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We investigate how well galaxy cluster number counts can constrain the primordial power spectrum.

Measurements of the primary anisotropies in the cosmic microwave background may be limited, by the

presence of foregrounds from secondary sources, to probing the primordial power spectrum at wave

numbers less than about 0:30h Mpc�1. We break up the primordial power spectrum into a number of

nodes and interpolate linearly between each node. This allows us to show that cluster number counts could

then extend the constraints on the form of the primordial power spectrum up to wave numbers of about

0:45h Mpc�1. We estimate combinations of constraints from PLANCK and SPT primary cosmic

microwave background and their respective Sunyaev-Zeldovich surveys. We find that their constraining

ability is limited by uncertainties in the mass-scaling relations. We also estimate the constraint from

clusters detected from a SNAP-like gravitational lensing survey. As there is an unambiguous and simple

relationship between the filtered shear of the lensing survey and the cluster mass, it may be possible to

obtain much tighter constraints on the primordial power spectrum in this case.

DOI: 10.1103/PhysRevD.79.083508 PACS numbers: 98.80.�k

I. INTRODUCTION

A crucial element of cosmology is the form of the
primordial fluctuations. These fluctuations provide the
seeds for structure formation that we observe today
through the cosmic microwave background (CMB), gal-
axy, and cluster surveys. Current data is consistent with the
primordial fluctuations being scalar, adiabatic, Gaussian,
and having a power spectrum with a simple power law
parameterization [1,2]. The primordial fluctuations may
have been generated during a period known as ‘‘inflation,’’
where the accelerated expansion of the primordial
Universe is driven by a potential dominated scalar field
or fields (see, for example, Liddle and Lyth [3]). If inflation
was driven by a single scalar field with a smooth potential,
then the power spectrum of primordial fluctuations is
predicted to be generally quite close to a power law
form, although in some cases there may be significant
running of the spectral index. However, if inflation was
driven by multiple fields or by a single field with a feature
in its potential, then the primordial power spectrum may
contain hills, valleys, oscillations, or other features (see,
for example, [4–9]).

The two main approaches to probing the primordial
power spectrum are either to assume a specific form for a
feature in the primordial power spectrum (see, for example,
[8,10–13]) or to try and reconstruct the primordial power
spectrum nonparametrically (see, for example, [1,14–19]).
The cleanest probe of the primordial power-spectrum is the
CMB. However, it is probably limited to wave numbers
smaller than about 0:30h Mpc�1, as beyond that fore-
ground contamination from secondary sources are likely
to dominate the cosmological signal.

In this article, we investigate to what extent galaxy
cluster number counts can probe the primordial power
spectrum. Traditionally, the effect of the primordial power

spectrum on clusters is probed with the constraints on �8,
which is the dispersion of the linear theory matter fluctua-
tions smoothed on scales of 8h�1 Mpc. However, as we
will discuss in Sec. II A, the value of �8 encompasses a
very broad range of wave numbers and so it is advanta-
geous to break up the primordial power spectrum into
effectively several small bins. Additionally, �8 is sensitive
to other cosmological parameters such as the matter den-
sity, the dark energy equation of state, primordial non-
Gaussianity, and nonzero neutrino mass. Rather than sim-
ply comparing �8 inferred from clusters with that from
inferred from the CMB, it may be better to introduce new
parameters to account for the possible deviations from the
fiducial model of �CDM consisting of a featureless, adia-
batic, and Gaussian primordial power spectrum. In this
article we investigate how well the combination of the
CMB and cluster surveys can constrain the primordial
power spectrum to be featureless.
We begin in Sec. II with contrasting how the cluster

number counts and the primary CMB probe the primordial
power spectrum. In Sec. III, we forecast the constraints on
the primordial power spectrum from the Sunyaev-
Zeldovich effect (SZ), PLANCK [20], and South Pole
Telescope [21] (SPT) cluster surveys and combine them
with the forecasted constraints on the primordial power
spectrum from the PLANCK and SPT primary CMB sur-
vey. We also estimate the constraints from the SNAP [22]
lensing cluster survey. Concluding remarks are given in
Sec. IV.

