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Fast robust methods for calculating likelihoods from cosmic microwave background observations on

small scales generally rely on approximations based on a set of power spectrum estimators and their

covariances. We investigate the optimality of these approximations, how accurate the covariance needs to

be, and how to estimate the covariance from simulations. For a simple case with azimuthal symmetry we

compare optimality of hybrid pseudo-Cl cosmic microwave background power spectrum estimators with

the exact result, indicating that the loss of information is not negligible, but neither is it enough to have a

large effect on standard parameter constraints. We then discuss the number of samples required to estimate

the covariance from simulations, with and without a good analytic approximation, and assess the use of

shrinkage estimators. Finally we discuss how to combine an approximate high-l likelihood with a more

exact low-l harmonic-space likelihood as a practical method for accurate likelihood calculation on all

scales.
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I. INTRODUCTION

The cosmic microwave background (CMB) appears to
be isotropic and Gaussian to a good approximation and
hence allows robust statistical constraints to be placed on a
variety of cosmological parameters. However, high-
resolution observations such as those from the Planck
satellite produce sky maps with many millions of pixels,
for which performing an exact likelihood analysis becomes
numerically very difficult. Most data analyses therefore use
fast robust approximations based on power spectrum esti-
mators [1,2]. While these are expected to be suboptimal at
some level, they should be unbiased on average. The main
advantage of a fast method is that multiple simulations can
be performed to assess in detail the propagation of errors
from numerous instrumental processes into the final re-
sults, and hence in practice they may also be significantly
more reliable than an in-principle more optimal method.

In a previous paper we investigated in detail various
approximations for calculating cosmological parameter
likelihoods from high-resolution CMB power spectrum
estimators and showed that indeed good approximations
can be found that produce unbiased results [3]. These
approximations effectively transform a set of power spec-
trum estimators so the likelihood of a theoretical power
spectrum can be written in a Gaussian form, and then
evaluate this Gaussian function using an estimate of the
power spectrum estimator covariance. In simple cases this
covariance can be calculated to reasonable accuracy using
analytic approximations, though ideally it should be as-
sessed by performing large numbers of full data-analysis
simulations, fully accounting for noise, sky cuts, noise
correlations, beam effect, map-making errors, etc.

Additional complications may additionally be accounted
for by modifying the theory power spectrum, for example,
due to beam or foreground uncertainty modes.
In this paper we aim to assess how much information is

being lost by using a fast pseudo-Cl method compared to a
more optimal method (e.g. maximum likelihood or Gibbs
sampling [4]), and whether the increase in error bars from
using a suboptimal method has a significant effect on
cosmological parameters. We then assess how to estimate
the covariance from simulations and how many simula-
tions are required under various assumptions. We show
how information from approximate models can be com-
bined with simulations by using shrinkage estimators or by
fitting model parameters. Finally we suggest how an ap-
proximate power spectrum likelihood at high l can be
combined with a more exact low-l likelihood for evaluat-
ing the total likelihood, consistently accounting for the
contribution of high-l power to the low-l mode variance.
We focus on nearly full-sky observations, for example,

from the WMAP or Planck satellites, where only a small
fraction (� 15%) of the sky is cut out due to foreground or
point-source contamination. For simplicity we discuss
mainly the CMB temperature, which is what drives the
parameter constraints, though in the appendix we give a
general harmonic method for calculating the low-l like-
lihood in harmonic space. Since the paper is only likely to
be of interest to experts in the field, we refer to the
extensive literature for introductory material.

II. HOW OPTIMAL ARE PSEUDO-Cl

LIKELIHOODS?

We focus on hybrid pseudo-Cl power spectrum estima-
tors, constructed by combining sets of pseudo-Cl estima-
tors from maps with different weightings. For details of
how the pseudo-Cl estimators are constructed and how the
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covariance can be estimated, see Refs. [3,5–13]. When the
sky is noise dominated, the pseudo-Cl estimator with
inverse-noise weighting is optimal; when the noise is neg-
ligible a uniform weighting is optimal. Combining differ-
ent pseudo-Cl estimators with different weightings gives
hybrid estimators that interpolate smoothly between the
regimes, giving significantly smaller error bars at all l than
a single weight function could [9].

Over the years various code comparisons and tests have
indicated that pseudo-Cl estimator are in fact rather good at
high l, in that their variance is typically within Oð10%Þ of
that expected for a maximum-likelihood estimator (e.g.
Refs. [7,12]). However, the degree of suboptimality will
depend on the noise and sky cut under consideration.
Because of its scanning strategy, the Planck satellite will
have highly anisotropic noise, and we would like to assess
whether this is likely to be a problem for pseudo-Cl meth-
ods. Here we perform a comparison in the case of a
strongly anisotropic noise, but with azimuthal symmetry
so that the optimal Fisher errors can be calculated exactly
for comparison. Though this situation is clearly unrealistic,
it should give a good idea of the amount of suboptimality
that can be expected in practice. Our main concern is the
anisotropy of the noise, so we shall consider the full sky;
the main advantage of doing this is that the covariance of
the pseudo-Cl estimators can then be calculated accurately
analytically, so that our comparison is assessing the infor-
mation loss due to suboptimal handling of noise anisot-
ropy, rather than depending on errors in the covariance
calculation. We discuss the effects of covariance errors in a
later section. We focus on the high-l temperature power
spectrum since this dominates the parameter constraints
from the Planck satellite; for discussion of how to improve
polarization pseudo-Cl estimators see Refs. [13,14].

A. Comparing the Fisher matrix and the pseudo-Cl’s
variance in the full sky

The Cramér-Rao inequality states that the inverse of the
Fisher information is a lower bound on the variance of any
unbiased estimator, so we use the Fisher matrix to quantify
the errors on the power spectrum that one could hope to get
using an optimal method. For a Gaussian likelihood func-
tion L, the Fisher matrix F, for the power spectrum Cl at
some fiducial model is given by (see e.g. Ref. [15])

Fll0 ¼ �
��

@2

@Cl@Cl0

�
lnL

�
¼ 1

2
Tr

�
C�1 @C

@Cl

C�1 @C

@Cl0

�
;

(1)

where C ¼ SþN, with S and N being the signal and
noise covariances, respectively. For a statistically isotropic
signal on the full sky S is diagonal in harmonic space, and
for pixel-uncorrelated noise N can be calculated easily in
terms of the pixel noise variance. We make the assumption

of azimuthal symmetry so that Nl0m0lm ¼ �mm0Nl0mlm,
which makes the Fisher matrix numerically tractable by
putting it into block diagonal form (with blocks for each
m). The Fisher matrix then reads:

Fll0 ¼ 1

2

X
m

ð½C�1�ðmÞ
ll0 Þ2; (2)

which is simply half the square of the inverse of the
covariance matrix (signal plus noise) summed over m.
We compare this with the errors expected using

pseudo-Cl power spectrum estimators. For weight func-
tions labeled by i and j there are a set of pseudo-Cl

estimators Ĉij
l and a covariance

Mijkl
ll0 � h�Ĉij

l �Ĉ
kl
l0 i: (3)

