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Starting from a covariant formalism of the Sunyaev-Zeldovich effect for the thermal and nonthermal

distributions, we derive the frequency redistribution function identical to Wright’s method assuming the

smallness of the photon energy (in the Thomson limit). We also derive the redistribution function in the

covariant formalism in the Thomson limit. We show that two redistribution functions are mathematically

equivalent in the Thomson limit, which is fully valid for the cosmic microwave background photon

energies. We will also extend the formalism to the kinematical Sunyaev-Zeldovich effect. With the present

formalism we will clarify the situation for the discrepancy existed in the higher-order terms of the

kinematical Sunyaev-Zeldovich effect.
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I. INTRODUCTION

The Sunyaev-Zeldovich (SZ) effect [1–4], which arises
from the Compton scattering of the cosmic microwave
background (CMB) photons by hot electrons in clusters
of galaxies (CG), provides a useful method for studies of
cosmology. For the reviews, for example, see Birkinshaw
[5] and Carlstrom, Holder, and Reese [6]. The original SZ
formula has been derived from the Kompaneets equation
[7] in the nonrelativistic approximation. However, recent
x-ray observations (for example, Schmidt et al. [8] and
Allen et al. [9]) have revealed the existence of high-
temperature CG such as kBTe ’ 20 keV. Wright [10] and
Rephaeli and his collaborator [11,12] have done pioneering
work including the relativistic corrections to the SZ effect
for the CG.

In the last ten years remarkable progress has been made
in theoretical studies of the relativistic corrections to the
SZ effects for the CG. Stebbins [13] generalized the
Kompaneets equation. Challinor and Lasenby [14] and
Itoh, Kohyama, and Nozawa [15] have adopted a relativ-
istically covariant formalism to describe the Compton
scattering process and have obtained higher-order relativ-
istic corrections to the thermal SZ effect in the form of the
Fokker-Planck approximation. Nozawa, Itoh, and
Kohyama [16] have extended their method to the case
where the CG is moving with a peculiar velocity with
respect to the CMB and have obtained the relativistic
corrections to the kinematical SZ effect. Their results
were confirmed by Challinor and Lasenby [17] and also
by Sazonov and Sunyaev [18,19]. Itoh, Nozawa, and
Kohyama [20] have also applied the covariant formalism
to the polarization SZ effect [3,4]. Itoh and his collabora-
tors (including the present authors) have done extensive

studies on the SZ effects, which include the double scat-
tering effect [21], the effect of the motion of the observer
[22], high precision analytic fitting formulae to the direct
numerical integrations [23,24], and high precision calcu-
lations [25,26]. The importance of the relativistic correc-
tions is also exemplified through the possibility of directly
measuring the cluster temperature using purely the SZ
effect [27].
On the other hand, the SZ effect in the CG has been

studied also for the nonthermal distributions by several
groups [28–30]. The nonthermal distribution functions,
for example, the power-law distributions, have a long tail
in high electron energy regions. Therefore, the relativistic
corrections for the SZ effect could be more important than
the thermal distribution.
Shimon and Rephaeli [31] have discussed on the equiva-

lence of different formalisms to the SZ effect. The relativ-
istic SZ effect has been studied analytically so far in three
different approaches. The first method is the calculation of
the frequency redistribution function in the electron rest
frame using the scattering probability derived by
Chandrasekhar [32]. This method was used Wright [10]
and extended by Rephaeli [11]. We call it as Wright’s
method in the present paper. The second approach solves
the photon transfer equation in the electron rest frame. This
approach was used by Sazonov and Sunyaev [18]. We call
it the radiative transfer method. The third approach is the
relativistic generalization of the Kompaneets equation [7],
where the relativistically covariant Boltzmann collisional
equation is solved for the photon distribution function.
This approach was used by Challinor and Lasenby [14]
and Itoh, Kohyama, and Nozawa [15]. We call it the
covariant formalism in the present paper. In Shimon and
Rephaeli [31] they have shown the equivalence between
Wright’s method and the radiative transfer method. They
also have claimed the equivalence between Wright’s*snozawa@josai.ac.jp
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method and the covariant formalism. However, no mathe-
matical relations are shown between the redistribution
function in Wright’s method and the expression of the
scattering probability in the covariant formalism.
Therefore, their claim is incomplete. In the present paper
we will show explicitly that two approaches are mathe-
matically equivalent.

On the other hand, recently Boehm and J. Lavalle [30]
also have discussed the equivalence of the different ap-
proaches for the SZ effect in the nonthermal distribution.
They have shown that the radiative transfer method is
equivalent to the covariant formalism. However, they
have concluded that Wright’s method is incorrect. In the
present paper we will show that their conclusion is incor-
rect. We will show that Wright’s method, which has been
widely used in the literature, is still fully valid.

The fourth method for the study of the SZ effect is the
direct numerical integration of the rate equation of the
photon spectral distortion function. The first-order calcu-
lation in terms of the optical depth � was done by Itoh,
Kohyama, and Nozawa [15] for � � 1. The full-order
calculation was done by Dolgov et al. [33] for � � 1.
The rate equation in the present formalism has a simple
form. Therefore, it is more suitable for the direct numerical
application. We will present the numerical calculation
elsewhere [34].

The present paper is organized as follows: In Sec. II, we
show the equivalence between Wright’s method and the
covariant formalism of the SZ effect for both thermal and
nonthermal distributions. We also derive the rate equations
and their formal solutions for the photon distribution func-
tion and for the spectral intensity function. In Sec. III, we
extend the formalism to the kinematical SZ effect, and
derive the rate equations in Wright’s method. Finally,
concluding remarks are given in Sec. IV.

