
Tachyon field in intermediate inflation

Sergio del Campo,* Ramón Herrera,† and Adolfo Toloza‡
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The tachyonic inflationary universe model in the context of intermediate inflation is studied. General

conditions for this model to be realizable are discussed. In the slow-roll approximation, we describe in

great detail the characteristics of this model.

DOI: 10.1103/PhysRevD.79.083507 PACS numbers: 98.80.Cq

I. INTRODUCTION

Nowadays cosmology presents explosive activity, which
is principally due to theoretical developments and accurate
astronomical data. In this context, cosmology allows to use
astrophysics to perform tests of fundamental theories, oth-
erwise inaccessible to terrestrial accelerators. In order to do
this task it is necessary to perform a study about how the
Universe evolves during its different periods. In fact, this
study leads to considering at some stage in the early
Universe an inflationary phase, which is to date the most
compelling solution to many long-standing problems of the
big bang model (horizon, flatness, monopoles, etc.) [1,2].

The source of inflation is a scalar field (the inflaton
field), which plays an important role in providing a causal
interpretation of the origin of the observed anisotropy of
the cosmic microwave background radiation, and also the
distribution of large scale structures [3,4]. The identity of
this scalar field may be found by considering one of the
extensions of the standard model of particle physics based
on grand unified theories, supergravity, or string theory.

In what concerns the scalar inflaton field, its dynamics
usually is determined by the Klein-Gordon action.
However, more recently, and motivated by string theory,
it is extremely natural to consider other nonstandard scalar
field action. In this context, the deep interplay between
small-scale nonperturbative string theory and large-scale
braneworld scenarios has aroused interest in a tachyon field
as an inflationary mechanism, especially in the Dirac-
Born-Infeld action formulation as a description of the
D-brane action [5–10]. Here, rolling tachyon matter is
associated with unstable D branes. The decay of these D
branes produces a pressureless gas with finite energy den-
sity that resembles classical dust. Cosmological implica-
tions of this rolling tachyon were first studied by Gibbons
[11], and in this context it is quite natural to consider
scenarios in which inflation is driven by the rolling tachyon
field. In recent years, the possibility of an inflationary
phase described by the potential of a tachyon field has
been considered in a quite large diversity of topics [12–28].

On the other hand, string/M theory suggests that in order
to have a ghost-free action high order curvature, invariant
corrections to the Einstein-Hilbert action must be propor-
tional to the Gauss-Bonnet (GB) term [29]. GB terms arise
naturally as the leading order of the � expansion to the
low-energy string effective action, where � is the inverse
string tension [30]. This kind of theory has been applied to
possible resolution of the initial singularity problem [31],
to the study of black-hole solutions [32], and accelerated
cosmological solutions [33]. In particular, very recently, it
has been found that for a dark energy model the GB
interaction in four dimensions with a dynamical dilatonic
scalar field coupling leads to a solution of the form aðtÞ ¼
a0 expðAtfÞ [34]. Here, the constant A is given by A ¼ 2

�n

and f ¼ 1=2, with �2 ¼ 8�G, and n is a constant.
Therefore, we may argument that intermediate inflation
comes from an effective theory at a low dimension of a
more fundamental string theory.
In general, in the context of inflation we have the par-

ticular scenario of ’’intermediate inflation,’’ in which the
scale factor evolves as aðtÞ ¼ expðAtfÞ. Therefore, the
expansion of the Universe is slower than standard
de Sitter inflation (aðtÞ ¼ expðHtÞ), but faster than power
law inflation (aðtÞ ¼ tp; p > 1). The intermediate infla-
tionary model was introduced as an exact solution for a

particular scalar field potential of the type Vð�Þ /
��4ðf�1�1Þ, where f is a free parameter [35]. With this
sort of potential, and with 1> f > 0, it is possible in the
slow-roll approximation to have a spectrum of density
perturbations, which presents a scale-invariant spectral
index ns ¼ 1, i.e., the so-called Harrizon-Zel’dovich spec-
trum of density perturbations, provided f takes the value of
2=3 [36]. Even though this kind of spectrum is disfavored
by the current Wilkinson Microwave Anisotropy Probe
(WMAP) data [3,4], the inclusion of tensor perturbations,
which could be present at some point by inflation and
parametrized by the tensor-to-scalar ratio r, the conclusion
that ns � 1 is allowed providing that the value of r is
significantly nonzero [37]. In fact, in Ref. [38] it was
shown that the combination ns ¼ 1, and r > 0 is given
by a version of the intermediate inflation in which the scale

factor varies as aðtÞ / et
2=3

within the slow-roll
approximation.
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In this paper we would like to study intermediate infla-
tionary Universe model in which a tachyon field theory is
taken into account. We will solve the Friedmann and
tachyon field equations for an intermediate expansion of
the scale factor and results will be compared with those
obtained in the same situation, but where a standard scalar
field is considered. We should note that this sort of problem
has been studied in the literature [39]. Here, in this paper
we would like to go further and thus constrain the parame-
ters of our model by taking into account the WMAP 3 and
5 yr data.