Explicit expressions for the covariances are given in e.g.
Ref. [3]. The hybrid pseudo-Cl estimators of Refs. [3,9] are
a combination of pseudo-Cl ’s with different combinations
of weights. In the low noise regime, the best weight func-
tion, !ð�Þ, is close to uniform in order to minimize the
cosmic variance. However, in the high noise regime, the
weight function is proportional to the inverse noise to
reduce noise itself [9]. Therefore, a natural choice would
be to choose a combination of results from uniform and
inverse-noise weight functions. Here we consider the sim-
plest case of combining the two estimators calculated
separately from the two weighted maps. The full hybrid
covariance matrix then reads:

Mh
ll0 � h�Ĉh

l�Ĉ
h
l0 i ¼

�X
AB

HAB
ll0

��1
; (4)

where HAB
ll0 is the inverse of the covariance matrix

h�ĈA
l �Ĉ

B
l0 i, with A and B denoting the different weight

functions used for the Ĉl contributing to the hybrid
estimator.
We can now proceed to compare the errors on individual

Cl and their correlations. However, for parameter estima-
tion we are not just interested in individual l: the Cl are
smooth functions of l, and the effects of parameters enter in
a smooth way over a range of l. We are therefore more
interested in the constraint on the amplitude over some
smoothing scale, as this will more closely determine how
well we can constrain different parameters. The constraint
over a range of scales depends on the correlations of differ-
ent individual l, so considering a range of l also has the
advantage of checking any effects due to correlations.
We therefore also evaluate the error of an amplitude

parameter, A, over some range in �l, so that the power
spectrum over the range�l is given by ACin

l , and elsewhere

by Cin
l , for some fiducial model Cin

l . The Fisher matrix for

amplitude A over �l is then
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This can be compared to using the pseudo-Cl estimators
in a Gaussian likelihood approximation:

� 2 lnLfðClÞ ¼
X
ll0
ðĈl � ClÞ½M�1

f �ll0 ðĈl0 � Cl0 Þ; (6)

where ½Mf� is the covariance for a fiducial model.
Differentiating twice with respect to A gives

� @2

@A2
ðlnLfÞ ¼

X
ll0
Cin
l ½M�1

f �ll0Cin
l0 ; (7)

where the sum is over the l in the bin being considered.
Note that we are considering the case of generating esti-
mators at each l and then using the covariance to estimate
the power over a range of l. This is not the same as making
a binned Cl estimator (depending on some window func-
tion range of l), which may well have different properties.
Full-sky observations such as WMAP and Planck are
normally analyzed into individual Cl estimators, the case
we consider, though there may be advantages to also con-
sidering binned estimators.

To make an error comparison, we use an azimuthally
averaged (in ecliptic coordinates) version of the noise

expected for the Planck satellite [16] and consider an
isotropic 7arcmin-fwhm Gaussian beam.
We compare the inverse of the hybrid variance (the

diagonal elements of Eq. (4)) to the Fisher errors (the
diagonals of Eq. (2)) in Fig. 1. The figure also shows the
uniform and inverse-weighted estimators separately.
Although the variance of the uniform noise weighting is
almost identical to the fisher error at low l, it deviates
considerably when noise dominates. On the other hand,
the variance of the inverse-variance noise weighting case
remains poor even at high l where noise is starting to
dominate over the signal. The hybrid estimators signifi-
cantly improve the errors, giving results within a few
percent of the ideal Fisher errors at all l.
Figure 2 compares the results for the amplitude over a

range �l ¼ 2, 10, 50. In this case a larger range of l gives
relatively worse hybrid errors compared to the Fisher
errors, though the hybrid errors are still within 10% at all
l. One interpretation of the effect of bin size might be that
the optimal result is combining correlation information
between different scales significantly more efficiently
than the hybrid estimator. This is perhaps not surprising
since the Fisher result ‘‘knows’’ about correlations be-

FIG. 1 (color online). A comparison between the Fisher errors
and the inverse of the hybrid estimator variance for the different
weighting combinations considered. The red (solid), blue (dot-
ted), and green (dashed) curves represent the ratios of Fisher
errors to the inverse variance of uniform noise weighting,
inverse-variance noise weighting, and hybrid, respectively.

FIG. 2 (color online). A comparison of the errors in the power
over a range �l ¼ 2 (solid line), �l ¼ 10 (dashed line), and
�l ¼ 50 (dot-dashed line), for bands starting at lmin. The red,
blue, and green curves represent the ratios of Fisher errors to the
inverse variance of uniform noise weighting, inverse-variance
noise weighting, and hybrid, respectively.
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tween all the l and m modes individually, whereas the
hybrid approximation has compressed the correlation in-
formation into a covariance matrix accounting only for l
correlations. The hybrid estimator could be further im-
proved by including more pseudo-Cl estimators in the
mix if greater optimality is desired, for example, the
uniform-inverse weight estimator; however, as we see be-
low the level of optimality found here is likely to be
sufficient in most cases.

B. Effect on parameter estimation

Since the hybrid pseudo-Cl may be suboptimal at up to
the 10% level, it is also useful to directly check the effect
on parameter estimation.We use full-sky Planck-like simu-
lations with azimuthal symmetry as previously described.
We consider a standard 6-parameter �CDM model (with
running of the spectral index, but the optical depth fixed
since we exclude l � 30 where a more optimal likelihood
analysis is possible). For simplicity and for a quick check,
we consider the fiducial Gaussian likelihood approxima-
tion since it depends on a precomputed covariance matrix.

We calculate the likelihood with the Fisher covariance
(Eq. (2)) and with the hybrid covariance (Eq. (4)) using
the COSMOMC parameter estimation code to sample from
the posterior parameter distribution [17]. We use a fiducial

analytic model for the Ĉl, corresponding to averaging the
log-likelihood over realizations.
Figure 3 shows the results, which are very similar. This

is not a surprise since Planck can measure many acoustic
peaks in the CMB power spectrum, so most parameters are
well constrained from the cosmic-variance limited region
where the hybrid estimator is close to optimal. The effect
could be somewhat larger in extended parameter spaces
where models differ significantly only over the region
where the hybrid estimator is significantly suboptimal.