II. SUNYAEV-ZELDOVICH EFFECT

A. Equivalence between covariant formalism and
Wright’s method

Let us consider that both the CG and observer are fixed
to the CMB frame. As a reference system, we choose the
system that is fixed to the CMB. (Three frames are iden-
tical in the present case.) In the CMB frame, the time
evolution of the photon distribution function nð!Þ is writ-
ten as follows [15]:

@nð!Þ
@t

¼ �2
Z d3p

ð2�Þ3 d
3p0d3k0Wfnð!Þ½1þ nð!0Þ�

� fðEÞ � nð!0Þ½1þ nð!Þ�fðE0Þg; (1)

W ¼ ðe2=4�Þ2 �X�4ðpþ k� p0 � k0Þ
2!!0EE0 ; (2)

�X ¼ �
�
�

�0 þ
�0

�

�
þ 4m4

�
1

�
þ 1

�0

�
2 � 4m2

�
1

�
þ 1

�0

�
; (3)

� ¼ �2ðp � kÞ ¼ �2!Eð1� ��Þ; (4)

�0 ¼ 2ðp � k0Þ ¼ 2!0Eð1� ��0Þ; (5)

where e is the electric charge, m is the electron rest mass,
W is the transition probability of the Compton scattering,
and fðEÞ is the electron distribution function. The four-
momenta of the initial electron and photon are p ¼ ðE; ~pÞ
and k ¼ ð!; ~kÞ, respectively. The four-momenta of the final

electron and photon are p0 ¼ ðE0; ~p0Þ and k0 ¼ ð!0; ~k0Þ,
respectively. In Eqs. (4) and (5), � ¼ j ~pj=E, � ¼ cos� is

the cosine between ~p and ~k, and �0 ¼ cos�0 is the cosine

between ~p and ~k0. Throughout this paper, we use the
natural unit @ ¼ c ¼ 1, unless otherwise stated explicitly.
For later convenience we rewrite Eq. (3) as follows:

�X ¼ �XA þ �XB; (6)

�X A ¼ 2þ 4m4

�
1

�
þ 1

�0

�
2 � 4m2

�
1

�
þ 1

�0

�
; (7)

�X B ¼ �4
ðk � k0Þ2
��0 : (8)

By eliminating the � function, Eq. (1) is rewritten as
follows:

@nð!Þ
@�

¼ � 3

64�2

Z
d3p

Z
d�k0

1

�2

1

1� ��

�
!0

!

�
2

� �Xfnð!Þ½1þ nð!0Þ�peðEÞ
� nð!0Þ½1þ nð!Þ�peðE0Þg; (9)

d� ¼ ne	Tdt; (10)

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ; (11)

fðEÞ ¼ ne�
2peðEÞ; (12)

where ne is the electron number density, 	T is the
Thomson scattering cross section, and peðEÞ is normalized
by

R1
0 dpp2peðEÞ ¼ 1: By choosing the direction of the

initial electron momentum ( ~p) along the z axis, the photon

momenta ~k and ~k0 are expressed by

~k ¼ !ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
cos
k;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
sin
k;�Þ; (13)

~k 0 ¼ !0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
cos
k0 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
sin
k0 ; �

0Þ; (14)

where 
k and 
k0 are the azimuthal angles of ~k and ~k0,
respectively. Inserting Eqs. (13) and (14) into Eqs. (7) and
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(8), one obtains

�X A ¼ 2þ ð1� cos�Þ2
�4ð1� ��Þ2ð1� ��0Þ2

� 2
1� cos�

�2ð1� ��Þð1� ��0Þ ; (15)

�X B ¼
�
!

�m

�
2 !0

!

ð1� cos�Þ2
ð1� ��Þð1� ��0Þ ; (16)

!0

!
¼ 1� ��

1� ��0 þ ð!=�mÞð1� cos�Þ ; (17)

cos� � ��0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
cosð
k �
k0 Þ; (18)

where cos� is the cosine between ~k and ~k0. It should be
noted that �XA and �XB will not be mixed each other under an
arbitrary Lorentz transformation, because �XA depends only
on�, �0, �, and �, whereas �XB depends also on! and !0.

Now let us introduce the transformations for � and �0,
which will play a key role in the present paper.

� ¼ ��0 þ �

1� ��0

; (19)

�0 ¼ ��0
0 þ �

1� ��0
0

; (20)

where �0 ¼ cos�0 and �0
0 ¼ cos�00 are cosines in the

electron rest frame. The suffix 0 denotes the electron rest
frame throughout this paper, unless otherwise stated ex-
plicitly. Equations (19) and (20) are the composition of the
Lorentz transformation for the photon angles from the
CMB frame to the electron rest frame and the transforma-
tion �0 ! �� �0, �

0
0 ! �� �00. Note that the latter trans-

formation is not essential. Applying Eqs. (19) and (20) to
Eqs. (15)–(18), one obtains the following:

�X A ¼ 1þ cos2�0; (21)

�X B ¼
�
!

�m

�
2 !0

!