II. DEPENDENCE ON PRIMORDIAL POWER
SPECTRUM

The dimensionless primordial power spectrum, as func-
tion of the comoving wave number k, is usually parame-
terized as a power law
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where the amplitude (�2
R), spectral index (ns), and pivot

point (kpivot) are taken to be independent of k. We model

deviations from this form in a similar way to Bridle et al.
[14] and Spergel et al. [1]:

P RðkÞ ¼ FðkÞPR;0ðkÞ; (2)

where the ‘‘feature function,’’ FðkÞ, is specified by the
values at 17 nodes logarithmically spaced in k space with

ki
h�1 Mpc

¼ 0:657

1:47i
; i ¼ 0; . . . 16: (3)

Linear interpolation in logðkÞ is used to determine F be-
tween each node. The effect of individually changing
nodes 1 to 15 is shown in Fig. 1. Nodes 0 and 16 will
always be fixed to 1.

Spergel et al. [1] (see their Fig. 11) found that WMAP
III data constrained the nodes best at around k�
0:01h Mpc�1 with a 1 sigma error on F of about 0.3.
While at k� 0:1h Mpc�1 the WMAP III data provided
practically no constraint due to its relatively large beam
size and measurement noise. It would be interesting to see
how these constraints could be improved with the addition
of small-scale CMB experiments and other large-scale
structure data such as the Sloan Digital Sky Survey, but
that is beyond the scope of the present paper. It is probably
reasonable to say that F is not known to better than 10%
precision with current data, certainly for larger wave num-
bers (k * 0:1h Mpc�1) where the current constraints are
likely to be significantly more uncertain. For this reason we
take FðkiÞ ¼ 1:1 to conservatively illustrate the effect of
node changes in Figs. 1–4.

A. Effect on number counts

The linear theory matter power spectrum at a redshift z is
given by

Pðk; zÞ / T2ðk; zÞkPRðkÞ; (4)

where Tðk; zÞ is the matter transfer function. We use
CAMB [23,24] to evaluate Pðk; zÞ, and we modified the
‘‘ScalarPower’’ function in CAMB to include our feature
function FðkÞ. The accuracy and sample boost parameters
in the CAMB initialization file where all set to the value of
3, which increases the precision and reduces the amount of
interpolation. Although, there is some interpolation in k
used by CAMB, the sampling is much smaller than the
width between our nodes. We include lensing of the CMB,
but its effect is negligible for our primary region of interest,
‘ � 2000. Throughout this paper we assume a flat �CDM
Universe with no tensor perturbations, and we use the
WMAP5 maximum likelihood parameters [25]:

�bh
2 ¼ 0:0227; �ch

2 ¼ 0:108; n ¼ 0:961;

� ¼ 0:089; �2
R ¼ 2:41� 10�9; h ¼ 0:724;

(5)

where we have used the WMAP chosen pivot of kpivot ¼
ð1=500Þ Mpc�1, and the parameters have their usual
meaning.
The variance of the linear theory matter field, which has

been smoothed by a top hat filter on a comoving length
scale R is given by

�2ðR; zÞ ¼
Z 1

0

dk

k

k3

2�2
Pðk; zÞW2ðkRÞ; (6)

where

WðkRÞ ¼ 3

�
sinðkRÞ
ðkRÞ3 � cosðkRÞ

ðkRÞ2
�
: (7)

The top hat smoothing suppresses the contribution of any
fluctuations located at wave number kf � 1=R. Figure 2
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FIG. 1 (color online). The effect on the primordial power
spectrum of individually changing nodes 1 to 15 to a value of
1.1 in our feature function F. Each changed node is a plotted as a
separate color, and odd numbered nodes are plotted as dashed
lines.
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FIG. 2 (color online). Effect of individually setting the node at
F½kf� ¼ 1:1 on the variance of the matter field smoothed with