III. HOW TO CALCULATE THE COVARIANCE?

In the simple cases we have considered above the esti-
mator covariance can be calculated accurately analytically.
In more realistic cases this is unlikely to be the case: even a
simple sky cut renders the commonly used covariance
approximates accurate at only the Oð10%Þ level, depend-

FIG. 3 (color online). Parameter constraints from a single idealized Plank-like simulation with anisotropic noise. The one-
dimensional marginalized posteriors are from the fiducial Gaussian approximation with the covariance being from the Fisher matrix
or the pseudo-Cl estimator covariance. The black (solid) line uses the Fisher covariance, blue (dotted) line is the inverse-noise
weighted estimator, green (dot-dashed) line is with uniform weight, and red (dashed) line uses the hybrid estimator. The results are
very consistent as constraints are driven by scales where the uniform weighting is nearly optimal.
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ing on apodization (see e.g. [18]). Ideally we would like to
be able to evaluate the covariance (in some fiducial model)
directly from simulations of the full time stream, including
all relevant instrumental effects. This is the approach
adopted by the MASTER/xFASTER pipelines used by
many CMB observations with data over only a small part
of the sky [7,19,20]; the advantage of a Monte Carlo
approach is that numerous complicated effects can be
included straightforwardly, where an analytic result would
be intractable. It should, however, be remembered that if
the likelihood approximation is derived to be good for
near-isotropic-Gaussian fields, including systematics in
the covariance may invalidate the likelihood approxima-
tion. For example beam uncertainty modes effectively
scale the theory power spectrum coherently over a large
range of scales, so beam uncertainties may be better ac-
counted for by including them as extra parameters affect-
ing the theory Cl in the parameter estimation code, rather
than as part of the likelihood function for beam-uncertain
estimators [18].

The maximum-likelihood estimator of the covariance of
a set of zero-mean samples of a Gaussian vector n is

M̂ ¼ 1

n

X
i

nin
T
i ; (8)

where the sum is over the n independent samples. If our
only knowledge about the covariance comes from simula-
tions, we should account for the sampling uncertainty in
the true covariance by marginalizing over the probability
distribution of the true covariance given the Monte Carlo
estimate; see Appendix A where we give mathematical
details in an idealized case.

If there are a large number of samples, the uncertainty in
the true covariance may be negligible, so the Monte Carlo
covariance can be used directly, but the question is: how
many samples do you need? There is a basic lower limit of
n � p, where p is the dimensionality of the covariance;
this is required to have p independent modes sampled, and
hence for the covariance estimate to be invertible. Already
in the case of the power spectrum estimators this is a
nontrivial requirement: for WMAP temperature p� 103,
but due to the very high numerical cost they were only able
to do a dozen or so full time-stream simulations. For the
distribution of the true covariance given the estimator to be
normalizable we actually need n > 2p, and for fractional
accuracy better than � on the error bars, we require n *
2p=�. Indeed to have the numerical value of the �2 accu-
rate, one needs n � p2, which is getting to be very time
consuming for unbinned Cl estimators, even for simplified
map-level simulations. However, in practice it is not usu-
ally required to have the �2 accurate, as long as the
variation under changes in parameters is accurate, and
hence the correct parameter constraints are obtained. For
further discussion see Appendix A and Refs. [21,22].

In a realistic situation we may have some idea of the
covariance from approximate analytical results, but would
also like to calibrate it from simulations to account for
complications that are not included in the analytical model.
An estimator can use both the approximation and the
simulations. Perhaps the simplest case to consider is where
there is a prior estimate that one considers to be about as
accurate as that from q simulations. Then adding the
information from n actual simulations, the best estimate
of the true covariance will be the weighted sum of the two
covariance estimates (see Appendix A). This is a simple
example of a shrinkage estimator: it ‘‘shrinks’’ noisy si-
mulated estimators towards some prior target, giving a new
estimator that should be better than both individually. In
the limit of many simulations the new estimator is simu-
lation dominated; with few simulations it is prior
dominated.

A. Shrinkage estimators

Shrinkage estimators were originally introduced for the
situation in which there are many fewer samples than
numbers of dimensions, so that the maximum-likelihood
covariance estimate is not even invertible. This is a com-
mon situation in many problems, and shrinkage provides a
method to regularize the estimate in a well-defined way so
that it is invertible. Here we would ideally also like to have
very few simulations, but we also require good accuracy of
the answer and may prefer to generate more samples than
have an inaccurate answer. In this section we investigate
whether shrinkage estimators are useful for CMB
likelihoods.
A shrinkage estimator s� for a quantity s is constructed

from a linear combination of some ‘‘target’’ t and an
estimator ŝ calculated from samples [23–25]:

s � ¼ �tþ ð1� �Þŝ; (9)

with �, the shrinkage intensity, being in the range 0 to 1.
The target can either be a fixed prior, or it could be some
approximate estimate from the data or some combination.
If � ¼ 0 then the shrinkage estimate equals the unre-
stricted estimate, ŝ. If, however, � ¼ 1 then the target
estimate, t, is recovered. Therefore, the main advantage
of this weighted combination is to form a regularized
estimator that outperforms both estimators individually.
The shrinkage intensity is chosen in a way that would
optimize the estimator, for example, by minimizing the
mean-squared error:

MSE ð�Þ ¼
�X

l

ðs�l � slÞ2
�
; (10)

with the angle brackets being the expectation value. Ledoit
and Wolf [23] derived an analytic solution for � to mini-
mize this error:
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�� ¼
P

l½varðŝlÞ � covðtl; ŝlÞ � biasðŝlÞhtl � ŝli�P
lhðtl � ŝlÞ2i

: (11)

For a practical use of Eq. (11), Ref. [24] suggests replacing
the covariance, variance, and bias with their unbiased

samples estimates ð ^cov; ^var; ^biasÞ. If ŝ is an unbiased esti-
mator, then the bias term may be omitted. The new ex-
pression of the shrinkage intensity then reads:

�̂ � ¼
P

l½ ^varðŝlÞ � ^covðtl; ŝlÞ�P
lðtl � ŝlÞ2

: (12)

In practice we use minð1; �̂�Þ.
The shrinkage method can be applied directly to esti-

mate the covariance matrix when s is taken to be a vector of
the distinct elements of the covariance matrix. If we have n
measurements of a data vector x of size p, and we assume

that xðkÞl is the kth measurement of the lth element of x,
then the empirical mean of the variable xl is

�x l ¼ 1

n

Xn
k¼1

xðkÞl : (13)

The unbiased empirical covariance, Ŝ, is given by

Ŝ ll0 ¼ ^covðxl; xl0 Þ ¼ n

n� 1
�Wll0 ; (14)

where we have set

�W ll0 ¼ 1

n

Xn
k¼1

WðkÞ
ll0 ; (15)

WðkÞ
ll0 ¼ ðxðkÞl � �xlÞðxðkÞl0 � �xl0 Þ: (16)

Similarly, the required variance can be estimated as

^varðSll0 Þ ¼ n

ðn� 1Þ3
Xn
k¼1

ðWðkÞ
ll0 � �Wll0 Þ2: (17)

If the target is fixed (does not depend on the data) then the
covariance term vanishes; if not, it should be included to
account for the correlation. We estimate the shrinkage

intensity by replacing ŝ and t in Eq. (11) with Ŝ and T,
where T is some arbitrary target matrix. Therefore, the
optimized shrinkage covariance now takes the form