ð1� cos�0Þ2
ð1� ��0Þð1� ��0

0Þ
; (22)

!0

!
¼ 1� ��0

0

1� ��0 þ ð!=�mÞð1� cos�0Þ ; (23)

cos�0 � �0�
0
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

0

q
cosð
k �
k0 Þ;

(24)

where cos�0 is the cosine between ~k and ~k0 in the electron
rest frame. It can be seen that Eq. (21) was surprisingly
simplified compared with Eq. (15). On the other hand,
Eq. (22) did not change its form compared with Eq. (16).
As we will see later in this section, Eqs. (21) and (22) are

the key points for connecting the covariant formalism with
Wright’s method. The terms �XA and �XB did not mix each
other by the above reason. Furthermore, �XA is the expres-
sion in the electron rest frame, whereas �XB is not, because
it contains � and �m.
The phase space volumes are transformed as follows:

d3p ¼ 1

�2ð1� ��0Þ2
d3p0; (25)

d�k0 ¼ 1

�2ð1� ��0
0Þ2

d�k00; (26)

where d3p0 ¼ p2dpd�0d
p, d�k00 ¼ d�0
0d
k0 . Note

that the z axis was chosen along the ~k direction for the
d3p integration. With these variables Eq. (9) is re-
expressed by

@nð!Þ
@�

¼ � 3

64�2

Z
d3p0

Z
d�k00

1

�4

1

1� ��0

� 1

ð1� ��0
0Þ2

�
!0

!

�
2
�Xfnð!Þ½1þ nð!0Þ�

� peðEÞ � nð!0Þ½1þ nð!Þ�peðE0Þg: (27)

In deriving Eq. (27) we used the relation �2ð1� ��Þ ¼
ð1� ��0Þ�1.
Before proceeding to the next step, some explanations

might be necessary for Eq. (27). In Eq. (27) photon zenith
angles (�0 and �

0
0) are described in the electron rest frame

with the transformations of Eqs. (19) and (20). On the other
hand, energies (!, !0, and p) and azimuthal angles (
k,

k0 , and 
p) are left in the CMB frame. As seen later in

this section, this peculiar hybrid coordinate system makes
the connection from the covariant formalism to Wright’s
method in a straightforward manner. It is needless to say
that the familiar Klein-Nishina formula in the electron rest
framewill be obtained by the Lorentz transformations! ¼
!0�ð1� ��0Þ and !0 ¼ !0

0�ð1� ��0
0Þ into Eqs. (21)

and (22).
Now let us introduce an assumption that was also used in

Boehm and Lavalle [30]:

�
!

m
� 1: (28)

For the CMB (kBTCMB ¼ 2:348� 10�4 eV) photons !<
5� 10�3 eV is well satisfied. Then !=m< 1� 10�8,
which implies � � 108. Therefore, as far as the CMB
photon energies are concerned, Eq. (28) is fully valid
from the nonrelativistic region to the extreme-relativistic
region for the electron energies. With Eq. (28) the follow-
ing approximations are valid.

!0

!
� 1� ��0

0

1� ��0

; (29)
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�X B ¼ O

��
�
!

m

�
2
�
; (30)

E0 ¼ E

�
1þO

�
��

!

m

��
; (31)

peðE0Þ ¼ peðEÞ
� ½1þOðTCMB=TeÞ� for thermal distribution

½1þOð�!=mÞ� for power law distribution
: (32)

As seen from Eqs. (29)–(32), the Thomson limit is realized
in the scattering kinematics by the assumption of Eq. (28).
With these approximations Eq. (27) is reduced to

@nð!Þ
@�

¼ 3

64�2

Z
d3p0peðEÞ

Z
d�k00

1

�4

1

ð1� ��0Þ3
� ð1þ cos2�0Þ½nð!0Þ � nð!Þ�: (33)

Furthermore the 
k0 integral can be performed and one
obtains

1

2�

Z 2�

0
d
k0 ð1þ cos2�0Þ

¼ 1þ�2
0�

02
0 þ 1

2
ð1��2

0Þð1��02
0 Þ: (34)

Inserting Eq. (34) into Eq. (33) and assuming the spherical
symmetry for peðEÞ, one obtains the following:
@nð!Þ
@�

¼
Z 1

0
dpp2peðEÞ

Z 1

�1
d�0

Z 1

�1
d�0

0

1

2�4

� 1

ð1� ��0Þ3
fð�0; �

0
0Þ½nð!0Þ � nð!Þ�; (35)

fð�0; �
0
0Þ ¼

3

8

�
1þ�2

0�
02
0 þ 1

2
ð1��2

0Þð1��02
0 Þ
�
:

(36)

According to Wright [10], we introduce a new variable s
by

es ¼ !0

!
¼ 1� ��0

0

1� ��0

; (37)

which implies d�0
0 ¼ �ð1=�Þð1� ��0Þesds. Then

Eq. (35) is finally rewritten by

@nð!Þ
@�

¼
Z 1

0
dpp2peðEÞ

Z smax

�smax

dsPðs;�Þ½nðes!Þ�nð!Þ�;

(38)

Pðs; �Þ ¼ es

2��4

Z �2ðsÞ

�1ðsÞ
d�0ð1� ��0Þ

� 1

ð1� ��0Þ3
fð�0; �

0
0Þ; (39)

where

smax ¼ ln½ð1þ �Þ=ð1� �Þ�; (40)

�0
0 ¼ ½1� esð1� ��0Þ�=�; (41)

�1ðsÞ ¼
��1 for s 	 0
½1� e�sð1þ �Þ�=� for s > 0

; (42)

�2ðsÞ ¼
� ½1� e�sð1� �Þ�=� for s < 0
1 for s 
 0

: (43)

Equation (39) is the probability for a single scattering of a
photon of a frequency shift s by an electron with a velocity
�, which is described in the electron rest frame. By using
the identity relation 1� ��0