The outline of the paper is as follows: The next section
presents a short review of the tachyonic-intermediate infla-
tionary phase. Section III deals with the calculations of
cosmological perturbations in general term. Finally, in
Sec. IV we conclude with our finding.

II. TACHYON-INTERMEDIATE INFLATION
MODEL

We begin by writing the Friedmann equation for a flat
universe and the conservation equation

H2 ¼ �2

3
�; (1)

and

_�þ 3Hð�þ pÞ ¼ 0; (2)

where H ¼ _a=a denotes the Hubble parameter, �2 ¼
8�G ¼ 8�=m2

p (mp represents the Planck mass), and the

dots mean derivatives with respect to the cosmological
time t. For convenience we will use units in which c ¼
@ ¼ 1. For a tachyonic field the energy density and the
pressure are given by

� ¼ Vð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2

q ; and p ¼ �Vð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2

q
;

respectively. Here, � is the tachyonic scalar field, and
Vð�Þ its scalar potential, which satisfies dV=d�< 0, and
Vð� ! 1Þ ! 0, characteristic of any tachyon field poten-
tial [5].

From Eqs. (1) and (2) we get for the velocity of the
tachyonic scalar field, and its evolution equation becomes

_� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 _H

3H2

s
(3)

and

€�

1� _�2
þ 3H _� ¼ �V0

V
; (4)

respectively. Here, V 0 ¼ @Vð�Þ=@�.
On the other hand, in intermediate inflation it is assumed

that the scale factor follows the law

aðtÞ ¼ a0 expðAtfÞ; 0< f < 1; (5)

where A > 0 has the dimension of mf
p. Note that this

assumption immediately determines the behavior of _�
and V 0=V, as we can see from Eqs. (3) and (4). Note also
that _H < 0, since 0< f < 1. From Eqs. (3) and (4) we get
for the scalar field � and the scalar potential Vð�Þ

� ¼ �0 þ
�

8ð1� fÞ
3Afð2� fÞ2

�
1=2

tð2�fÞ=2; (6)

and

Vð�Þ ¼ �ð���0Þ�4ð1�fÞ=ð2�fÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Bð���0Þ�2f=ð2�fÞ

q
; (7)

with

� ¼ 3

�2

�
Af

�
3ð2� fÞ2
8ð1� fÞ

�ðf�1Þ�2=ð2�fÞ
;

and

B ¼ 2

�ð1� fÞ
3Af

�
2=ð2�fÞ�ð2� fÞ2

8

��f=ð2�fÞ
;

respectively.
The Hubble parameter as a function of � becomes

Hð�Þ ¼
ffiffiffiffiffiffiffiffiffi
��2

3

s
ð���0Þ2ðf�1Þ=ð2�fÞ: (8)

Without loss of generality �0 can be taken to be
vanished.
During the inflationary epoch the energy density asso-

ciated to the tachyon field is of the order of the potential,
i.e., �� V. Assuming the set of slow-roll conditions, i.e.,
_�2 � 1 and €� � 3H _� [11,12], Eqs. (1)–(4) become

H2 � �2

3
V; (9)

and

V 0

V
� �3H _�: (10)

In this approximation the scalar field potential, Vð�Þ be-
comes

Vð�Þ � ���2�;

where

� � 2ð1� fÞ
2� f

:

Note that this result is also obtained from Eq. (7) by taking

1 � B��2f=ð2�fÞ.
Note that this kind of potential does not present a

minimum. This characteristic of the potential makes the
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study of reheating of the Universe in a nonstandard way
[40].

At this stage, it is convenient to introduce the slow-roll
parameters " and �, such that

" ¼ � _H

H2
� V02

�2V3
� 4�2

�2�
�2ð��1Þ; (11)

and

� ¼ �
€�

H _�
� V02

�2V3
� V 00

�2V2
� � 2�

�2�
�2ð��1Þ; (12)

which will be useful in the study of perturbations of the
model.

On the hand, the number of e-folds between two differ-
ent values �ðt ¼ t1Þ ¼ �1 and �ðt ¼ t2Þ ¼ �2 >�1 is
given by

N ¼
Z t2

t1

Hdt ¼ �2�

4�ð1� �Þ ½�
�2ð��1Þ
2 ���2ð��1Þ

1 	:
(13)

Here, we have used Eq. (6). This expression allows us to
determine the value of �2 in terms of N, A, and f.

