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We model massive dark objects at centers of many galaxies as Schwarzschild black hole lenses and

study gravitational lensing by them in detail. We show that the ratio of mass of a Schwarzschild lens to the

differential time delay between outermost two relativistic images (both of them either on the primary or on

the secondary image side) is extremely insensitive to changes in the angular source position as well as the

lens-source and lens-observer distances. Therefore, this ratio can be used to obtain very accurate values for

masses of black holes at centers of galaxies. Similarly, angular separations between any two relativistic

images are also extremely insensitive to changes in the angular source position and the lens-source

distance. Therefore, with the known value of mass of a black hole, angular separation between two

relativistic images would give a very accurate result for the distance of the black hole. Accuracies in

determination of masses and distances of black holes would however depend on accuracies in measure-

ments of differential time delays and angular separations between images. Deflection angles of primary

and secondary images as well as effective deflection angles of relativistic images on the secondary image

side are always positive. However, the effective deflection angles of relativistic images on the primary

image side may be positive, zero, or negative depending on the value of angular source position and the

ratio of mass of the lens to its distance. We show that effective deflection angles of relativistic images play

significant role in analyzing and understanding strong gravitational field lensing.
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I. INTRODUCTION

Light deflection in weak gravitational field of
Schwarzschild spacetime is well-known since 1919 [1,2],
and it serves as the starting point to the learning of gravi-
tational lensing (GL) theory even now [3–5]. However,
light deflection in a strong gravitational field of
Schwarzschild spacetime was not studied until around 5
decades ago Darwin [6] pioneered a theoretical research on
GL resulting from large deflection of light in the vicinity of
photon sphere of Schwarzschild spacetime. A few years
later, Atkinson [7] extended these studies to a general static
spherically symmetric spacetime. In fact, apart from a few
activities, the subject of strong gravitational field lensing
remained in almost a dormant stage until toward the end of
the last century, and this was due to two main reasons.
First, Darwin’s calculations showed that the images are
very demagnified and therefore those are very difficult to
be observed with the available observational facilities.
Second, the known gravitational lens equation (see in
[3,4]) was not adequate for the study of lensing due to
large deflection of light. As astronomical techniques are
improving fast, it may be possible to overcome the obser-
vational obstacles in the future. Therefore, an adequate
lens equation was required for this purpose. To this end,
Frittelli and Newman [8] obtained an exact lens equation
that is applicable to arbitrary spacetimes; however, this
equation is difficult to use in general. Further, under

some physically realistic assumptions, we [9] obtained a
simple lens equation that allows arbitrary small as well as
large light deflection angles. Later, Frittelli et al. and Kling
et al. [10] carried out comprehensive comparative studies
of the exact lens equation with our lens equation for the
case of Schwarzschild spacetime. They found that our lens
equation works remarkably well as both approaches to
gravitational lensing yield extremely close results even
for light rays which have large deflections in strong gravi-
tational field and go around the lens several times before
reaching the observer. As our lens equation is easy to use
and yields very close results to those obtained by using an
exact lens equation, our lens equation has been most
widely used in the literature for studying strong field
gravitational lensing. Perlick [11], in a recent brief review,
called our lens equation an almost exact lens equation. In
the last 8 years, there has been a growing interest in study-
ing weak as well as strong field lensing by black holes,
naked singularities, wormholes, and some other exotic
objects (see [12–24] and references therein).
In [9], we modeled the massive dark object (MDO) at the

galactic center as a Schwarzschild black hole lens, and,
using our lens equation, studied point source GL due to
light deflections in weak as well as strong gravitational
fields. By solving the lens equation numerically, we ob-
tained image positions and their magnifications. Like in
Darwin’s paper, our computations showed that, in addition
to primary (also called direct) and secondary images, there
are theoretically an infinite sequence of very demagnified
images on both sides of the optical axis; we named them*shwetket@yahoo.com
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relativistic images. With increase in the value of angular
source position (measured with respect to the optical axis),
magnifications of relativistic images decrease with much
faster rates compared to magnifications of primary and
secondary images. Therefore, relativistic images are not
just very demagnified, but are also transient. However,
despite several other observational difficulties (discussed
in [9] and also in the last section of this paper), if these
images were ever observed, we showed that it would give
an upper bound to the compactness of the MDO.
Therefore, it would push black hole interpretation of the
MDO at the galactic center. Observation of relativistic
images would be undoubtedly a landmark discovery in
astronomy; however, experimentalists and astronomers
have to pay the price for these very important observations.
When the source, the lens, and the observer are aligned, in
addition to an Einstein ring, we get theoretically an infinite
sequence of rings; we [9] termed them relativistic Einstein
rings.