0 ¼ esð1� ��0Þ, Eq. (39) is
identical toPðs;�Þ (Eq. (7)) inWright [10]. Thus, Wright’s
redistribution function has been derived from the covariant
formalism.
Now we will derive the redistribution function in the

covariant formalism under the assumption of Eq. (28) [the
Thomson limit]. The derivation is straightforward but
lengthy. We will give the derivation in Appendix A and
will quote the result here. The expressions that correspond
to Eqs. (38) and (39) in the covariant formalism (in the
CMB frame) are

@nð!Þ
@�

¼
Z 1

0
dpp2peðEÞ

Z smax

�smax

ds ~Pðs;�Þ½nðes!Þ� nð!Þ�;

(44)

~Pðs; �Þ ¼ e2s

2��2

Z �2ðsÞ

�1ðsÞ
d�0 ~fð�;�0Þ; (45)

� ¼ ½1� esð1� ��0Þ�=�; (46)

~fð�;�0Þ ¼ 3

8

�
2þ ð1���0Þ2 þ 1

2 ð1��2Þð1��02Þ
�4ð1� ��Þ2ð1� ��0Þ2

� 2
1���0

�2ð1� ��Þð1� ��0Þ
�
; (47)

where smax, �1ðsÞ and �2ðsÞ are defined in Eqs. (40), (42),
and (43), respectively. In the present paragraph we show
that ~Pðs; �Þ is identical to Pðs; �Þ. In order to show the
equivalence, we apply the transformations of Eqs. (19) and
(20) to Eq. (45). First, inserting Eqs. (19) and (20) into
Eq. (47), one obtains
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~fð�;�0Þ ¼ fð�0; �
0
0Þ: (48)

The variables �0 and �0 have the relation

�0 ¼ 1

�

�
1� e�s

�2ð1� ��0Þ
�
; (49)

which implies

d�0 ¼ � e�s

�2ð1� ��0Þ2
d�0 (50)

and boundary values

�0 ¼
�
�2ðsÞ at �0 ¼ �1ðsÞ
�1ðsÞ at �0 ¼ �2ðsÞ : (51)

Inserting Eqs. (48)–(51) into Eq. (45), one finally obtains

~Pðs; �Þ ¼ es

2��4

Z �2ðsÞ

�1ðsÞ
d�0

1

ð1� ��0Þ2
fð�0; �

0
0Þ;
(52)

which is identical to Eq. (39). Therefore, one obtains

~Pðs; �Þ ¼ Pðs; �Þ: (53)

Thus, the equivalence between the covariant formalism of
the Boltzmann collisional equation [15] and Wright’s
method [10,11] has been shown mathematically under
the assumption �!=m � 1, where the assumption is fully
valid for the CMB photon energies. It should be empha-
sized that no nonrelativistic approximations are made for
the electron energies in deriving Eqs. (39) and (45). This is
the reason why the calculations by two different formal-
isms produced same results for the SZ effect even in the
relativistic electron energies. In Appendix B, we have also
shown the derivation of Eq. (27) in terms of the Klein-
Nishina cross section formula.

Boehm and Lavalle [30] also discussed the equivalence
between the radiative transfer approach and the covariant
formalism. However, they concluded that Wright’s method
was incorrect. We conclude that their conclusion is incor-
rect. The reason why they lead the erroneous conclusion is
as follows: They start with the covariant form for the
squared Compton amplitude [their Eq. (43)]. They derived
the familiar Chandrasekhar’s form [their Eq. (50)] by tak-
ing the nonrelativistic limit (� ! 0) in their Eq. (49).
Because of the nonrelativistic approximation they used,
they concluded that Wright’s method [their Eq. (50)]
should not be used for the relativistic calculation. On the
other hand, we have also started with the same covariant
form for the squared Compton amplitude. We have derived
the same expression [Eq. (34)] without taking the non-
relativistic limit. We have shown that Eq. (34) is connected
to
its covariant form by the Lorentz transformations of
Eqs. (19) and (20). Therefore, Wright’s method is equiva-
lent to the covariant formalism. We conclude that their
criticism is incorrect. Shimon and Rephaeli [31] also

claimed the equivalence between the covariant formalism
and Wright’s method. Their Eq. (19) looks similar to
Eq. (38), however, no mathematical relations are shown
explicitly in their paper between W in their Eq. (19) and
Pðs;�Þ of Wright [10].

B. Rate equations and formal solutions

We now proceed to derive the rate equations and their
formal solutions. Since two formalisms are equivalent, one
can use either Pðs; �Þ or ~Pðs; �Þ. We start with Eq. (38) and
rewrite as follows:

@nð!Þ
@�

¼
Z 1

�1
dsP1ðsÞ½nðes!Þ � nð!Þ�; (54)

P1ðsÞ ¼
Z 1

�min

d��2�5 ~peð�ÞPðs; �Þ; (55)

�min ¼ ð1� e�jsjÞ=ð1þ e�jsjÞ; (56)

where ~peð�Þ � m3peðEÞ. As seen from Eq. (55), P1ðsÞ is
the probability for a single scattering of a photon of a
frequency shift s averaged over the electron distribution
function, which is the so-called the redistribution function
of a shift s. The total probability is

R1
�1 dsP1ðsÞ ¼ 1.