M ¼ �̂�Tþ ð1� �̂�ÞŜ: (18)

The shrinkage estimator is designed to use information
from the sample estimator roughly in proportion to how
relatively accurate it is. If we have a target that is say 10%

accurate, Ŝ needs to have & 10% accuracy to significantly
improve on the target. For high precision results, the
estimator needs to be accurate, so the shrinkage estimator

requires the same order of number of samples as the direct
accurate estimator. It simply has the advantage of being
slightly superior and not breaking down rapidly as the
number of samples is decreased.
Note that it is not at all clear in the current context that

minimizing the Frobenius norm of the error (Eq. (10)) is
the best thing to do. Indeed if the diagonal and nondiagonal
elements of the covariance have very different distribu-
tions, it is not a good idea to use a shrinkage estimator
derived by treating them on equal terms. One can, however,
equally well apply a shrinkage estimator to subsets of
parameters separately. Since the off-diagonal terms are
generally small, the number of simulations required to
estimate them accurately is very large: for a given number
of samples the shrinkage intensity �� will be significantly
larger for the off-diagonal than the diagonal components.
Also note that the shrinkage intensity �� is not independent
of the scaling of the elements (e.g. using Cl or lðlþ 1ÞCl

gives different results). We therefore apply the estimator to
the covariance matrix after taking out the approximate
ClCl0 scaling of the elements (e.g. normalizing so that
the target has unit diagonal).
The effect of the shrinkage estimator on estimated like-

lihoods is illustrated in Fig. 4, where separate shrinkage
estimates are used for the diagonal and off-diagonal parts
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FIG. 4 (color online). Example log likelihood for the power
spectrum amplitude over 100< l � 700 in a typical realization
when using the exact covariance (thick solid line), a prior guess
diagonal target that is off by a factor of 1.3 from the true
covariance (dot-dashed line), the covariance estimated from
2000 samples (dashed line), and the shrinkage estimator that
combines the estimated and target covariances to get closer to
the correct result (thin solid line). The diagonal and off-diagonal
parts of the matrix are shrunk separately, giving a shrinkage
estimator close to the sample estimate on the diagonal and close
to the target on the off diagonal. We approximate the likelihood
as Gaussian in the Cl.
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of the covariance matrix. Here toy samples were generated
from the Gaussian model with a known true covariance,
and the shrinkage target is diagonal and 30% wrong. The
shrinkage estimator is significantly closer to the true result
than using either the direct sample estimate or the diagonal
target, as expected. Using a purely diagonal covariance
approximation with the variances estimated from the
samples would give a similar result. As more samples are
used the shrinkage estimator gradually includes more in-
formation about the off-diagonal correlations from the
simulations.

The division of the covariance into components with
different properties can be further generalized. Cut-sky
effects tend mostly to correlate nearby l, but the matrix is
smooth in l, so, for example,Mlðlþ1Þ is similar toMðlþ1Þðlþ2Þ
(see Fig. 5). This suggests slicing the matrix into diagonal
strips:Mll (for all l),Mlðlþ1Þ,Mlðlþ2Þ, etc., where each strip
is given its own shrinkage intensity. In practice MlðlþnÞ is
very small for n � 1 in most cases (the matrix is nearly
band diagonal), so that the combined shrinkage estimator
effectively sets n � 1 elements to the target. Using a

shrinkage estimator does, however, allow the possibility
of the estimator including strongly off-diagonal correla-
tions if they appear to be needed by the samples. If the
target is nearly zero for n � 1, then all the n � 1 elements
could be lumped together with a single shrinkage intensity,
reducing noise in the intensity due to the small size of the
strips in the corners of the matrix. The strips with n� 1
will gradually change from the target to the sample esti-
mator as the number of samples is increased.
Figure 5 compares the covariance estimated from 23 000

realistic simulations of the WMAP 5-year temperature
maps [18] with an analytic approximation for off-diagonal
parts of the covariance. The analytic result agrees rather
well, indicating that in this case an extremely large number
of simulations would be required to improve the off-
diagonal result significantly from simulations. On the other
hand if there was a disagreement between the simulations
and analytic result, a shrinkage estimator would account
for this and start to correct the result. On the much larger
diagonal analytic approximations are only accurate to
Oð5%Þ (see Fig. 7), so a relatively modest number of
simulations can improve on the analytic result.
Figure 6 shows how the shrinkage intensity varies with

the number of simulations, both for the case of a signifi-
cantly wrong target, and the example of WMAP where we
have an analytic approximation accurate at the 5% level.
The better the target is the more simulations are required to
improve on it from the simulations: with a significantly
wrong target the simulation estimator rapidly dominates

the shrinkage estimator (�̂� ! 0). With a good analytic
result the diagonal estimate is gradually improved over a
few thousand simulations, but far more simulations would
be needed to correct small inaccuracies in the off-diagonal
terms.
A disadvantage of the shrinkage approach is that it does

not specify how parameters should be scaled or divided
into subsets with different shrinkage intensities. For ex-
ample, it may also be beneficial to divide in ranges of l if
the accuracy of the target varies as a function of l. This is
the case for many power spectrum estimators since the
covariance can be calculated accurately in the noise-
dominated regime, with the main inaccuracies coming
from the sample variance over the acoustic peaks. The
extent to which covariance errors affect parameters also
varies as a function of l: errors in the noise-dominated
regime have little effect because there is no signal there.

B. Covariance models

The general shrinkage estimator uses a target covariance
and combines it directly with data from simulations, allow-
ing general deviations from the target to be determined
with enough simulations. However, in many instances we
actually have rather strong priors about the form of the
covariance, even without an accurate prior; for example, in
the case of the CMB the covariance is expected to be

−0.06
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0.02
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FIG. 5 (color online). Diagonal strips of the maximum-
likelihood correlation matrix estimated from 23 000 simulations
of the WMAP 5-year temperature maps [18], ðl; lþ 1Þ [thin solid
line], ðl; lþ 2Þ [thick solid line], ðl; lþ 3Þ [thin dashed line], and
ðl; lþ 4Þ [thick dashed line]; the elements become very small
when further away from the diagonal. The top figure is the raw
estimate, the bottom figure shows the result smoothed with a
Gaussian kernel of width �l ¼ 10. The ðl; lþ 1Þ and ðl; lþ 3Þ
elements are much smaller than ðl; lþ 2Þ, ðl; lþ 4Þ due to the
near north-south symmetry of the foreground mask in galactic
coordinates. The thin black solid lines in the bottom half show an
analytic approximation for the corresponding parts of the corre-
lation matrix [18].
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strongly diagonally dominated and also smooth in l unless
sharp changes are introduced by the choice of
Cl-estimator1 (e.g. see Fig. 5). If we are confident that
this structure is correct, we should be able to use it to
improve our covariance estimator.
The approach adopted by the WMAP team is to use an

analytic model of the covariance and then calibrate it from
simulations by fitting parameters to a model of the covari-
ance diagonal [2]. If the model has the right shape this can
reduce to fitting a very small number of parameters, which
can be done accurately from a relatively small number of
simulations, making this a very good approach. On the
other hand if the actual behavior is more complicated than
the assumed model, or the off-diagonal correlations cannot
be calculated reliably analytically, this could lead to mis-
estimation of the covariance.
For analysis methods that do not introduce features in l,

variations in the Cl covariance diagonal are smooth on a
scale determined by the scale of the acoustic peaks.
Rescaling the diagonal of the covariance using a smooth
model and taking the correlation matrix from the analytic
result therefore gives close to the right answer; e.g. using
the estimator