The central thread in this paper is a comprehensive study
of relativistic images of Schwarzschild black hole lensing.
The purpose of this is to theoretically investigate if pos-
sible observations of these images, compared to primary
and secondary images, could provide more valuable and
accurate information about the lens. Though the primary
and secondary images of Schwarzschild black hole lensing
are well discussed in the literature, we also include these in
this paper for 3 reasons. First, we do not take either weak or
strong field approximations in our computations. Thus, our
results are more accurate than known weak field limit
approximate analytical expressions could provide for lens-
ing observables for these images. Therefore, these more
accurate results could be useful for observations in near
future with advancing astronomical facilities. Second, it is
useful to have thorough studies of relativistic as well as
primary and secondary images due to a gravitational lens
(with the same mass and distance) in the same paper so that
one can immediately compare properties of these images.
For observations of relativistic images and measurements
associated with them, a detailed information about their
primary and secondary images are helpful. Third, differ-
ential time delay of secondary image with respect to the
primary image is though well discussed in the literature,
studies of their individual time delays were not paid
enough attention for some reasons (discussed later in this
paper). Therefore, we study these and obtain some impor-
tant results.

This paper is organized as follows. In Sec. II, we first
discuss a lens equation applicable to weak as well as strong
gravitational field regions, and then give a brief review of
deflection angles and time delays of light rays traveling in
Schwarzschild spacetime. In Sec. III, we show that a
schematic diagram for effective deflection angles of rela-
tivistic images give deep insight and provide some impor-
tant information before computations. In Sec. IV, we model

our Galactic MDO as the Schwarzschild black hole lens
and study variations in image positions, magnifications,
and time delays of primary and secondary as well as
relativistic images with changes in angular source position
and lens to source distance. We also study the variation of
deflection angles for primary and secondary images and
effective deflection angles of relativistic images with re-
spect to changes in the angular source position and lens to
source distance. Computations of effective deflection an-
gles provide geometrical beauty of strong gravitational
field lensing and an analysis of those support the reason-
ableness of other results obtained through numerical com-
putations. In Sec. V, we model MDOs at centers of many
galaxies as Schwarzschild black hole lenses and study the
variations in the same physical quantities (as studied in
Sec. VI) with respect to changes in the ratio of mass of lens
to its distance and the lens-source distance for a fixed value
of angular source position. In Sec. VI, we discuss and
summarize the results.
Bozza et al. [17] obtained approximate analytical ex-

pressions for image positions and magnifications of rela-
tivistic images. Bozza and Mancini [18] further derived
approximate analytical expressions for differential time
delays among relativistic images. As the aim of our paper
is to present accurate results and to derive some important
astrophysical implications for those, we do not digress to
compare and contrast our results with approximate analyti-
cal results given in [17,18]. In Sec. IV, we briefly discuss
that there are small (but significant) percentage differences
in results for image positions. However, percentage differ-
ences in results for magnifications of images are very large.
In Sec. V, we compare their approximate results with ours
for differential time delays between two relativistic im-
ages. We show that there are qualitative as well as large
quantitative differences. We justify our results with some
arguments.
There are some fascinating results in this paper. The

most important among those is that relativistic images
would provide very accurate values for masses and dis-
tances of MDOs at centers of galaxies. The ratio of the
mass of a Schwarzschild lens to the differential time delays
between two outermost relativistic images (both of them
either on the primary image side or on the secondary image
side from the optical axis) is almost a constant; i.e., this
ratio is extremely insensitive to changes in the angular
source position, the observer-lens distance, and the lens-
source distance. Therefore, observation of relativistic im-
ages and measurements of their differential time delays
would give very accurate values for masses of MDOs.
Another very useful property of relativistic images is that
variations in their angular separations due to changes in the
angular source position and the lens-source distance are
extremely small. Therefore, once we have accurate values
for masses of MDOs, measurements of angular separations
between relativistic images would give very accurate re-
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sults for distances of those MDOs. Similarly, we also show
that the measurement of ratio of fluxes of outermost rela-
tivistic images (one on each side of the optical axis) would
help us obtain very accurate result for distance of the
source.

As in our previous papers on GL [9,19–21], we use
geometrized units (i.e., the gravitational constant G ¼ 1
and the speed of light in vacuum c ¼ 1, so that M �
MG=c2) throughout this paper. However, we finally
present time delays and differential time delays of images
in the unit of minute.