8h�1 Mpc top hat window function.
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illustrates how changing the primordial power spectrum
alters � when R ¼ 8h�1 Mpc. As can be seen, the main
contribution is from the node at k ¼ 0:20h Mpc�1, but that
there is also a reasonable contribution from several of the
neighboring nodes. As will be discussed in Sec. II B, the
CMB is able to well constrain the primordial power spec-
trum at least for k � 0:30h Mpc�1. So it follows that �8 is
mainly affected by scales that are constrainable by the
CMB. That is why our method of breaking up the primor-
dial power spectrum into linearly interpolated nodes is
useful, as it gives enough flexibility to separate the parts
of the primordial power spectrum that affect cluster counts
but may not be constrainable by the CMB. Also, �8 is
sensitive to not only the primordial power spectrum but
also the other cosmological parameters, such as �m ¼
�c þ�b, the dark energy equation of state, primordial
non-Gaussianity, and nonzero neutrino mass.

The number density of halos (bound objects) may be
predicted using the smoothed linear theory density field
[26]. For a background nonrelativistic matter density of
�m ¼ �m�total, the number density (n) of halos of mass

M ¼ 4�

3
R3�m ¼ 1:16� 1012�mh

�1

�
R

h�1 Mpc

�
3
M�

(8)

depends, to a good approximation, on the primordial power
spectrum only through its effect on �ðR; zÞ [26–30]

dnðzÞ
dM

¼ �m

M

d ln�ðzÞ�1

dM
fð�ðzÞÞ: (9)

We use the Sheth-Tormen mass function [27,28] for which

f ¼ A

ffiffiffiffiffiffi
2a

�

s �
1þ

�
�ðzÞ2
a�2

c

�
p
�

�c

�ðzÞ exp
�
� a�2

c

2�ðzÞ2
�
; (10)

where A ¼ 0:3222, a ¼ 0:707, p ¼ 0:3, and �c ¼ 1:686.
The top hat smoothing in Eq. (6) suppresses the contribu-
tion of any change to the primordial power spectrum
located at wave number kf � 1=R. Combined with Eq.

(8), this implies that a change in the primordial power
spectrum at kf has a suppressed effect on the number

density on mass scales satisfying

M

h�1M�
� 1012

�
kf

h Mpc�1

��3
: (11)

The number of clusters per redshift interval above some
mass threshold Mmin is given by

dN

dz
ðM>MminÞ ¼ fsky

dVðzÞ
dz

Z 1

Mmin

dM
dn

dM
ðM; zÞ; (12)

where fsky is the fraction of the sky being observed and the

volume element is given by

dV

dz
¼ 4�

HðzÞ
�Z z

0

dz0

Hðz0Þ
�
2
; (13)

and HðzÞ is the Hubble parameter

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�mð1þ zÞ3 þ ð1��mÞÞ

q
: (14)

The effect of a change in the primordial power spectrum on
the number counts is illustrated in Fig. 3 for a SNAP-like
gravitational lensing cluster survey. The SNAP selection
function can be approximated by setting Mmin ¼
1014h�1M� in Eq. (12) (see Sec. III). Because of the
exponential suppression in Eq. (10), dN=dz mainly de-
pends on the mass scale Mmin. From Eq. (11) this implies
the SNAP cluster survey will become insensitive to the
primordial power spectrum for k � 0:2h Mpc�1. This is
consistent with F½0:45� ¼ 1:1 having less of an effect than
F½0:30� ¼ 1:1 as illustrated in Fig. 3.

B. Effect on the CMB

The primordial power spectrum is probed over a wide
range of wave numbers by measurements of the primary
CMB anisotropies (see, for example, Hu and Okamoto
[15]). Both the temperature (T) and E-mode of the polar-
ization (E) probe scalar perturbations.