FIG. 6 (color online). The shrinkage intensity �̂� against the number of WMAP 5-year simulation samples used, using the analytic
approximation as the target (left) and using a target that is significantly wrong (right; the analytic approximation multiplied by 1.3).
The shrinkage intensity is calculated separately for each strip of the normalized matrix, the plots show the diagonal of the covariance
(solid line), first off-diagonal strip (short-dashed line), and the second strip (long-dashed line).
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FIG. 7 (color online). The fractional difference of various
approximations to the smoothed diagonal of the WMAP5 Cl

covariance estimated from 23 000 samples from Ref. [18]. The
thick solid line shows an analytic approximation, which is
accurate at the 5% level. Thin lines show the result from fitting
a cubic spline to the Cl variance using 100 (dot-dashed line) and
1000 (solid line) simulation samples. Spline nodes are separated
by �l ¼ 50.

1Note the WMAP team’s analysis does use a sharp cut in l to
switch between pseudo-Cl weighting schemes. However, each
estimator is separately smooth.
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Mmodel
ll0 ¼ plTll0pl0 (19)

(no sum), where T is the analytic model and pl are fit to the
simulation data using cubic splines. Figure 7 shows that
fitting only 100 simulation samples using cubic splines for
the diagonal can be as accurate as the analytic approxima-
tion. With a thousand or more simulations the covariance
diagonal can be determined to the subpercent level. If
required additional parameters could be introduced to
model variations in the off-diagonal components. If the
theoretical model dependence of the covariance is not well
captured by the approximation of Ref. [3], fits could also
be made as a function of simulation parameters and then
interpolated as required.

An alternative to fitting a model for the covariance when
no good model is available would be using a smoothed
version of the estimated covariance, for example, by ap-
plying a Gaussian smoothing kernel to each diagonal strip
of the matrix. If the true covariance is indeed smooth, this
will significantly reduce the sampling noise and hence
improve the covariance estimate. For example, applying
a smoothing kernel of width �l ¼ 5 to the diagonal strips
produces results for the likelihood in Fig. 4 that are similar
to the shrinkage estimator, depending on the realization.
However, it does not guarantee that the smoothed matrix is
invertible.

IV. COMBINING LOWAND HIGH l

We have discussed how the likelihood can easily be
calculated at high l without losing very much information
by compressing the data into a set of pseudo-Cl estimators.
However, at low l one should be able to perform a more
optimal analysis, which is desirable since the exact shape
of the likelihood function depends on the particular real-
ization of low l modes on the sky. The WMAP data
analysis uses a pixel-based likelihood at low l [26], essen-
tially assuming Gaussianity of a set of low-resolution pixel
values and using the pixel covariance to calculate the
likelihood. An alternative would be to work directly in
harmonic space, avoiding pixelization issues, as discussed
in Appendix B. However, one calculates the low l like-
lihood, the question remains of how to combine this with a
high-l likelihood, given it will not be possible to do an
exact l separation on the cut sky.

Given a set of observed modes on the sky ~X, a low l
likelihood operates on some subset of the modes given by

Xs ¼ ~M ~X , where ~M is rectangular and Xs is sufficiently
small that an exact likelihood calculation is numerically
feasible. In generalXs will contain the low lmodes we are
aiming to analyze exactly (l � lexact), along with some
leakage from higher l > lexact due to the sky cut. It follows
that in the fiducial model the remaining information is
contained in the independent high-l-dominated modes

~X> � ðI� h ~X ~Xyi ~My½ ~Mh ~X ~Xyi ~My��1 ~MÞ ~X
¼ ~X� h ~X ~Xyi ~My½hXsX

y
s i��1Xs

	 ~X� h ~X ~Xyi ~MyXs; (20)

where the third line follows for the temperature in the true
model if the modes have been decorrelated and normalized
to be white. For temperature and polarization the same
construction can be used on the large vector XTEB in
Eq. (20), though there are simplifying advantages to doing
temperature and polarization separately. In a different
model these modes should also be approximately indepen-
dent as long as the fiducial model is reasonably accurate.
From the high-lmodes ~X>, one can construct pseudo-Cl

(or more optimal) estimators as normal, however the cou-
pling matrix and covariance are more complicated because

FIG. 8 (color online). Input temperature map with kp2 mask
[35] (top), low-l modes h ~X ~Xyi ~MyXs with lexact ¼ 20, llow ¼ 80
(middle, see Appendix B), and the low-l modes’ contribution
from l > lexact (bottom). Note how the supported modes are
going smoothly to zero at the cut edges, and the mixing from
l > lexact is mostly near the edges of the cut. Color scales are not
the same.
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the weight function is no longer local in pixel space. If the
leakage from low to high l is small, these should have
roughly the same properties as the normal cut-sky estima-
tors, and hence Cl-estimator likelihood approximations
can be used. If the leakage is small we could also just
ignore the correlation, which is probably fine as long as
nothing interesting is happening over the affected l range.

However, as shown in Figs. 8 and 9, the mixing of modes
to higher l dominates around the cut edges, where higher-l
modes are needed so that the projected map goes smoothly
to zero on the cut. This suggests that by slightly enlarging
or apodizing the mask used for the l * lexact pseudo-Cl

analysis, most of the modes already included in the low-l
likelihood would be removed. This enlarged cut would
only be needed for some number of l * lexact where the
leakage is significant; at very high l the leakage is negli-
gible so the original cut can be used. This is a quick and
simple solution to separating the scales to a reasonable

approximation: use an accurate likelihood at low l (includ-
ing some modes from higher l), use pseudo-Cl estimators
with an enlarged mask over intermediate scales where the
leakage is important, then at high l use pseudo-Cl estima-
tors with the original mask.
Figure 10 shows that the leakage between scales is small