II. LENS EQUATION, DEFLECTION ANGLE, AND
TIME DELAY

Assuming that the angular position of source of light is
small and the source as well as the observer are situated at
large distances from the lens (deflector), we [9] obtained a
new gravitational lens equation that allows for arbitrary
large as well as small deflections of light. The lens equation
is given by

tan� ¼ tan��D½tan�þ tanð�̂� �Þ�; (1)

with

D ¼ Dds

Ds

: (2)

Angular positions of an unlensed source and images are
measured from the optical axis (the line joining the ob-
server and the center of mass of the gravitational lens), and
are represented by symbols � and �, respectively. These
angles when measured in clockwise and anticlockwise
directions from the optical axis are assigned positive and
negative signs, respectively. �̂ represents the total angle by
which the light ray is deflected in the gravitational field of
the lens while traveling from the source to the observer.
Null geodesics which are bent toward and away from the
lens have, respectively, �̂ > 0 and �̂ < 0. Dd, Dds, and Ds

stand, respectively, for observer-lens, lens-source, and
observer-source angular diameter distances. The values
of parameter D mathematically lie in the interval (0, 1);
however, for the lens equation to hold good, the value ofD
should not be taken too close to 0. The perpendicular
distance from the center of mass of the lens to the tangent
to the null geodesic at the source position is (see Fig. 1 in
[9])

J ¼ Dd sin� (3)

and is called impact parameter.
The magnification of an image formed due to GL is

defined as the ratio of the flux of the image to the flux of
the unlensed source. However, according to Liouville’s
theorem, the surface brightness is preserved in GL.
Therefore, the magnification � of an image formed due
to gravitational lensing turns out to be the ratio of the solid
angles of the image and of the unlensed source made at the

observer [3–5]. Thus, for a circularly symmetric GL, the
magnification � of an image is obviously expressed by

� ¼ �t�r; (4)

where the tangential magnification �t and the radial mag-
nification �r are, respectively, expressed by

�t ¼
�
sin�

sin�

��1
and �r ¼

�
d�

d�

��1
: (5)

Tangential critical curves (TCCs) and radial critical
curves (RCCs) are, respectively, given by singularities in
�t and �r in the lens plane. However, their corresponding
values in the source plane are, respectively, termed tangen-
tial caustic (TC) and radial caustics (RCs). The parity of
an image is called positive if �> 0 and negative if �< 0.
Sometimes terms magnifications and absolute magnifica-
tions of negative parity images are used synonymously. If
the angular source position � ¼ 0 (i.e., when the source,
the lens, and the observer are aligned), there may be ring
shaped image(s) [called Einstein ring(s)]; these images are
assigned 0-parity. Note that � ¼ 0 does not always give
Einstein ring(s) (for examples, see in [19–21]).
In this paper, we thoroughly study gravitational lensing

due to Schwarzschild black holes, which exterior gravita-
tional field is described by the line element

ds2 ¼
�
1� 2M

r

�
dt2 �

�
1� 2M

r

��1
dr2

� r2
�
d#2 þ sin2#d�2

�
; (6)

where the real constant parameterM is the ADMmass. The
radii of event horizon and photon sphere of a
Schwarzschild black hole are given by Reh ¼ 2M and
Rps ¼ 3M, respectively. Reh is also called the

Schwarzschild radius.
The bending angle �̂ for a light ray with the closest

distance of approach ro is given by

�̂ðroÞ ¼ 2
Z 1

ro

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rroÞ2ð1� 2M

ro
Þ � ð1� 2M

r Þ
q � � (7)

and the impact parameter J of the light ray is expressed by

JðroÞ ¼ ro

�
1� 2M

ro

��1=2
: (8)

(See in [25].) Defining a dimensionless radial distance � in
terms of the Schwarzschild radius 2M by equation

� ¼ r

2M
(9)

(for r ¼ ro, � ¼ �o), we [9,19] expressed the deflection
angle �̂ð�Þ and the impact parameter Jð�Þ, respectively, by

�̂ð�oÞ ¼ 2
Z 1

�o

d�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ��o

Þ2ð1� 1
�o
Þ � ð1� 1

�Þ
q � � (10)
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and

Jð�oÞ ¼ 2M�o

�
1� 1

�o

��1=2
: (11)

For computations of magnifications of images, the first
derivative of deflection angle �̂with respect to � is needed,
which is given by [9,19]

d�̂

d�
¼ �̂0ð�oÞ d�o

d�
; (12)

where the first and second factors on right side of this
equation are, respectively, given by

�̂ 0ð�oÞ ¼ 3� 2�o

�2
oð1� 1

�o
Þ

�
Z 1

�o

ð4�� 3Þd�
ð3� 2�Þ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ��o

Þ2ð1� 1
�o
Þ � ð1� 1

�Þ
q

(13)

and

d�o

d�
¼

�oð1� 1
�o
Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2MDd

Þ2�2
oð1� 1

�o
Þ�1

q
M
Dd

ð2�o � 3Þ : (14)

