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In this paper we fully calculate the non-Gaussianity of primordial curvature perturbation of the island

universe by using the second order perturbation equation. We find that for the spectral index ns ’ 0:96,

which is favored by current observations, the non-Gaussianity level fNL seen in an island will generally lie

between 30 and 60, which may be tested by the coming observations. In the landscape, the island universe

is one of anthropically acceptable cosmological histories. Thus the results obtained in some sense mean

the coming observations, especially the measurement of non-Gaussianity, will be significant to clarify how

our position in the landscape is populated.
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The vacua in the landscape will be populated during
eternal inflation (see e.g. Refs. [1–3] for recent reviews).
From an anthropical viewpoint, how a vacuum like ours is
populated may be more crucial, since the history of pop-
ulating determines our observations. Recently, it has been
argued that the island cosmology in the landscape can be
consistent with our real world [4] (see earlier Refs. [5,6] for
discussions based on the background with the cosmologi-
cal constant observed). The large fluctuations with the null
energy condition violation can stride over the barrier be-
tween vacua, and directly create some regions full with
radiation, i.e. islands, in new or baby vacua. These islands
will evolve with the standard cosmology, some of which
under certain conditions may correspond to our observable
universe (see Ref. [7] for details). From the usual view-
point, in order to have a universe like ours in the landscape,
the slow roll inflation with adequate period is generally
required [8]. This can be implemented only by a potential
with a long plain above the corresponding minimum,
which obviously means a fine-tuning, since the regions
with such potentials are generally expected to be quite
rare in a random landscape. Meanwhile the island can
actually emerge for any potential, independent of whether
the potential has a long plain. Thus in principle as long as
we can wait, the islands of observable universes will be
able to appear in any corner of the landscape.

The island universe model brings a distinct anthropically
acceptable cosmological history. Thus it is quite interesting
to ask how we can determine whether we live in an island
or in a reheating region after slow roll inflation, which
might be significant to understand why and how our vac-
uum in the landscape is selected. In principle, this can be
judged by the observations of primordial perturbations.
However, in the level of first order scalar perturbation,
the island universe is actually degenerated with the slow
roll inflation, which in some sense is a reflection of the
duality between their background evolutions, i.e. between
the slow expansion [9] and the nearly exponent expansion
(see Refs. [7,10] for details). Thus in principle it is hardly
possible to distinguish them by the spectrum index and

amplitude of curvature perturbation. However, recently it
has been found that the non-Gaussianity of perturbation in
island cosmology is generally large [7], while that pre-
dicted by the simple slow roll inflation model is quite
small. Thus in this sense the non-Gaussianity might be a
powerful discriminator.
The current bound placed by the Five-Year Wilkinson

Microwave Anisotropy Probe (WMAP5) is �9< fNL <
111 [11], which seems to slightly prefer a net positive fNL,
though fNL ¼ 0 is still at 95% confidence. The analysis of
a large-scale structure combined with the WMAP5 gave
the further limit �1< fNL < 70 [12]. Further, the future
Planck satellite will be expected to give �fNL � 5 [13].
These valuable observations are placing the island universe
in an interesting and tested regime. In Ref. [7], the non-
Gaussianity is roughly estimated in terms of three point
function, which is determined only by the cubic interaction
term of field. However, this neglects other sources for non-
Gaussianity. Here the curvature perturbation is actually
induced by the entropy perturbation, and thus the nonlinear
relation between the curvature perturbation and the entropy
perturbation can also contribute to the non-Gaussianity.
This is reflected in the second order perturbation equation
correlating both. It seems that the coming observations,
especially the measurement of non-Gaussianity, have had
the ability to identify the cosmological history in which we
live, and thus show how our position in the landscape is
populated. Thus in order to have a definite prediction tested
by coming and precise observations, a full study for the
non-Gaussianity of the island universe is obviously ur-
gently required. This will be done in this paper by applying
the second order perturbation equation.
When the island emerges, the change of local back-