‘ð‘þ 1ÞCXX0
‘

2�
¼

Z
d lnkTX

‘ ðkÞTX0
‘ ðkÞPRðkÞ; (15)

where X, X0 2 T, E. The projection of a mode of wave
number k on to the surface of last scattering (a sphere of
comoving radius D	) results in the CMB transfer functions
having the form TX

‘ � j‘ðkD	Þ, where j‘ is the spherical
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FIG. 3 (color online). Effect of change in primordial power
spectrum on the SNAP lensing cluster counts (Mmin ¼
1014h�1M�, fsky ¼ 0:024). The plots are for the featureless

(F ¼ 1) power spectrum (green, solid), F½0:45� ¼ 1:1 (blue
dashed), and F½0:30� ¼ 1:1 (red dotted). The vertical error
bars are one sigma and the horizontal error bars indicate the
bin width.
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Bessel function of order ‘, which peaks at ‘ 
 kD	.
Therefore, a feature in the primordial power spectrum at
wave number kf is mapped onto a feature in CMB angular

power spectrum at

‘� kfD	 
 104
kf

h Mpc�1
: (16)

We also used our modified version of CAMB to evaluate

CXX0
‘ . Although, there is some interpolation in ‘ used by

CAMB, the sampling is much smaller than the width
between our nodes. Figure 4 shows the effect F � 1 on
CTT
‘ with predicted SPTerror bars (see Sec. III). The panels

in the figure are consistent with Eqs. (3) and (16) in that
having FðkiÞ ¼ 1:1 translates roughly into a triangular
perturbation of about 10% amplitude in C‘. In Fig. 4, we
have not included the foreground contribution from sec-
ondary sources, which will probably be hard to completely
remove for ‘ > 2000. For this reason, as done by Hu and
Okamoto [15] and Leach [16], we will restrict ourselves to
‘ � 2000 when evaluating the forecasted marginalized
errors.

III. FORECASTS

We use the Fisher matrix formalism to make forecasts on
how well the primordial power spectrum can be con-
strained. We take as our fiducial model the WMAP5 maxi-
mum likelihood parameters, Eq. (5). We consider two
cluster count SZ experiments: PLANCK and SPT. For
PLANCK, the selection function can be approximated by
fsky ¼ 0:8 and Mmin;PLANCK ¼ 5� 1014h�1M� [31]. A

common approximation for the SPT selection function is
fsky ¼ 0:1 and Mmin;SPT ¼ 1:75� 1014h�1M� (see, for

example, Sefusatti et al. [32], Lo Verde et al. [33]).
This may be overly optimistic, but increasing it to
Mmin;SPT ¼ 3� 1014h�1M� does not qualitatively change

our conclusions as the uncertainty in the mass-scaling
relationship turns out to be the limiting factor. We take z 2
½0; 3� with bin sizes �z ¼ 0:1, although the bulk of the
constraining power comes from z < 1, and the results are
negligibly changed if we take z < 2. We also forecast the
SNAP cluster lensing survey constraints [34] (also see
Hamana et al. [35], Wang et al. [36], Fang and Haiman
[37], Takada and Bridle [38]). Here, we take z < 1:5,
fsky ¼ 0:024, and Mmin; SNAP ¼ 1014h�1M�. This roughly
matches the number of clusters found using a more accu-
rate selection function of Marian and Bernstein [34] when
we use their fiducial model cosmological parameters. For
our fiducial model, Eq. (5), we predict a total of 8888
clusters detected from a SNAP cluster survey. Also, [38]
found that the signal to noise ratio of a more realistic
selection function was about the same as taking a mass
limit of 1014h�1M�. Our SNAP selection function is
biased to slightly higher redshifts than that of Marian and
Bernstein [34], but we expect this not to alter our predicted
constraints significantly.
The number of clusters in redshift bin i is Poisson

distributed with the expected number (ei) given by inte-
grating Eq. (12) over the redshift bin. Element ðj; kÞ of the
Fisher matrix for a cluster count experiment is given by
[39]
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FIG. 4 (color online). Effect of a change in primordial power
spectrum on the CMB (TT) angular power spectrum. Error bars
(yellow) include instrument noise, beam size, and cosmic vari-
ance effects. They are centered on the featureless (F ¼ 1)
(black) power spectrum and are for SPT. The red dashed curves
are for F½0:21� ¼ 1:1 (top panel), F½0:30� ¼ 1:1 (middle panel),
and F½0:45� ¼ 1:1 (bottom panel). Perfect subtraction of sec-
ondary foreground sources is assumed for the figure.
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F jk ¼
XNbins

i¼1

1

ei

@ei
@pj

@ei
@pk

; (17)

where pj consists of the cosmological parameters in Eq.