but can further be reduced by using a larger mask over a
range �l� 10 above lexact. Using an enlarged mask is
suboptimal because some modes in the enlarged cut are
being lost: the high-l modes included in the low-l like-
lihood are largely aligned with the boundary, so by cutting
all modes in the boundary region transverse modes are lost
that could be included. However, a small suboptimality is
not likely to matter if there is little interesting information
in the range l * lexact. The separation method has the
advantage of keeping the low and high-l analyses straight-
forward while including almost all of the valuable infor-
mation at low l. The harmonic method described in the
appendix is also free from pixelization errors and allows a
high-resolution mask to be used: there is no additional loss
of information from having to use an enlarged mask and
big pixels, as is often the case when using smoothed pixel-
based likelihoods. Simply ignoring the correlation between
low and high-l would be a good approximation in most
models, but is formally incorrect due to double-counting of
information in the overlap region.
A recent paper [27] has claimed that for accurate like-

lihood calculations on our observed CMB sky, a nearly

FIG. 9 (color online). Decomposition of the same map into
low-l modes (top), independent high-l modes (middle), and the
contribution from l > lexact to the low-l map. Here lexact ¼ 30,
llow ¼ 120. Note a slightly larger mask would remove much of
the high-l contribution.
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FIG. 10 (color online). Pseudo-Cl temperature power spectra
of a simulated map projected into low-l modes (lexact ¼ 30,
llow ¼ 120, � ¼ 0:001, see the appendix). The dashed line shows
the result using the ‘‘kp2’’ mask (85% of the sky) used to
construct the modes. The thin red line shows the estimated Cls
using the enlarged ‘‘QK75’’ temperature mask [36] that includes
only 72% of the sky. The leakage to l > lexact is relatively small
but is further decreased by using the larger mask. The thick line
shows the power spectrum from the cut sky without projecting
out the low-l modes.
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exact likelihood is required up to l� 100. Although this is
somewhat surprising given that pseudo-Cl methods are
unbiased and not far from optimal, it would still be trac-
table by direct as well as Gibbs-sampling approaches.

V. CONCLUSIONS

We have seen that approximate fast power spectrum
likelihoods work well on small scales even with strongly
anisotropic noise. The error bars are slightly increased by
using a suboptimal method, but since the effect on parame-
ters is small, this is likely to be a price well worth paying
for robustness.

The covariance that is required to calculate the high-l
likelihood can be calculated from simulations, but in gen-
eral a very large number of simulations are required to
calculate the likelihood accurately. Using approximate
analytical results and expected smoothness properties, a
more accurate covariance can be calculated with far fewer
samples by calibration from simulations. There is a trade-
off between being able to see any strange behavior in the
simulations and using prior expectations to reduce the
number of simulations required. Shrinkage estimators pro-
vide one way of combining analytic and simulation results
so that if the analytic result is significantly wrong the
estimator becomes dominated by the simulation result.
Shrinkage estimators, however, require far more samples
than a model-fitting approach, which can obtain very ac-
curate results from less than a thousand simulations.

With an accurate covariance and set of power spectrum
estimators, the high-l likelihood can be calculated quickly
and easily. We showed how this could be combined with a
more optimal low-l likelihood function, compensating for
the small leakage between high and low l while including
almost all of the useful information from low l. We con-
clude that a combined likelihood function should be a good
option for analyzing foreground-cleaned Planck data,
though further work is required to model the foreground
uncertainties accurately. Fast and robust methods based on
power spectra at high l and harmonic near-exact likeli-
hoods at low l are likely to be a very good alternative to
globally more accurate (but numerically more difficult)
Gibbs-sampling methods, as concluded by other authors
[9,11,28]. In the appendix we described a practical har-
monic method for calculating the low-l likelihood without
introducing pixelization issues, which can be used easily
once the noise covariance is calculated in harmonic space.
Allowing for marginalization over foreground templates,
or similar method, can often take place in any basis, so
generalizing the method suggested here to more realistic
cases could be straightforward (see e.g. Ref. [29]).
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APPENDIX A: COVARIANCE PRIORS

The maximum-likelihood estimator of the covariance of
a set of zero-mean samples of a Gaussian vector n is

Ĉ ¼ 1

n

X
i

nin
T
i : (A1)

A p-dimensional symmetric positive definite matrix has
the Wishart distribution (see e.g. Ref. [21]) S�Wpðn;CÞ
if

PðSÞ ¼ jSjðn�p�1Þ=2

2ð1=2Þnp�pðn=2ÞjCjn=2
e�ð1=2Þ TrðSC�1Þ; (A2)

so the covariance estimator is distributed as nĈ�
Wpðn;CÞ. Given the estimator, the true covariance with a

flat prior has a distribution C� IWpðn; nĈÞ given by

PðCÞ ¼ jSjðn�p�1Þ=2

2ð1=2Þðn�p�1Þp�pð12 ðn�p� 1ÞÞjCjn=2 e
�ð1=2ÞTrðSC�1Þ;

(A3)

where n > 2p.
Assume we wish to calculate the likelihood of d, where

d has a p-dimensional Normal distribution d� Npð0;CÞ.
Using the estimator of the covariance we want to margin-
alize out the uncertainty in the true covariance to give

LðdjĈÞ ¼
Z

dC
e�ð1=2ÞdTC�1d

ð2�Þp=2jCj1=2


 jnĈjðn�p�1Þ=2

2ð1=2Þðn�p�1Þp�pð12 ðn� p� 1ÞÞjCjn=2

 e�ðn=2Þ TrðĈC�1Þ: (A4)

The integral is just another inverse-Wishart distribution
and can be done, so that

� 2 logL ¼ ðn� pÞ logjnĈþ ddTj þ . . . (A5)

¼ ðn� pÞ log
�
1þ 1

n
dTĈ�1d

�
þ . . . (A6)

2http://lambda.gsfc.nasa.gov/
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	 n� p

n

�
�̂2 � 1

n

1

2
ð�̂2Þ2 þ . . .

�
þ . . . (A7)

(ignoring d-independent terms) and assuming Ĉ�1 is in-
vertible (n � p). Here �̂2 (�OðpÞ for typical data) is the
naive chi-squared we would calculate taking the covari-
ance estimated from simulations to be the true covariance.
We are most interested in how the likelihood varies with
parameters, so taking the derivative with respect to a
parameter � gives

�2@ logL

@�
	 n� p

nþ �̂2

@�̂2

@�
: (A8)

Thus using the likelihood e��̂2=2 gives best-fit values that
agree with the marginalized result, but we need n � p
samples for the error bars to be similar. If this is not the
case then using �̂2 will underestimate the error bars by a
fraction Oð½n� p�=½nþ p�Þ; for a fractional accuracy on
the error bars better than �, we need n � 2p=�. For the
numerical value of the log likelihood to be close we would
also need n � p2.

One approach to correct for the underestimated error
bars would be to multiply the log likelihood by an estimate
of the underestimation factor. This should at least ensure
the error bars are consistent, though they would then be
larger than could be obtained by using more simulations to
estimate the covariance.