ground may be depicted by � � �1, which is determined
by the evolution of local Hubble parameter ‘‘h,’’ where
‘‘local’’ means that the quantities, such as the scale factor
‘‘a’’ and ‘‘h,’’ denote the values of the null energy
condition-violating region only, and � � �1 means the
energy density of the local emerging island is rapidly
increased. In order to phenomenologically describe and
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simulate this behavior, we appeal the field same with the
normal scalar fields but with the minus sign in their kinetic
terms, which is usually called a ghost field. The evolution
of such a ghost field is climbing up along its potential and
the steeper its potential is, the faster it climbs, which is
determined by the property of this kind of field, e.g.
Ref. [14]. Thus in Ref. [6], it has been argued that such a
field can be suitable for depicting the emergence of an
island. In the scenario of an island universe, as detailed in
Refs. [4,7], initially the background is de Sitter (dS)’s, and
then in some regions the islands emerge, in which the local
background experiences a jump. There actually are not
ghost fields presented in the entire scenario, since this
phenomenon is quantum. We introduce the ghost field
artificially, since we found that in the classical sense it
can describe the evolution of the emerging island well,
which enables us to semiclassically explore the island
universe model and its possible predictions. In this sense,
the ghost field introduced serves only the evolution of
background, by which we can do some analytical and
numerical calculations for primordial perturbations.
Further, for this purpose, this introduced field should be
required to satisfy some conditions which ensures the
scenario of the island universe is not changed; for example,
it is not expected to participate in other quantum processes.

We assume that � is constant during the emergence of an
island for simplicity. Thus we can have the scale factor

a� 1

ð�tÞ1=j�j � h1=j�j; (1)

which is nearly unchanged since j�j � 1, which in some
sense is also why we call such a fluctuation an emergent
island (see Fig. 1 in Ref. [15]). Thus the efolding number of
mode with some scale�1=k leaving the horizon before the

thermalization can be written asN ’ lnðhehiÞ [6], where the
subscript ‘‘i’’ and ‘‘e’’ denote the initial and end values of
relevant quantities, respectively. The observable cosmol-
ogy requires N � 50. Thus in order to have an adequate
efolding number, an adequately low scale of the parent
vacuum should be selected.

The emergence of an island in the landscape will gen-
erally involve the upward fluctuations of a number of
fields, or moduli. Thus it is inevitable that there are entropy
perturbations, which can source the curvature perturbation.
The method that we use to calculate the curvature pertur-
bation is similar to that applied in ekpyrotic models [16,17]
(see also [18] and earlier Refs. [19,20]). The calculation of
the non-Gaussianity is similar to that implemented in
Refs. [21–24]. The difference lies in the character of the
fields used. Here, as has been mentioned, what we have
used are the normal scalar fields but with the minus sign in
their kinetic terms. Thus compared to the corresponding
equations for perturbations of normal scalar fields, there
will be some slight discrepancies in relevant perturbation

equations; i.e., a difference of sign before some terms,
however, will lead to distinct results.
In principle, for both such fields, the rotation in field

space can be made, which decomposes fields into the field
’ along the motion direction in field space, and the field s
orthogonal to the motion direction [25]. In this case the
evolution of background will be determined only by ’,
whose potential is relevant only with the background pa-
rameter j�j, while s will contribute only to the entropy
perturbation (see Ref. [7] for details). Here vk ¼ a�sk is

set for our convenience, and thus vðiÞ
k ¼ a�sðiÞk , where the

superscript denotes the ith order perturbation. Hereafter,
we will study the equations of perturbations with this
replacement. The equation of first order entropy perturba-
tion and the detailed analysis of solutions have been pre-
sented in Refs. [7,10], which thus will be neglected here. In
terms of Ref. [7], the spectrum index of �s field is

n�s � 1 ’ 2

�
; (2)

which means that the spectrum of entropy perturbation is
nearly scale invariant with a slightly red tilt, since � �
�1. Here we have assumed that usual the quantum field
theory can be applied even for such ghost fields.1 The
amplitude of perturbation spectrum is

P 1=2
�s ¼ k3=2

��������
vð1Þ
k ð�eÞ
a

��������’
1ffiffiffi

2
p

að��eÞ
; (3)

which is calculated at the end time �e of null energy
violating evolution, i.e. the emergence of an island, since
the amplitude of perturbation on the super horizon scale is
increased all along up to the end [7], where � is conformal
time. Noting a is nearly unchanged, which can be given
from Eq. (1) since j�j � 1 and is actually a reflection that
the island is emerging very quickly, we have a� ’ t; thus
the amplitude of spectrum can be rewritten as P �s ’