Multiplying !3 to Eq. (54), one obtains the rate equation
for the spectral intensity function

@Ið!Þ
@�

¼
Z 1

�1
dsP1ðsÞ½e�3sIðes!Þ � Ið!Þ�; (57)

where Ið!Þ ¼ !3nð!Þ=2�2 is the spectral intensity func-
tion for !. Now let us introduce the following key identity
relations:

Pðs; �Þe�3s ¼ Pð�s; �Þ; P1ðsÞe�3s ¼ P1ð�sÞ: (58)

The derivation is straightforward. Inserting Eq. (58) in
Eq. (57) and replacing s by �s, one obtains the rate
equation for the spectral intensity function

@Ið!Þ
@�

¼
Z 1

�1
dsP1ðsÞ½Iðe�s!Þ � Ið!Þ�: (59)

It should be remarked that nðes!Þ appears in the right-hand
side (RHS) of Eq. (54), whereas Iðe�s!Þ appears in the
RHS of Eq. (59). It is also straightforward to show that
Eq. (54) satisfies the photon number conservation

d

d�

Z 1

0
d!!2nð!Þ ¼ 0: (60)

Let us now derive formal solutions for the rate Eqs. (54)
and (59). We consider an ideal condition that the CG is
infinitely large. We introduce a new function ~nð!; �Þ by

nð!Þ � e��~nð!; �Þ: (61)

By inserting Eq. (61) into Eq. (54), one obtains the equa-
tion for ~nð!; �Þ
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@~nð!; �Þ
@�

¼
Z 1

�1
dsP1ðsÞ~nðes!; �Þ; (62)

where
R1
�1 dsP1ðsÞ ¼ 1 was used. Equation (62) can be

integrated, and one has

~nð!; �Þ ¼ n0ð!Þ þ
Z �

0
d�

Z 1

�1
dsP1ðsÞ~nðes!; �Þ: (63)

In deriving Eq. (63) an initial condition ~nð!; � ¼ 0Þ ¼
n0ð!Þ was used, where n0ð!Þ is the initial photon distri-
bution function. We solve Eq. (63) with a successive
approximation method. The first-order term is obtained
by inserting n0ð!Þ into the RHS of Eq. (63).

~n 1ð!; �Þ ¼ n0ð!Þ þ �
Z 1

�1
dsP1ðsÞn0ðes!Þ: (64)

The second-order term is also obtained by inserting
~n1ð!; �Þ into the RHS of Eq. (63).

~n2ð!; �Þ ¼ n0ð!Þ þ �
Z 1

�1
dsP1ðsÞn0ðes!Þ

þ �2

2!

Z 1

�1
dsP2ðsÞn0ðes!Þ; (65)

P2ðsÞ �
Z 1

�1
ds1P1ðs1ÞP1ðs� s1Þ; (66)

where P2ðsÞ is the probability (redistribution function) of a
shift s for the double scattering. By repeating the above
procedure N þ 1 times, one obtains the (N þ 1)-th order
term

~n Nþ1ð!; �Þ ¼ n0ð!Þ þ XN
j¼1

�j

j!

Z 1

�1
dsPjðsÞn0ðes!Þ;

(67)

PjðsÞ ¼
Z 1

�1
ds1P1ðs1Þ � � �

Z 1

�1
dsj�1P1ðsj�1Þ

� P1

�
s� Xj�1

i¼1

si

�
; (68)

where PjðsÞ is the probability (redistribution function) of a
shift s for the multiple scattering of the j-th order. By
taking the limit N ! 1 in Eq. (67) and replacing
limN!1~nNð!; �Þ ¼ ~nð!; �Þ, one finally obtains the formal
solution for nð!Þ,

nð!Þ ¼ e��n0ð!Þ þ
Z 1

�1
dsPðs; �Þn0ðes!Þ; (69)

Pðs; �Þ ¼ X1
j¼1

�je��

j!
PjðsÞ: (70)

Multiplying !3 to Eq. (69) and using Pðs; �Þe�3s ¼
Pð�s; �Þ, and also replacing s by �s, one obtains the
formal solution for Ið!Þ,

Ið!Þ ¼ e��I0ð!Þ þ
Z 1

�1
dsPðs; �ÞI0ðe�s!Þ; (71)

where I0ð!Þ ¼ !3=ð2�2Þn0ð!Þ. Note that this solution can
be also derived directly from Eq. (59). Note also that
Eq. (70) is the Poisson distribution function. The distribu-
tion function is commonly used, for example, in
Birkinshaw [5]. In the present paper, however, Eq. (70) is
derived as a natural consequence of the present formalism.
In practical cases, the CG has a finite size, and the

optical depth is small (� � 1); therefore the first-order
approximation is sufficiently accurate for the study of the
SZ effect. From Eqs. (69)–(71) one obtains the following
familiar forms for the distortion functions:

�nð!Þ � nð!Þ � n0ð!Þ
� �

Z 1

�1
dsP1ðsÞ½n0ðes!Þ � n0ð!Þ�; (72)

�Ið!Þ � Ið!Þ � I0ð!Þ
� �

Z 1

�1
dsP1ðsÞ½I0ðe�s!Þ � I0ð!Þ�; (73)

� ¼ 	T

Z
d‘ne: (74)

The integral in Eq. (74) is done over the photon path length
in the CG.