(5) except for �2
R and n, as they will be almost completely

degenerate with the feature function F. To account for
uncertainties in the mass of the SZ observed clusters, we
also allowMmin; PLANCK andMmin; SPT to be free parameters

and give them both priors of 10% one sigma errors. The
lensing observed clusters have a well-determined mass-
scaling relation and so we do not take Mmin; SNAP to be a

free parameter [35–38]. Additionally, we allow the nodes 1
to 15 in Eq. (3) of F to vary. The derivatives are taking at
the fiducial values of the parameters, which in the case of
the Mmin are the previously specified values and for the
feature function, FðkiÞ ¼ 1 for all i. The derivatives are
approximated by the symmetrized form of a difference
equation so as to minimize truncation error (see, for ex-
ample, Press et al. [40]).

The CMB Fisher matrix is given by (see, for example,
[41])

F ij ¼
X
‘

X
X;X0

@CX
‘

@pi

Cov�1ðCX
‘ ; C

X0
‘ Þ @C

X0
‘

@pj

; (18)

where the covariance matrix can be obtained from
Zaldarriaga et al. [41], and it depends on the temperature
noise per pixel (�T), the polarization noise per pixel (�E),
the pixel area in radians squared (�2 ¼ 4�=Npix), and the

beam window function, which we approximate as
Gaussian (B‘ 
 expð�‘ð‘þ 1Þ�2

b). The values we use

are taken from the PLANCK Blue Book [42] and are listed
in Table I (note that � needs to be converted to radians). We

use�b ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log½2�p

and combine the different frequency
bands as specified in Bond et al. [43]. We also include the
constraints from SPT primary CMB temperature measure-
ment for which we just use one band with � ¼ 1 arcmin
and �T ¼ 10 �K. We take the range in ‘ to be 2 to 2000.
At higher ‘, secondary sources of temperature and polar-
ization will likely prohibit the extraction of cosmological
information from the primary CMB.

The expected covariance matrix of the parameter errors
is approximated by the inverse of the Fisher matrix. The
expected marginalized one sigma error bars are then given
by the square roots of the diagonal elements of the ex-

pected covariance matrix. Also, experiments can be com-
bined by adding the Fisher matrices. When we combine
PLANCK and SPT, primary CMB or SZ cluster detection,
we reduce the fsky for PLANCK to 0.7 so as not to count

the same clusters twice. We plot the expected one sigma
marginalized errors for each node of F in Fig. 5. For each
node, marginalization is done over all other nodes, cosmo-
logical and mass parameters. The lack of constraint at low
k is from cosmic variance. At high k, the primary CMB
does not constrain the primordial power spectrum, as it is
assumed to be limited to ‘ � 2000 due to secondary
sources. As shown in Fig. 5, including the lensing detected
clusters makes a big improvement in constraining the
primordial power spectrum at k ¼ 0:45h Mpc�1. The
PLANCK (TT, TE, EE) data only constrains the primordial
power spectrum at k ¼ 0:45h Mpc�1 to about 250%. The
constraints on the other cosmological parameters we in-
cluded are not significantly altered by the addition of
clusters. Combining all the surveys, we considered, im-
proves the constraint at k ¼ 0:45h Mpc�1 to about 25%.
The main reason why the SZ cluster surveys are not as