1
2ð�teÞ2 . We can see that these results are determined only

by the evolution of background during the emergence of
the island but not dependent on other details.
The entropy perturbation can source the curvature per-

turbation by _Rð1Þ ’ 2h _�
_’ �sð1Þ [25]. Thus if _� ¼ 0, i.e. the

motion in field space is a straight line, the entropy pertur-

1Here we need a normal quantization condition, such as the
usual field theory, to set initial conditions for primordial pertur-
bation, which seems to contradict with that of a ghost field.
However, this might be justified as follows. Initially the back-
ground is dS’s, in which there are not ghost fields; thus in
principle the normal quantization condition of usual field theory
can be applied. Then the island emerges, and the local back-
ground enters into a null energy violating evolution, which the
ghost field is introduced to describe. Thus the primordial per-
turbation induced by such fields must have a normal quantization
condition as its initial condition, or it cannot be matched to that
of the initial dS background.
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bation will not couple to the curvature perturbation.
However, when there is a sharp change of direction of field

motion, _� must not be equal to 0; in this case _Rð1Þ will
inevitably obtain a corresponding change induced by �s.
We take the rapid transition approximation,2 which means
that all relevant quantities at a split second before the
thermalization are nearly unchanged, except � changes
from its initial fixed value � ¼ �� to � ’ 0. Thus we have

R ð1Þ ’ 2he��
_’

�sð1Þ; (4)

which means that Rð1Þ acquires a jump induced by the

entropy perturbation �sð1Þ and thus inherits the nearly scale
invariant spectrum of �sð1Þ given by Eq. (2). We can

substitute Eq. (3) and h2

_’2 ¼ 4�
j�j into Eq. (4), and obtain the

resulting amplitude of curvature perturbation asP ð�s!RÞ ’
16�2� � j�j h2e� , which is approximately j�jh2e. We can see that

it and Eq. (2) can be related to those of the usual slow roll
inflation by replacing � as � 1

� , which actually exactly

gives the spectral index and amplitude of slow roll inflation
to the first order of slow roll parameters, noting that this
duality is valid not only for constant j�j [10] but also when
j�j is changed [7].

The intrinsic non-Gaussianity in entropy perturbation
can be generated during the emergence of an island. This
can be obtained by considering the motion equation of
second order entropy perturbation, which, when _� ¼ 0, is

vð2Þ00
k þ ðk2 � fð�ÞÞvð2Þ

k þ gð�Þðvð1Þ
k Þ2 ¼ 0; (5)

where fð�Þ ¼ a00
a þ a2V ð2Þ and gð�Þ ¼ � aV ð3Þ

2 . The sign

between both terms of fð�Þ is plus while the sign in gð�Þ is
minus, which is just the reverse of that of the normal scalar
field [26]. Here V ðiÞ denotes the i times derivative for s,

and V ð2Þ ’ 2
a2�2 and V ð3Þ ’ 8�

ffiffiffi
�

p
a2�2

ffiffiffiffiffiffij�jp
for j�j � 1, which

can be obtained by Eq. (5) in Ref. [7], where the constant

� � ffiffiffiffiffiffiffiffi
1=x

p � ffiffiffi
x

p Þ, and � ¼ arctgðxÞ is determined by the
cubic interaction of potential on s field. We care only about
the solution at long wavelength. Thus taking k ! 0, we can
obtain

vð2Þ
k ’ �

ffiffiffiffiffiffiffiffiffiffi
�j�jp ðvð1Þ

k Þ2
a

: (6)

Thus we have �sð2Þ ’ �
ffiffiffiffiffiffiffiffiffiffi
�j�jp ð�sð1ÞÞ2, since vðiÞ

k ¼ a�sðiÞ.
The curvature perturbation induced by the second order

of entropy perturbation can be given as

_R ð2Þ ’ 2h _�

_’
�sð2Þ � hð4 _�2 �V ð2ÞÞ

_’2
ð�sð1ÞÞ2 (7)

on large scale. The only difference here from Ref. [26] is
that there is a minus sign beforeV ð2Þ. The non-Gaussianity
is generated when modes are outside the horizon, and thus
here the non-Gaussianity is expected to be local. The level
of non-Gaussianity is usually expressed in terms of pa-
rameter fNL as defined in Refs. [27,28]:

fNL ¼� 5Rð2Þ

3ðRð1ÞÞ2

’� 5

3ðRð1ÞÞ2
Z �

2h _�

_’
�sð2Þ �hð4 _�2�V ð2ÞÞ

_’2
ð�sð1ÞÞ2

�
dt;