If instead of taking a flat prior for C we assume an
inverse-Wishart prior IWpðnr;CrÞ, the result above is the

same with

Ĉ ! nĈþ nrCr

nþ nr
; (A9)

and n ! nþ nr, which is essentially a shrinkage estimator
of the covariance. A hierarchical Bayesian model might
take a flat or log prior on nr, or often it is fixed at its
minimum value for normalizability.

APPENDIX B: CUT-SKY HARMONIC LOW-l
LIKELIHOOD

Here we present a harmonic near-exact low-l likelihood
method that has no artefacts from using a low-resolution
pixelization and does not rely on a map-smoothing proce-
dure that potentially mixes information inside and outside
the foreground mask. The method must work with strongly
anisotropic cusped noise as expected with Planck—but this
is no problem in harmonic space. The main disadvantage is
that it may be slower than pixel-based codes. For this
discussion we neglect all nonideal complications (fore-
grounds, etc.), and assume that if the noise is correlated,
the noise covariance can be calculated in harmonic space.
The method can be applied to harmonic coefficients com-
puted from high-resolution pixelized maps or directly to
the output of a harmonic map-making algorithm (e.g.

Ref. [30]), thereby avoiding pixelization issues at all
stages.

Cut-sky pseudo harmonics ~X are given in terms of the
underlying full-sky harmonics X and a noise vector ~n by

~X ¼ W1Xþ ~n; (B1)

where W1 is the coupling matrix, which in general is an

n
1 matrix where we consider ~X only up to the first n
modes (ordered in l up to llow). Elements of the coupling
matrix can be evaluated easily numerically up to moderate
l in terms of the harmonic coefficients of the window
(foreground and point-source mask) Wlm using

Wðl1m1Þðl2m2Þ ¼ ð�1Þm1

X
l

Wlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4�

s


 l l1 l2

0 0 0

 !
l l1 l2

m �m1 m2

 !
; (B2)

where m ¼ m1 �m2.
We wish to model the covariance using only modes up to

l ¼ llow and aim to compute the exact likelihood for l �
lexact (where lexact � llow). Since W1 is an n
1 matrix,

the covariance of ~X depends on all l, so we need to project
out dependence on l > llow. We define W to be the n
 n
Hermitian matrix that we can easily compute, so that
W1 ¼ ðW;YÞ where Y is n
1. For window functions
that are 0 or 1 everywhere W1 is a diagonal projection
matrix in pixel space, and in harmonic space completeness
of the spherical harmonics then implies W1W1y ¼ W
(hence YYy ¼ W �W2). Eigenmodes e ofW, withWe ¼
�e, then have eigenvalues 0 � � � 1. Modes with �� 0
have no signal variance and hence can be deleted without
loss of information. The remaining modes that we want
have eyY � 0, so that dependence on high l is removed.
Since

jeyYj2 ¼ eyðW �W2Þe ¼ �ð1� �Þ; (B3)

modes with �� 1 will have the required properties: we
just want the well-supported modes (cf. Ref. [31]). Using
sufficiently large llow > lexact allows us to construct well-
supported modes that contain almost all of the information
at l � lexact (but only incomplete information at lexact <
l � llow). As llow ! 1 we have W2 ! W, and hence � !
f0; 1g, so for large enough llow the supported modes are
guaranteed to contain all of the information. Whether or
not it works in practice depends on how high llow needs to
be to obtain reliable nearly optimal results at l � lexact.
We therefore define the cut-sky supported modes

X c ¼ D̂�1=2Ûy ~X ¼ D̂1=2ÛyXþ nc; (B4)

where W ¼ UDUy, U is orthogonal, and rows of the
diagonal matrix D corresponding to not well-supported

modes (Dii < 1� �1) are deleted to form D̂ and Û; �1 is
a free parameter that determines the tolerance for unmod-
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eled mixing of modes with l > llow and nc is noise. Note
that the uncorrelated noise covariance can be calculated
including noise power from all l, so �1 is only determining

the signal leakage. For isotropic white noise hXcX
y
c iN ¼

�2I, and for low noise levels it may be a good idea to add a
small amount of fake isotropic noise �2

� so that at l * llow
the noise is not negligible and theory leakage becomes
small compared to the noise on these scales. Also note
that we only need to compute the eigenvectors correspond-
ing to small �1. In practice �1 need not be terribly small
since for llow significantly bigger than lexact the power from
l � lexact is suppressed when we focus on modes with
interesting signal from l � lexact.

Neglecting the small coupling from l > llow, the full
covariance of the well-supported modes can be written
(and then Cholesky decomposed) as

hXcX
y
c i ¼ Sþ þNS þ S01 þNc þ �2

�I ¼ LLy: (B5)

Assuming pixel noise is uncorrelated, for the tem-
perature the noise variance is given by Nlm;l0m0 ¼P

s�
2
swðsÞ2�2ðsÞYlmðsÞYl0m0 ðsÞ� and Nc ¼

D̂�1=2ÛyNÛD̂�1=2 (the generalization to correlated noise
is trivial if N can be calculated). We split S into parts, the
bit we want from 2 � l � lexact (Sþ), contributions from
other lexact < l � llow (NS) that can be thought of as part of
the noise on the low l modes, and S01 which is the con-
tribution from any X monopole and dipole (set to be a large
number so that the next step projects it out). Then

X L ¼ L�1Xc (B6)

are uncorrelated with unit variance (in the assumed model),
and signal covariance from the target l range is

hXLX
y
LiS ¼ L�1SþðLyÞ�1 ¼ UsDsU

y
s : (B7)

Since theXL have variance one in total, modes correspond-
ing to small Ds will be ‘‘noise’’ dominated. We therefore
define the signal to signal plus noise eigenmodes by keep-
ing only modes with ½Ds�ii > � for some small � (for other
discussions of similar procedures see Ref. [32] and the
WMAP likelihood code3). These new modes contain the
interesting signal

X s ¼ Ûy
sXL ¼ Ûy

sL
�1Xc: (B8)

There are typically �ðlexact þ 1Þ2 � l2min of these per field,

corresponding to the number of Xlm for lmin � l � lexact.
However, a significant fraction of the modes have impor-
tant power from l � lexact due to the sky cut. See Fig. 11 for
an example of how the leakage between scales depends on
the parameters.

DefineM, ~M as the coupling matrices to the underlying
true and pseudoharmonics (at l � llow), so that

X s ¼ MXþ ns � Ûy
sL

�1D̂1=2ÛyXþ ns; (B9)

X s ¼ ~M ~X � Ûy
sL

�1D̂�1=2Ûy ~X: (B10)

Note that M should project out any underlying monopole
and dipole. The covariance in the case of the temperature is
then given by

hXsX
y
s i ¼ Ns þMdiagðCTT

l ÞMy; (B11)

where

N s ¼ ~MN ~My: (B12)

If desired, and Ns is sufficiently nonsingular, we can then

write Ns ¼ LsL
y
s and define the modes L�1

s Xs which
have unit white noise (in general we can diagonalize
even if the matrix is nearly singular). Note that although
the signal variance is dominated by modes with 2 � l �
lexact, M couples in power up to llow.
For the polarization we have

~E ¼ WþEþ iW�B; (B13)

~B ¼ WþB� iW�E; (B14)

where
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FIG. 11 (color online). Pseudo-Cl temperature power spectra
of a simulated map (‘‘kp2’’ mask) with the low-l modes (lexact ¼
30) projected out using a signal/noise cut � ¼ 0:5 (blue, marked
points) and � ¼ 0:1 (red, thin line) for llow ¼ 60. The thick line
is the power spectrum without projection. This shows the trade-
off between including all the low-l power and increasing leakage
to higher l. The leakage between scales is smaller with higher
llow so that more supported modes containing low-l signal can be
extracted.

