ��=ð�0�m0Þ so that

	0 ¼ ��0=�m0: (22)

Substituting Eq. (20) into Eq. (21), one obtains [36]

	0 ¼ 	0
0

	0 þ 1

�
�0

�0
0

�
2ð	þ a�3Þ: (23)

Note that the linearity assumption given by Eq. (16) im-
plies that �0=�0

0 ¼ �0=�0
0. The dark energy equation of

state parameter is given by

w� ¼ �1þ �� þ p�

��

¼ �1� 1

3

�0
�

��

¼ �1� 1

3

	0

	
;

(24)

and consequently

	0
0 ¼ �3	0ðw�0 þ 1Þ ¼ �3	0

�
w0

1��m0

þ 1

�
: (25)

Equation (24) can also be written as

FIG. 1 (color online). Evolution with redshift, z, of the uncer-
tainty in the value of w� assuming a background �CDM model

with �m0 ¼ 0:27, ��0 ¼ ��0 ¼ 0:73, and an observational

uncertainty ��m0 ¼ 0:01 in the fractional matter density. The
dashed line represents the correct value of the dark energy
equation of state parameter (equal to �1 independently of z,
in this particular case).
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w� ¼ �1þ�02H2

��

¼ �1þ �02

3��

; (26)

which implies that

f� � w� þ 1

w�0 þ 1
¼

�
�0

�0
0

�
2 ��0

��

¼
�
�0

�0
0

�
2 ��0

��

; (27)

where

�� ¼ ��

�
¼ 	H2

0�m0

H2
¼ 	

	þ a�3
: (28)

In this paper our aim is to isolate the effect of the
uncertainty in �m0 on our ability to reconstruct the evolu-
tion with redshift of the dark energy equation of state and,
consequently, we shall take the ideal situation in which the
evolution of � with redshift is known with infinite preci-
sion (note that forecasts taking into account expected
measurement uncertainties for the next generation of spec-
trographs have already been presented elsewhere [42]).
Hence, here we assume that the uncertainty in f�ðzÞ is

completely due to the uncertainty in��ðzÞ [or equivalently
in 	ðzÞ].

In Fig. 2 we plot the evolution with redshift, z, of the
equation of state parameter, w�, determined using

Eqs. (27) and (28) and taking w0 ¼ �0:68,�m0 ¼ 0:27þ
��m0 with ��m0 ¼ �0:04,�0:02,�0:01, 0.01, 0.02, 0.04
(��0 ¼ 1��m0). The blue stripe represents the interval

½w� ��w�;w� þ�w�� with the lower and upper limits

of the interval calculated using �m0 ¼ 0:26 and �m0 ¼
0:28, respectively. For the sake of illustration we consider a
model with constant �0 (upper panel) and another with

�0 / a1=2 (lower panel). However, we have verified that
our main conclusions will not depend on these particular
choices for the evolution of �.

We clearly see in Fig. 2 that the error bars on the dark
energy equation of state reconstruction (blue stripe) due to
the uncertainty in the value of �m0 do not tend to increase
with redshift. We can see that is indeed the case by con-
sidering a particular set of models in which 	 becomes
considerably greater than 	0 at large z. When z * 1 we
have 	a3 & 1 and, consequently,

��

��0
� 	a3

��0

; (29)

	0

��0
�

�
�0

�0
0

�
2

0a

�3; (30)

where


0 ¼ 	0
0

��0ð	0 þ 1Þ ¼ �3ð1þ w�0Þ: (31)

The uncertainty in the value of 
0 is given by

ð1þ w�0Þ�
0

j
0j ¼ �w�0: (32)

If the value of	 at high redshift is mainly determined by its
evolution at z * 1 then Eqs. (27), (29), and (30) imply that
f� is roughly proportional to 
�1

0 and, consequently,

df�=f� ��d
0=
0 for z * 1. On the other hand, from

Eq. (27) we have that dw� ¼ f�ðdw�0 þ ð1þ
w�0Þdf�=f�Þ and we may now estimate the high-redshift

uncertainty in the equation of state parameter in these
models to be

�w� � f�

�
�w�0 � ð1þ w�0Þ�
0

j
0j
�
� 0: (33)

FIG. 2 (color online). The evolution with redshift, z, of the
equation of state parameter, w�, determined using Eqs. (27) and