(8)

where Eq. (7) has been applied.
The terms in Eq. (8), proportional to _�, are not 0 only at a

split second before the thermalization. Thus the rapid
transition approximation can be applied in the calculations.
The first term corresponds to the intrinsic non-Gaussianity
of �s. This can be inherited by the curvature perturbation,
which is

� 5

3ðRð1ÞÞ2
Z 2h _�

_’
�sð2Þdt ’ � 5�

12��
j�j; (9)

where Eqs. (4) and (6) have been used. This result in fact
equals that calculated by using the three point function [7].
The second term in Eq. (8) corresponds to the nonlinear
correction for the linear relation betweenR and �s. It will
also contribute to the non-Gaussianity of the curvature
perturbation, which is

5

3ðRð1ÞÞ2
Z hð4 _�2 �V ð2ÞÞ

_’2
ð�sð1ÞÞ2dt ’ 5

6��
j�j; (10)

whereV ð2Þ ’ 2
a2�2 ’ 2

jtj2 for j�j � 1, and also we set _� ’ 1
jtj

for calculation. The latter means the period �t� of change
of � can be deduced from

R
_�dt ’ 1. Thus we have �t� ’

jtej ’ 1
j�jhe , noting that t is negative. While the total time

that the emergence of an island lasts is T ’ 1
j�jhi [6,7], it is

far shorter than one Hubble time since j�j � 1 and thus is
consistent with the claim that the emergence of the island is
a quantum fluctuation in the corresponding dS background.
The adequate efolding number requires he=hi * e50, and
thus we have T ’ �t�e50; i.e. the period of change of � is
far less than the time the emergence of the island lasts. This
is consistent with the rapid transition approximation used.

2Here, during the null energy violating evolution, i.e. the
emergence of an island, there is _� ¼ 0 until the end time;
however, around the end time _� must deviate from 0, and thus
in this sense this corresponds to a rapid transition for �. In
general, the period that _� deviates from 0 is far shorter than that
of _� ¼ 0, which is the meaning of rapid transition approxima-
tion. Noting the approximation used here is similar to that used
in Refs. [16–18,23], in e.g. [17], this approximation is called the
rapid transition approximation, and thus here we follow this
term. The null energy violating transition means the total period
of the null energy violating evolution, i.e. the emergence of an
island, in which _� ¼ 0 while _� � 0 occurs only around its end
time.
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The term in Eq. (7), proportional toV ð2Þ, is not relevant
with _�. Thus there exists a nonlinear dependence of R to
�s during the entire evolutive period of fluctuation. In this
case this term will contribute an integrated non-

Gaussianity. When _� ¼ 0, Eq. (7) becomes _Rð2Þ ¼
hV ð2Þð�sð1ÞÞ2

_’2 . Then we make the integral for this equation,

and can obtain the relation of ð�sð1ÞÞ2 ��Rð2Þ, noting that
here Eq. (3) needs to be used. Thus the contribution of this
integral effect for non-Gaussianity can be written as

� 5Rð2Þ

3ðRð1ÞÞ2 ’
5

12�2�
j�j; (11)

which is inverse to �2�, not like Eqs. (9) and (10). When
�� � 1, this term will make fNL very large.

Thus the total non-Gaussianity of the curvature pertur-
bation is

fNL ffi 5ð���� þ 2�� þ 1Þ
12�2�

j�j; (12)

which is the sum of the results given in Eqs. (9)–(11). We
can see that in general the non-Gaussianity in island cos-
mology is large, since j�j is large. However, since here � is
also the function of ��, where �� takes its value between 0
and �=2, thus for a fixed j�j, the value of fNL may be a
larger or smaller dependent of ��. In general without any
fine tuning, �� should be about 1. For �� ’ 1, and ns ’ 0:96
meaning j�j ’ 50 from Eq. (2), we can have fNL ’ 43,
which is a preferred positive value by the current observa-
tions. A smaller �� means a larger fine tuning, and also a
larger fNL, which is not favored. In addition, in principle
there can be an accident cancellation for all ��-dependent
terms in Eq. (12) for some value of ��, in this case fNL ’ 0.
This value is about 1.26, beyond which fNL < 0.