effective at constraining the primordial power spectrum as
the cluster lensing survey is due to a degeneracy with the
uncertainty in their mass parameters, see the top panel of
Fig. 6. As the primary CMB is taken to be limited to ‘ �
2000, it is barely altered by changes to the node at Fð0:45Þ,
(see Fig. 4). As can be seen from the bottom panel of Fig. 6,
the addition of the SNAP lensing cluster survey dramati-
cally sharpens the constraint at Fð0:45Þ. This is consistent
with the large effect seen in Fig. 3. The primary CMB
would need to be removed of foregrounds to a high level of
accuracy up to ‘� 3000 in order to accurately measure
Fð0:45Þ without the aid of clusters (see Fig. 4).

TABLE I. PLANCK instrument characteristics.

Center frequency (GHz) 70 100 143 217

� (FWHM arcmin) 14 10 7.1 5.0

�T (�K) 12.8 6.8 6.0 13.1

�E (�K) 18.2 10.9 11.4 26.7
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FIG. 5 (color online). Expected marginalized one sigma errors
for the different nodes of feature function (F). Errors are shown
for PLANCK (TT, TE, EE) [black triangles], PLANCK (TT, TE,
EE) and SPT (TT) [red diamonds], PLANCK (TT, TE, EE,
clusters) and SPT (TT, clusters) [blue squares], and PLANCK
(TT, TE, EE) and SNAP (clusters) [green circles].
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IV. CONCLUSIONS

In this article we have investigated what role cluster
number counts can play in constraining the primordial
power spectrum. We found that if PLANCK and SPT
primary CMB anisotropy measurements are limited to ‘ �
2000 by secondary source foregrounds, then they can only
measure the primordial power spectrum at k ¼
0:45h Mpc�1 to about 220% precision due to the degen-
eracy between changes in the primordial power spectrum at
smaller k. Including SPT and PLANCK SZ cluster surveys

increases the precision to about 124%, but they are limited
by a degeneracy with the determination of the observed
clusters’ masses. While a SNAP-like gravitational lensing
cluster survey combined with PLANCK primary CMB
data may be able to increase the precision to about 30%
due to the accurate relationship between the observed
lensing shear and cluster masses.
In the current article we have used simple minimum

mass selection functions for the cluster surveys. As we
are investigating a new use for cluster surveys, we think it
is justifiable to initially get a more qualitative and easily
reproducible forecasted constraint. In future work, building
on the current investigation, we will evaluate the effect on
our current conclusions of more realistic selection func-
tions such as those in [34,44].
It is common in cluster surveys or forecasts of surveys to

evaluate the constraints on �8 with and without the CMB.
If there is a feature at high k in the primordial power
spectrum then this could lead to a discrepancy in the value
of �8 obtained from the CMB. Our method could then be
used to determine the size of the feature needed to explain
such a discrepancy. Other possible sources in a discrepancy
between the CMB and cluster constraints on �8 could be a
noncosmological constant source of dark energy, primor-
dial non-Gausianity, and sufficiently large neutrino mass.
Degeneracies between the dark energy equation of state
and non-Gaussianity where looked at by Sefusatti et al.
[32]. They found that, provided redshift information was
available, there was not significant degeneracy between the
two. Our method could be useful in determining what the
observational degeneracies between features and other
possible sources of discrepancy in �8 are. Comparing our
Fig. 3 with Fig. 2 of Sefusatti et al. [32] indicates that there
may be some degeneracy between a feature in the primor-
dial power spectrum and primordial non-Gaussianity. Also,
inflation models which generate features in the primordial
power spectrum may naturally generate scale dependent
non-Guassianity [45]. This could increase the overall
change in cluster counts and thus make the feature more
easily detectable.
An alternative way of parameterizing features in the

primordial power spectrum is to allow a running of the
spectral index, dns=d lnk (see, for example, [3]). This is
less flexible than our current approach, but may be more
natural to implement in an inflation model. We plan to
investigate how well cluster number counts improve the
running of the spectral index in future work.
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FIG. 6 (color online). Marginalized probability contours con-
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