III. KINEMATICAL SUNYAEV-ZELDOVICH
EFFECT

Let us now consider the case that the CG is moving with

a peculiar velocity ~�cð¼ ~vc=cÞ with respect to the CMB.
As a reference system, we choose the system that is fixed to
the CMB. The z axis is fixed to a line connecting the
observer and the center of mass of the CG. (We assume
that the observer is fixed to the CMB frame.) In the present
paper we choose the positive direction of the z axis as the
conventional one, i.e. the direction of the propagation of a
photon from the observer to the cluster, which is opposite
to that of Nozawa, Itoh, and Kohyama [16]. In the CMB
frame, the time evolution of the photon distribution func-
tion nð!Þ is same as for the thermal SZ effect as shown in
Nozawa, Itoh, and Kohyama [16]. They are given by
Eqs. (1)–(5). The electron distribution functions are
Lorentz invariant and are related as follows:

fðEÞ ¼ fcðEcÞ; (75)

fðE0Þ ¼ fcðE0
cÞ; (76)

Ec ¼ E�cð1þ ~�c � ~�Þ; (77)

E0
c ¼ E0�cð1þ ~�c � ~�0Þ; (78)

SATOSHI NOZAWA AND YASUHARU KOHYAMA PHYSICAL REVIEW D 79, 083005 (2009)

083005-6



�c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

c

p ; (79)

where the suffix c denotes the CG frame. Therefore the
formalism of Sec. II will be directly applicable to the
present case. A modification should be made to the elec-
tron distribution function peðEÞ by

peðEÞ ¼ pe;cðE�c½1þ ~�c � ~��Þ; (80)

where pe;cðEcÞ is normalized by
R1
0 dpcp

2
cpe;cðEcÞ ¼ 1.

To proceed the calculation, one expresses the product ~�c �
~� in the coordinate system, where ~k is parallel to the z-axis.
Then one obtains

~� c � ~� ¼ �c�f�c�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
cosð
c �
pÞg;

(81)

where �c and 
c are the cosine of the zenith angle and the

azimuthal angle of ~�c, respectively. By applying the trans-
formation of Eq. (19) to Eq. (81), one obtains

~�c � ~� ¼ �c�

1� ��0

�
�cð��0 þ �Þ

þ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

0

q
cosð
c �
pÞ

�
: (82)

Inserting Eqs. (80) and (82) into Eq. (33), one obtains the
expression for the CG with nonzero peculiar velocity in
Wright’s method,

@nð!Þ
@�

¼
Z 1

0
dpp2

Z 1

�1
d�0

Z 1

�1
d�0

0

1

2�4

1

ð1� ��0Þ3

� fð�0; �
0
0Þ

1

2�

Z 2�

0
d
ppe;cðE�c½1þ ~�c � ~��Þ

� ½nð!0Þ � nð!Þ�: (83)

Shimon and Rephaeli [31] also obtained the expression
for the kinematical SZ effect based upon Wright’s method,

which is similar to Eq. (83). For the expression of ~�c � ~�,
Eq. (82) agrees with their Eq. (39). As discussed in their

paper, however, they have an extra factor �cð1þ ~�c � ~�Þ in
Eq. (83), which comes from Ec=E in their phase space
factor, see their Eq. (37). As discussed also in Nozawa,
Itoh, Suda, and Ohhata [26], the reason for the discrepancy
is because they used the phase space in the CG frame
instead of the CMB frame. As far as the present formalism
is concerned, we have used the CMB frame as a reference
system. Therefore, there are no extra factors needed in
Eq. (83). We conclude that the result of Shimon and
Rephaeli is in error by the extra factor.
Let us now proceed with Eq. (83). For most of the CG,

�c � 1 is realized. For example, �c � 1=300 for a typical
value of the peculiar velocity vc ¼ 1000 km=s. In
Nozawa, Itoh, and Kohyama [16] they made an expansion
in terms of �c in the Fokker-Planck approximation. They
found that Oð�2

cÞ terms are negligible for most of the CG.
Therefore, we will keep Oð�cÞ terms and neglect higher-
order terms in the present paper. In this approximation the
electron distribution function is approximated as follows:

pe;cðEcÞ � peðEÞ

8>><
>>:
ð1� a

�2
~�c � ~�Þ for peðEÞ / p�a

ð1� a ~�c � ~�Þ for peðEÞ / E�a

ð1� E
kBTe

~�c � ~�Þ for peðEÞ / expð�E=kBTeÞ
: (84)

For simplicity, we consider the thermal distribution function. (Only a minor modification will be needed for the power-law
distributions.) Inserting Eq. (82) into Eq. (84) the integral for the azimuthal angle is performed.

1

2�

Z 2�

0
d
ppe;cðE�c½1þ ~�c � ~��Þ � peðEÞ

�
1þ �c�c

�
�

�e

��
��0 � �2

1� ��0

��
; (85)

where �e � kBTe=m. Repeating the same procedure done
in Sec. II, one obtains the rate equations for the case of the
CG with nonzero peculiar velocity,

@nð!Þ
@�

¼
Z 1

�1
dsP1ðs; �c;zÞ½nðes!Þ � nð!Þ�; (86)

@Ið!Þ
@�

¼
Z 1

�1
dsP1ðs; �c;zÞ½e�3sIðes!Þ � Ið!Þ�; (87)

P1ðs; �c;zÞ ¼ P1ðsÞ þ �c;zP1;KðsÞ; (88)

where P1ðsÞ is Eq. (55) and �c;z ¼ �c�c is the peculiar
velocity parallel to the observer, because the photon direc-

tion is along z axis. In Eq. (88), P1;KðsÞ is the redistribution
function due to the peculiar velocity of the CG. It is given
as

P1;KðsÞ ¼
Z 1

�min

d��2�5 ~peð�ÞPKðs; �Þ; (89)

PKðs; �Þ ¼ es

2��4

�
�

�e

�Z �2ðsÞ

�1ðsÞ
d�0ð��0 � �2Þ

� 1

ð1� ��0Þ3
fð�0; �

0
0Þ; (90)

where �0
0, �1ðsÞ, �2ðsÞ, and �min are defined in Eqs. (41)–

(43) and (56), respectively. It should be remarked that
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Eq. (87) is expressed by e�3sIðes!Þ instead of Iðe�s!Þ in
Eq. (59). This is because Pðs; �Þe�3s ¼ Pð�s; �Þ is shown
in Eq. (58); however, PKðs; �Þe�3s � PKð�s; �Þ. For the
power-law distributions, �=�e should be replaced by a=�

2

and a in Eq. (90) for the p-power distribution and the
E-power distribution, respectively.