We can obtain fNL � 1=jns � 1j by combining Eqs. (2)
and (12), which means that fNL �Oð10Þ since the red shift
jns � 1j> 0:01, and the redder the spectrum is, the smaller
fNL is. The reason is that a redder spectrum corresponds to
a smaller j�j, thus fNL. This result is different from that in a
simple slow roll inflation model, in which fNL is not
inversely proportional to jns � 1j like in an island, but
proportional to it, e.g. Ref. [29]. This predestines that the
non-Gaussianity in simple slow roll inflation is quite small.
We plot a fNL � ns plane in Fig. 1 for further illustration.
This figure can be distinguished from that in ekpyrotic and
cyclic models [21,22], in which, in principle, the redder the
spectrum is, the larger the non-Gaussianity is (see also
Fig. 5 in Ref. [12]). Though it seems that there requires
j�j � 1 both in our model and in the cyclic model, and the
only difference is that � is negative in our model and
positive in the latter, it is this difference that means that
their behavior is distinctly contrary in the fNL � ns plane.
In the cyclic model, the spectrum index obtained is the
same with that of the island universe model. However,
since � � 1, when � is constant, the spectrum will be

blue, which can be seen in Eq. (2). Thus to have a red
spectrum favored by the observations, the change of �must

be considered. In this case, the spectrum index is ns � 1 ’
2
� � d lnj�j

dN . The red spectrum requires d lnj�j
dN > 2

� . This may

be implemented only by introducing a larger �, since this
can lead to a smaller 2

� . Thus in this case a redder spectrum

corresponds to a larger fNL. In order to have an adequate
red spectrum, for example ns ’ 0:97, � must be large and
change withN more rapidly than ��N . However, in an
island universe, this is not necessary, since � � �1, which
ensures that its spectrum is naturally red. Including the
change of � does not alter our result qualitatively.
In Eq. (12), fNL � j�j should be general, since j�j is only

determined by the evolution of background, which is in-
dependent of modeling. While the details of modeling only
change the factor between j�j, it is inevitable that this
factor is dependent of the parameters of model. However,
this dependence is actually not important for the natural
values of parameters of the model—here it is obvious that
the resulting fNL is mainly determined by j�j. The general-
ization of fNL � j�j can also be seen for simple slow roll
inflation, in which fNL � �, e.g. [29]. It can be noted that in
ekpyrotic and cyclic models[21,22], fNL �

ffiffiffi
�

p
. This is

because they required that the entropy perturbation induces
the curvature perturbation, which occurs during the kinetic
energy domination after ekpyrotic phase. When it is re-
quired to occur during ekpyrotic phase, the result will be
same with fNL � j�j. However, in this case, as has been
mentioned, in order to have a red tilt spectrum, a larger �
must be introduced, which will conflict with the bound for
non-Gaussianity from current observations. Thus in there
this case is not adopted.

FIG. 1 (color online). The fNL � ns plane, in which the solid
lines from top to down correspond to �� ¼ 0:7, 0.8, 0.9, 1.1, 1.2,
and 1.3, respectively. The dashed line is �� ¼ 1:0. The 1� and
2� contours on fNL � ns is plotted by using the data in Ref. [12].
We can see that for �� ’ 1:0, fNL ’ 30� 60 is definitely pre-
dicted by the current observations for ns.
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In summary, the non-Gaussianity of the island universe
model is calculated fully by using the second order pertur-
bation equation. We found that for the best fit value ns ’
0:96 given by the current observations, without any fine
tuning of relevant parameter, fNL ’ 43, which is about
between 30 and 60 when the uncertainty for ns from the
WMAP5 is included. In the simple slow roll inflation
model, the non-Gaussianity is generally quite small. Thus
in order to obtain a large positive value, some special
operations for perturbations or models must be appealed,
which means that its prediction has certain randomicity.
Thus compared with the inflation, the distinct prediction of
the island universe for the non-Gaussianity makes it able to
be falsified definitely by coming observations. In this sense

if the cosmological dynamics are actually controlled by a
landscape of vacua, the results of coming observations,
especially the measurement of non-Gaussianity, will be
significant to clarify whether we live in an island or in a
reheating region after slow roll inflation, which will be
significant to understanding why and how our position in
the landscape is populated.
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