(28) and taking w0 ¼ �0:68, �m0 ¼ 0:27þ ��m0 with
��m0 ¼ �0:04, �0:02, �0:01, 0.01, 0.02, 0.04 (��0 ¼
1��m0). The blue stripe represents the interval ½w� �
�w�;w� þ�w�� with the lower and upper limits of the interval

calculated using �m0 ¼ 0:26 and �m0 ¼ 0:28, respectively.
Here we consider a model with constant �0 (upper panel) and
another with �0 / a1=2 (lower panel).
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Although this approximation is not valid at low redshift or
while 	� 	0, it clearly shows that, contrary to standard
reconstruction methods, the uncertainty in the equation of
state parameter due to the uncertainty in �m0 does not
blow up at high redshift (assuming that the lower limit of
the interval ½w�0 � �w�0; w�0 þ�w�0� is significantly

above �1). This is hardly surprising since if we were
able to track the evolution of �� / 	 with redshift with

arbitrary precision (up to a normalization factor), then we
would also have a perfect of knowledge of w�ðzÞ.

However, if we consider values of w�0 close to�1 then

the distance between adjacent lines in Fig. 2 (upper and
lower panels) tends to increase with redshift. This is related
to the fact that as we approach w�0 ¼ �1 we get closer to

the cosmological constant case for which w� ¼ �1 inde-

pendently of z. Still, we note that an observation of a
variation of � at z ¼ 0 immediately leads to an upper
bound on w�0 [50]. In particular, from Eqs. (16) and (20)

one obtains

w�0 ¼ �1þ
�

�0
0

��0

ffiffiffiffiffiffiffiffiffiffi
��0

q
�
2
; (34)

where � � 1:8� 10�4 considering a variation of � alone
(i.e. fixing all other gauge couplings). The constraints on �
are in general much stronger when more realistic models,
based on the unifications of gauge couplings, are consid-
ered [50]. Hence, if �0

0 � 0 then w�0 cannot be arbitrarily

close to �1. The relation between experimental limits at
z ¼ 0 and varying coupling constraints higher redshifts is
of course model dependent. However, if� is always rolling
down a monotonic potential then low-redshift constraints
on the evolution of � may already provide stringent limits
on the corresponding variations at high-redshift [41].

The upper panel of Fig. 2 shows that the error bars due to
the uncertainty in the value of �m0 can become signifi-
cantly smaller at large redshift. Note that Eq. (4) implies
that for a constant �0 the energy density of the scalar field
is expected to track the background density at early times
since

�0
� ¼ �3�02H2 / �: (35)

If j�0
0j is not too small then w� ! 0 deep in the matter era

irrespectively of the initial conditions. This is the main
reason why the uncertainty becomes very small at large
redshift in the upper panel of Fig. 2. We have also verified

that if �0 / a1=2 (lower panel) then w� ! �1=3 asymp-

totically at large z. However, in this case the convergence is
slower than in the previous one. One should however bear
in mind that future spectroscopic determinations are un-

likely to be able to probe the dynamics of dark energy
beyond z ¼ 5–6.

IV. CONCLUSIONS

In this paper we quantified the impact of the fractional
matter density uncertainty, ��m0, in the reconstruction of
the equation of state of dark energy considering both
standard and nonstandard reconstruction methods.
Standard methods are very sensitive to this uncertainty
since the ratio �m=�� is expected to become very large

at high redshift. On the other hand, we have shown that the
negative impact of the matter density uncertainty may be
much smaller in the case of nonstandard reconstruction
methods in which the evolution of the dark energy equation
of state with redshift is inferred through the variation of
fundamental couplings (such as � or �).
There are, however, a number of other important ques-

tions which still need to be answered positively if varying
couplings are to be successfully used to infer the dynamics
of dark energy: (i) Do � (�) evolve with cosmic time and
are such variations observable ? (ii) Is dark energy a
quintessence scalar field, �, described by a Lagrangian
with a standard kinetic term and an effective potential
which is a function of � alone? (iii) Are the variations of
� (�) linearly coupled to �?
Presently, the answer to the first question is still con-

troversial. Although a number of results suggest a cosmo-
logical variation of � and � in the redshift range z ¼ 1–4,
other analyses have found no evidence for such variations.
However, this situation is expected to be fully clarified in
the next few years with the next generation of high reso-
lution spectrographs [60]. Unfortunately, questions (ii) and
(iii) may be easier to answer negatively than positively (for
example if standard and nonstandard reconstruction meth-
ods give incompatible results). Also, note that the varying-
couplings method is in general affected by the observatio-
nal uncertainty in the present-day equation of state w0,
which is necessary to calibrate the relation between �0 and
�0 [36]. Still, given the strong limitations of standard
reconstruction methods alternative promising approaches,
such as those based on the time variation of fundamental
couplings, deserve to be further investigated.
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