Finally, one obtains the distortions of the photon spec-
trum and the spectral intensity in the first-order approxi-
mation,

�nð!Þ � �
Z 1

�1
dsP1ðs; �c;zÞ½n0ðes!Þ � n0ð!Þ�; (91)

�Ið!Þ � �
Z 1

�1
dsP1ðs; �c;zÞ½e�3sI0ðes!Þ � I0ð!Þ�:

(92)

IV. CONCLUDING REMARKS

We started with a covariant Boltzmann collisional
equation of the SZ effect shown in Itoh, Kohyama, and
Nozawa [15] for thermal and nonthermal distributions.
First we have applied a rational transformation [Eqs. (19)
and (20)] to the photon angles, which is essentially a
Lorentz transformation for photon angles from the CMB
frame to the electron rest frame. The transformation has
made the expression for the transition probability a surpris-
ingly concise form. Then we introduced an assumption
used by Boehm and Lavalle [30], namely, �!=m � 1
(the Thomson limit). The assumption is fully valid for
the CMB photon energies. Under the assumption, we
have derived the redistribution function Pðs; �Þ, which is
the probability for a single scattering of a photon of a
frequency shift s by a electron with a velocity �. The
obtained redistribution function is identical to that of de-
rived with Wright’s method [10,11].

Similarly, starting from the covariant Boltzmann colli-
sional equation of the SZ effect for thermal and nonthermal
distributions, we have derived the redistribution function
~Pðs; �Þ in the covariant formalism under the assumption
�!=m � 1. We have shown that ~Pðs; �Þ is identical to
Pðs; �Þ. They are connected by the Lorentz transformation
of Eqs. (19) and (20). Thus, we have shown mathemati-
cally that Wright’s method is equivalent to the covariant
formalism under the assumption �!=m � 1. This result
guarantees that existing works, which used Wright’s
method, for example, Birkinshaw [5], Enßlin and Kaiser
[28] and Colafrancesco et al. [29], are still fully valid. This
result also explains the reason why two different calcula-
tions for the thermal SZ effect agree extremely well even
for the relativistic electron energies.

We have also extended the present formalism to the
kinematical SZ effect. Starting from the covariant
Boltzmann collisional equation for the kinematical SZ
effect, we have repeated the same procedure. We have
derived the redistribution function for the CG with nonzero

peculiar velocity in Wright’s method. We have compared
the present result with that of Shimon and Rephaeli [31].
The obtained redistribution function differs by a factor

�cð1þ ~�c � ~�Þ. We have clarified the discrepancy between
their result and others [16–18]. Their result is in error by
the factor.
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APPENDIX A: REDISTRIBUTION FUNCTION IN
COVARIANT FORMALISM

In this appendix we will derive the redistribution func-
tion in the covariant formalism. The starting equation is
Eq. (9).

@nð!Þ
@�

¼ � 3

64�2

Z
d3p

Z
d�k0

1

�2

1

1� ��

�
!0

!

�
2

� �Xfnð!Þ½1þ nð!0Þ�peðEÞ
� nð!0Þ½1þ nð!Þ�peðE0Þg: (A1)

Then we assume the Thomson limit �!=m � 1, which
implies the approximations

!0

!
� 1� ��

1� ��0 (A2)

and �XB � 1, E0 � E, and peðE0Þ � peðEÞ. Under the as-
sumption, Eq. (A1) is approximated as

@nð!Þ
@�

¼ 3

64�2

Z
d3ppeðEÞ

Z
d�k0

1

�2

� 1� ��

ð1� ��0Þ2
�XA½nð!0Þ � nð!Þ�; (A3)

where �XA is given by Eq. (15). In Eq. (A3) the 
k0 inte-
gration can be done as

1

2�

Z 2�

0

�XAd
k0 ¼ 2þ ð1���0Þ2 þ 1
2 ð1��2Þð1��02Þ

�4ð1� ��Þ2ð1� ��0Þ2

� 2
1���0

�2ð1� ��Þð1� ��0Þ : (A4)

Assuming the spherical symmetry for peðEÞ, Eq. (A3) is
further simplified.