Following Refs. [35,36], �1 it is obtained from the
condition " ¼ 1 (at the beginning of inflation), that is, at

�2ð��1Þ
1 ¼ �2�

4�2 .

III. PERTURBATION

In this section we will study the scalar and tensor per-
turbations for our model. The general expression for the
perturbed metric of the flat Friedmann-Robertson-Walker
is

ds2 ¼ �ð1þ 2BÞdt2 þ 2aðtÞD;idx
idt

þ a2ðtÞ½ð1� 2c Þ�ij þ 2E;i;j þ 2hij	dxidxj;
where B, D, c , and E are the scalar-type metric perturba-
tions, and hij characterizes the transverse-traceless tensor

perturbation. For a tachyon field in the slow-roll approxi-
mation the power spectrum of the curvature perturbation
becomes [41]

P R ¼
�
H2

2� _�

�
2 1

ZS

�
�
H2

2� _�

�
2 1

V
� �6

12�2

V4

V 02 ; (14)

where ZS ¼ Vð1� _�2Þ�3=2 � V [42]. From this equation

we can derive the spectral index given as ns � 1 ¼ d lnPR
d lnk ,

where the interval of wave number k is related to the
number of e-folds by d lnk ’ dN. In terms of the slow-
roll parameters it is given in first-order approximation by
[12]

ns � 1� 2ð"þ �Þ; (15)

and from Eqs. (11) and (12) we get

ns � 1� 4

��2
�ð2�� 1Þ�2ð��1Þ:

Since 1> f > 0, we clearly see that the Harrison-
Zel’dovich model, i.e., ns ¼ 1 occurs for � ¼ 1=2 or
equivalently f ¼ 2=3. For ns > 1 we have �< 1=2, and
ns < 1 is for �> 1=2 (recall that � ¼ 2ð1� fÞ=ð2� fÞÞ.
One of the interesting features of the 5 yr data set from

WMAP is that it hints at a significant running in the scalar
spectral index dns=d lnk ¼ nrun [3,4]. From Eq. (15) we
get that the running of the scalar spectral index becomes

nrun ¼
�
4V

V0

�
½";� þ �;�	": (16)

In models with only scalar fluctuations the marginalized
value for the derivative of the spectral index is approxi-
mately �0:03 from WMAP-5 yr data only [3].
On the other hand, the generation of tensor perturbations

during inflation would produce gravitational waves, and its
amplitudes are given by [43]

P T ¼ 8�2

�
H

2�

�
2 ’ 2�4

3�2
V; (17)

where the spectral index ng is given by ng ¼ dPT
d lnk ¼ �2".

From Eqs. (14) and (17) we write the tensor-scalar ratio
as

r ¼
�
PT

PR

�
� 8V 02

�2V3
: (18)

From expressions (15) and (18) we write the relation
between ns and r as

ns � 1� 2� 3f

16ð1� fÞ r; (19)

i.e., ns depends linearly with respect to r.
Note that Eq. (19) exactly coincides with the expression

obtained in Ref. [38], where a standard scalar field was
considered. Therefore, it may come as a surprise that, on
the basic of the intermediate inflation, the trajectories in the
ns � r plane between standard field and tachyon field
cannot be distinguished at lowest order. Actually, this
coincidence has already been noted in Ref. [44].
However, tachyon inflation leads to a deviation at second
order in the consistency relations, i.e., ns ¼ nsðrÞ . From
the same reference, the scalar spectral index ns up to
second order in the slow-roll parameter becomes

ns�1�2ð"þ�Þ�½ð2"2þ2ð2Cþ3�2~�Þ"�þ2C�		;
(20)

where C ’ �0:72 is a numerical constant and �	 ¼
ð9m4

p=2Þð2V 00V0=V4 � 10V 00V02=V5 þ 9V 04=V6Þ. In the

standard case we have ~� ¼ 0, and ~� ¼ 1=6 for tachyon
inflation. Also, at second order, the expression for the ratio
r is given by r ¼ 16"ð1þ 2C�� 2~�"). These calcula-
tions show that the difference at second order of the con-
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sistency relations become nTs � nSs ’ "�=3, where nTs is
the spectral index ns associated to the tachyon field, mean-
while nSs is the same parameter for the standard scalar field.
At this point, we should notice that the relation between the
r and the ng parameters becomes given by r ¼ �8csng for

a tachyonic field, where the speed of sound cs results to be

c2s ¼ 1� ð _�Þ2 [45]. However, at first order it becomes r ’
�8ng [44]. From now on, we will consider first-order

approximation only, so that we will work with this latter
consistency relation.