3http://lambda.gsfc.nasa.gov/product/map/dr2/likelihood_
faster_v2p2p2/wmap_fasttt.ps
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W�ðl1m1Þðl2m2Þ ¼
1

2
ð�1Þm1

X
l

Wlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4�

s
l l1 l2

0 2 �2

 !
� l l1 l2

0 �2 2

 !" #
l l1 l2

m �m1 m2

 !

(B15)

and m ¼ m1 �m2. Before continuing we change to using
real rather than complex Xlm modes, as follows.

1. Real harmonics

It is convenient for numerical work to use real harmonics
[33]. For the T, E, and B we define the real harmonic
coefficients

XR
ljmj ¼

ffiffiffi
2

p <ðXljmjÞ; XR
l�jmj ¼

ffiffiffi
2

p =ðXljmjÞ;
XR
l0 ¼ Xl0;

(B16)

(jmj> 0), which in the full-sky case are uncorrelated and
have variance CXX

l . The real coupling matrices then relate

the pseudo and true harmonics

~T R ¼ WRTR; (B17)

~E R ¼ WRþER þWR�BR; (B18)

~B R ¼ WRþBR �WR�ER; (B19)

where WRþ is symmetric and WR� is antisymmetric. The
real matrices are related to the complex ones by

WR
ljmjl0jm0j ¼ <ðW ljmjl0jm0j þ ð�1Þm0

W ljmjl0�jm0jÞ;
WR

l�jmjl0jm0j ¼ =ðW ljmjl0jm0j þ ð�1Þm0
W ljmjl0�jm0jÞ;

WR
ljmjl0�jm0j ¼ =ð�W ljmjl0jm0j þ ð�1Þm0

W ljmjl0�jm0jÞ;
WR

l�jmjl0�jm0j ¼ <ðW ljmjl0jm0j � ð�1Þm0
W ljmjl0�jm0jÞ;

WR
ljmjl00 ¼

ffiffiffi
2

p <ðW ljmjl00Þ;
WR

l�jmjl00 ¼
ffiffiffi
2

p =ðW ljmjl00Þ;
WR

l0l0jm0j ¼
ffiffiffi
2

p <ðW l0l0jm0jÞ;
WR

l0l�jm0j ¼ � ffiffiffi
2

p =ðW l0l0jm0jÞ;
WR

l0l00 ¼ <ðW l0l00Þ;

(B20)

where jmj; jm0j> 0 andW can be replaced byWþ or iW�
to obtain the equivalent results for WR�. The noise on the
real harmonics (for equal and uncorrelated noise on Q and
U) is given by

hERðERÞTiN ¼ hBRðBRÞTiN ¼ WRNþ ; (B21)

hERðBRÞTiN ¼ �hBRðERÞTiN ¼ WRN� ; (B22)

where WRN� is evaluated with window function wNðsÞ ¼
�swðsÞ2�2

PðsÞ.

2. Polarization modes

It is convenient to recomplexify the polarization analysis
by defining P ¼ ER þ iBR so that

~P ¼ ðWRþ � iWR�ÞP � WPP; (B23)

where WP is Hermitian. The mode construction therefore
goes through exactly as for the temperature, except now all

matrices are complex, with h~P�~Pyi � 0. The noise covari-
ance under stated assumptions is given by

h~P~PyiN ¼ 2WN
P ; h~P�~PyiN ¼ 0: (B24)

The real set of modes we end up with is then XTEB �
fTR

s ;<ðPsÞ;=ðPsÞg, which includes the E=B mixed modes.
Nearly pure E and B would be obtained by keeping only
the well-supported modes of Wþ rather than the well-
supported modes of WP (see Ref. [31]). To calculate the
signal to noise eigenmodes we can, for example, take
CEE
l ¼ CBB

l , where CEE
l is a high optical depth model, to

ensure that no potentially interesting modes are lost.

3. Implementation

There is some freedom in how Eq. (B11) is calculated.
Ns can be precomputed assuming we know the noise
model and are not fitting it from the data. The coupling
matrix M has size Oðlexact2Þ 
Oðllow2Þ. If there is plenty

of memory, OðllowÞ matrices
P

mMiðlmÞM�
jðlmÞ can be pre-

computed for each l, so that calculating the covariance is
quick, but taking upOðlexact4llowÞmemory. Calculating the
likelihood is then dominated by the cost of Cholesky
decomposition, Oðlexact6Þ, which is quite fast for lexact �
30. Alternatively the covariance can be calculated on the
fly at a dominating computational cost of Oðlexact4llow2Þ
(and only storing M of size Oðlexact2llow2Þ).
Since information at l > lexact is subdominant, if lexact is

chosen so that in all models of interest the Cl are of well-
determined shape at l > lexact, it may be possible to pre-
compute the most time-consuming contribution to the
covariance from lexact < l � llow and simply scale it by
some weighted average of the spectrum over that l range.
Certainly for lexact � 30 all the spectra are expected to be
very smooth up to llow � 100 and this should work well. It
could also be fixed at some fiducial model, but there is then
a danger of biasing the likelihood from l � lexact by mis-
estimating the contribution to the variance from higher l.
Using lexact ¼ 30, llow ¼ 100, �1 ¼ 0:01, � ¼ 10�3

seems to work well (for Planck a significantly larger �1
can be used for the temperature since the noise is very
small). For an optimal tensor mode analysis we may want
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to push to lexact � 150 to get all the B-mode power, which
is just about numerically tractable. The low-l harmonic
likelihood described here has been implemented in the
COSMOMC

4 package for parameter estimation since the

February 2008 version.
It is possible that the low-l likelihood can be approxi-

mated very accurately for very fast subsequent evaluation.

For example, the likelihood approximation of Ref. [3]
could be applied to maximum-likelihood power spectrum
estimators, or parameters in a likelihood model could be fit
to accurately reproduce a full calculation [34]. In this case
a near-exact low-l method would be an important step for
testing or calibrating the approximation, and any speed hit
of a harmonic-space approach would be much less impor-
tant compared to possible accuracy advantages over a
pixel-based method. Another possible fast approximation
could come from fitting Gibbs-sampling results [27].
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