@nð!Þ
@�

¼
Z 1

0
dpp2peðEÞ

Z 1

�1
d�

Z 1

�1
d�0 1

2�2

� 1� ��

ð1� ��0Þ2
~fð�;�0Þ½nð!0Þ � nð!Þ�; (A5)
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~fð�;�0Þ ¼ 3

8

�
2þ ð1���0Þ2 þ 1

2 ð1��2Þð1��02Þ
�4ð1� ��Þ2ð1� ��0Þ2

� 2
1���0

�2ð1� ��Þð1� ��0Þ
�
: (A6)

Now let us introduce a new variable s by

es ¼ !0

!
¼ 1� ��

1� ��0 ; (A7)

which implies d� ¼ �ð1=�Þð1� ��0Þesds. Then
Eq. (A5) is finally rewritten by

@nð!Þ
@�

¼
Z 1

0
dpp2peðEÞ

Z smax

�smax

ds ~Pðs; �Þ

� ½nðes!Þ � nð!Þ�; (A8)

~Pðs; �Þ ¼ e2s

2��4

Z �2ðsÞ

�1ðsÞ
d�0 ~fð�;�0Þ; (A9)

� ¼ ½1� esð1� ��0Þ�=�; (A10)

where smax, �1ðsÞ and �2ðsÞ are given by Eqs. (40), (42),
and (43), respectively. Equation (A9) is the redistribution
function in the covariant formalism, which is described in
the CMB frame.

APPENDIX B: KLEIN-NISHINA CROSS SECTION

In this appendix we will derive Eq. (27) in terms of
familiar Klein-Nishina cross section formula. Notations
are same as those in the main text, unless otherwise stated
explicitly. As a reference frame we choose the electron rest
frame. The energy-momentum conservation gives the rela-
tion for the photon energies as follows:

!0
0

!0

¼ 1

1þ ð!0=mÞð1� cos�0Þ ; (B1)

cos�0��0�
0
0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

0

q
cosð
k0 �
k0

0
Þ; (B2)

where �0 is the scattering angle. The Klein-Nishina cross
section formula in the electron rest frame is expressed by

d	

d�k0
0

¼ 1

2
r2e

�
!0

0

!0

�
2
�
!0

0

!0

þ!0

!0
0

� sin2�0

�
; (B3)

where re is the classical electron radius. With Eq. (B1) one
obtains the following useful relation:

!0
0

!0

þ!0

!0
0

¼ 2þ
�
!0

m

�
2 !0

0

!0

ð1� cos�0Þ2: (B4)

Inserting Eq. (B4) into Eq. (B3) one can rewrite the Klein-
Nishina formula as follows:

d	

d�k0
0

¼ 1

2
r2e

�
!0

0

!0

�
2
�
1þ cos2�0

þ
�
!0

m

�
2 !0

0

!0

ð1� cos�0Þ2
�
: (B5)

It is needless to say that one obtains the Thomson cross
section by taking the limit !0=m � 1 and !0

0=!0 ! 1 in

Eq. (B5).
Now let us introduce the transformation from the elec-

tron rest frame to the CMB frame, where the electron is
moving with a velocity�. The photon energies! and!0 in
the CMB frame are related to !0 and !0

0 by the Lorentz

transformation

! ¼ !0�ð1� ��0Þ; (B6)

!0 ¼ !0
0�ð1� ��0

0Þ; (B7)

where �0 ¼ cos�0 and �0
0 ¼ cos�00. With the variables !

and !0 one obtains
d	

d�k0
0

¼ 1

2
r2e

�
1� ��0

1� ��0
0

�
2
�
!0

!

�
2
�
1þ cos2�0

þ
�
!

�m

�
2 !0

!

ð1� cos�0Þ2
ð1� ��0Þð1� ��0

0Þ
�
: (B8)

As seen from Eq. (B8) the square bracket in the RHS
is identical to �XA þ �XB, where they are defined by
Eqs. (21) and (22). Note that Eq. (B8) is the expression
in the hybrid coordinate system, where the energies are
described in the CMB system, whereas the zenith angles
are described in the electron rest frame.
The cross section is defined by the transition rate divided

by the flux of the incident particles. The flux in the CMB
frame is

jinc � p � k
E!

¼ 1� ��: (B9)

Therefore, one can write Eq. (1) in terms of the cross
section in the CMB frame as follows:

@nð!Þ
@t

¼ �2
Z d3p

ð2�Þ3 ð1� ��Þ
�
d	

d�k0

�
d�k0

� fnð!Þ½1þ nð!0Þ�fðEÞ
� nð!0Þ½1þ nð!Þ�fðE0Þg: (B10)

Since the cross section is Lorentz invariant, one can rewrite
Eq. (B10) with the Klein-Nishina cross section in the
hybrid system of Eq. (B8) as follows:

@nð!Þ
@t

¼ �2
Z d3p

ð2�Þ3 ð1� ��Þ
�
d	

d�k0
0

�
d�k0

0

� fnð!Þ½1þ nð!0Þ�fðEÞ
� nð!0Þ½1þ nð!Þ�fðE0Þg: (B11)

Rewriting the phase space volume d3p by

d3p ¼ 1

�2ð1� ��0Þ2
d3p0 (B12)

and inserting Eqs. (B8) and (B12), one finally obtains

ANALYTICAL STUDY ON THE SUNYAEV-ZELDOVICH . . . PHYSICAL REVIEW D 79, 083005 (2009)

083005-9



@nð!Þ
@�

¼ � 3

64�2

Z
d3p0

Z
d�k00

1

�4

1

1� ��0

� 1

ð1� ��0
0Þ2

�
!0

!

�
2
�Xfnð!Þ½1þ nð!0Þ�peðEÞ

� nð!0Þ½1þ nð!Þ�peðE0Þg: (B13)

In deriving Eq. (B13) we used the relations �2ð1� ��Þ ¼
ð1� ��0Þ�1, fðEÞ ¼ �2nepeðEÞ, d� ¼ ne	Tdt, and
	T ¼ 8�=3r2e. One finds that Eq. (B13) is identical to
Eq. (27).
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