In the following we will study the case in which " � �
[12,44]. In this case, this condition gives us a constraint for
the values of f. To see this we write down the ratio between
� and ", and we find for the absolute value

j�
"
j � 1þ 3f� 2

4ð1� fÞ ;

so, for �> " we need to have f > 2=3.
The scalar spectral index ns, for " � �, is given by

ns � 1� 2�: (21)

From Eq. (12) this expression is equivalent to

ns � 1þ 4�

�2�
�2ð��1Þ: (22)

Using that �1 it is obtained from the condition j � j¼ 1
(at the beginning of inflation), then Eq. (22) can be re-
expressed in terms of the number of e-folding N, resulting
in

ns ¼ 1þ 2

1þ 2ð1� �ÞN ¼ 1� 2ð1� f=2Þ
ð1=2� NÞf� 1

:

Note that a value does not exist for f in which ns ¼ 1, in
contrast with the standard case [38] (which occurs for f ¼
2=3). This means that it is not possible to have a Harrison-
Zel’dovich spectrum in this case.

From Eq. (21) we can obtain for the running scalar
spectral index

nrun �
�
4�

�2�

�
2ð�� 1Þ�4ð��1Þ: (23)

From Eq. (22) we get a relation between ns and nrun,
which becomes

ns ’ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2� f

f

s ffiffiffiffiffiffiffiffiffiffiffiffi�nrun
p

:

On the other hand, from Eq. (18) we write the tensor-
scalar ratio as

r � 32

�2�
�2�2ð��1Þ; (24)

and in terms of the e-folding parameter N, we write

r ¼ 16�

1þ 2ð1� �ÞN : (25)

Also, from Eqs. (22) and (24) we obtain a relation between
ns and r, which is

ns � 1þ 2� f

16ð1� fÞ r: (26)

In Fig. 1 we show the dependence of the tensor-scalar
ratio on the spectral index for different values of the
parameter f for the tachyon lowest order (shown by the
black line) and the regimen where " � � (shown by the
blue line). In this plot we have used Eqs. (19) and (26).
The two contours in the plot show the 68% and 95%

levels of confidence for the r� ns plane, which are defined
at k0 ¼ 0:002 Mpc�1 [3]. The 5 yr WMAP data places
stronger limits on r (blue) than the 3 yr data (grey)[46]. For
tachyon lowest order case any value the parameter f,
(restricted to the range 1> f > 0), is well supported by
the data, as can be seen from Fig. 1.
On the other hand, when we considered the regime

where " � � (given in Ref. [12]), we see that for f ¼
0:1 the curve r ¼ rðnsÞ barely enters the 95% confidence
region for r ¼ 0:2, which corresponds to N ¼ 54. From
Fig. 1 the best values of f occur for the range 0:5> f > 0.

IV. CONCLUSIONS

In this paper we have studied the tachyon-intermediate
inflationary model. We have found in this model an exact
solution of the Friedmann equation for a flat Universe
containing a scalar field �ðtÞ, with tachyonic scalar poten-
tial Vð�Þ. In the slow-roll approximation we have found a
general relation among the scalar potential and its deriva-
tives. We have also obtained explicit expressions for the
corresponding power spectrum of the curvature perturba-

FIG. 1 (color online). The plot shows ns versus r for our
models, and they are compared with the WMAP data (3 yr
and 5 yr). The curves in black represent the case " � � and
the blue ones specify the tachyon lowest order case for different
values of f. The two contours correspond to the 68% and 95%
levels of confidence [3]. The small black dots and squares
represent the number of e-folds for the values N ¼ 60 and N ¼
200, respectively.
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tions PR, tensor-scalar ratio r, scalar spectrum index ns,
and its running nrun. Here, we noted that Eq. (19) exactly
coincides at lowest order with the expression obtained in
Ref. [38], where a standard scalar field was studied.

In order to bring some explicit results we have taken the
constraint in the r� ns plane to first order in the tachyon
lowest order case and the regime in which " � �. In the
tachyon lowest order case, we noted that the parameter f,
which lies in the range 1> f > 0, the model is well
supported by the data as could be seen from Fig. 1 for
any value of f. But in the other case, i.e., when " � �, the
parameter f lies within the range 0:5> f > 0, in order to
be in agreement with current WMAP astronomical data.

We should mention that we have not addressed the
phenomena of reheating and the possible transition to the
standard cosmology (see e.g., Refs. [40,47,48]). A calcu-
lation for the reheating temperature in the high-energy
scenario would give new constraints on the parameters of
the models. We hope to return to this point in the near
future.
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