Time delays for images of gravitational lensing are given
by 3 terms: the first and second terms with positive sign
are, respectively, the travel time of the light from the source
to the point of closest approach and from that point to the
observer, and the third term with a minus sign is the light
travel time from the source to the observer in the absence
of any gravitational field. Solving null geodesic equations
for general static spherically symmetric spacetime,
Weinberg in his classic book [25] obtained the time re-
quired for light to travel from a source at coordinates
fr; #; �=2; ’ ¼ ’1g to the closest point of approach (to
the lens) at coordinates fr0; #; �=2; ’ ¼ ’2g. Using this
result, time delay of images of Schwarzschild lensing can
be expressed as (see Eqs. (23)–(25) in [21])

�ð�0Þ ¼ 2M

�Z Xs

�0

d�

fð�Þ þ
Z Xo

�0

d�

fð�Þ
�
�Ds sec� (15)

with

X s ¼ Ds

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Dds

Ds

�
2 þ tan2�

s
; Xo ¼ Dd

2M
; (16)

and

fð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� 1

�

�
2 �

�
�0

�

�
2
�
1� 1

�

�
3
�
1� 1

�0

��1
s

: (17)

Time delay of a gravitationally lensed image may be in
general positive, zero, or negative; for examples, see in our
paper [21]. However, time delays are always positive for
images of Schwarzschild lensing.

It is worth mentioning that Eq. (4.67) in a classic book
on GL by Schneider et al. [3] gives time delays of gravita-
tionally lensed images. That equation contains an additive
constant term. The authors clarified that the constant term
is the same for all rays from the source plane to the
observer. Therefore, this term cancels for computations
of differential time delay between 2 images. However, as
the value for the constant term is not obtained, that equa-
tion cannot be used to compute time delays of images. We
are interested to first compute time delays of images and
then use those to obtain differential time delays. This is
why we use the method given in Weinberg’s book [25] and
we discussed that in this section.

III. EFFECTIVE DEFLECTION ANGLES OF
RELATIVISTIC IMAGES

It is important to first discuss in brief a few new terms we
defined in our previous paper [9]. Then, we will show that
these definitions with some arguments reveal geometrical
beauty of strong field Schwarzschild lensing. This also
helps predict some results without computations and thus
provides consistency check for results obtained through
numerical computations.
If a lens is very compact, then a light ray passing close to

it will suffer a large deflection and therefore will loop
around the lens once, twice, thrice, or many times (depend-
ing on the closest distance of approach from the center of
the lens) before reaching the observer. We [9] defined
relativistic images of GL as those images which occur
due to light deflections by angles �̂ > 3�=2. Similarly,
for the angular source position � ¼ 0, we defined relativ-
istic Einstein rings as those ringed-shaped images which
can form due to light deflections by angles �̂ > 2�.
Relativistic Einstein rings are thus relativistic images for
the case of � ¼ 0. It is useful to define order of relativistic
images on each side of the optical axis. We assign the order
1 to the outermost relativistic images on both sides of the
optical axis, 2 for adjacent inner ones, and so on. Thus,
according to this definition, the outermost relativistic
Einstein ring also has the order 1.
In a recent paper [21], we discussed that the existence of

a photon sphere enclosing a lens is a sufficient (not neces-
sary) condition for the formation of relativistic images. A
sufficiently compact lens can give rise to relativistic im-
ages even if the lens is not covered inside a photon sphere.
Therefore, the lens need not be a black hole to produce
these images.
In [9], we defined a term effective deflection angle of a

relativistic image, which we now express as follows:

�̂ eð�0Þ ¼ �̂ð�0Þ � 2n�; (18)

where n is a positive integer that represents the number of
loops (turns) a light ray makes around the lens before
reaching the observer, and the superscript e on �̂ stands
for the word effective. (In fact, the above equation can also
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be applied to primary and secondary images, because n ¼
0 correspond to those images. However, we prefer to call
those as known in the literature instead of calling them
images of 0-order.) �̂ð�0Þ, as given by Eq. (10), is the usual
(total) deflection angle for the light ray with the closest
scaled distance of approach �0 making n loops around the
lens. Thus, similar to the cases of primary and secondary
images, the effective deflection angle of a relativistic im-
age turns out to be the angle between the tangents on the
null geodesic at the source and at the observer positions. In
the following, we now introduce new symbols we use for
physical quantities associated with primary, secondary, and
relativistic images.

New symbols.—We use subscripts p and s, respectively,
for primary and secondary images. Similarly, subscripts np
and ns (n ¼ 1; 2; 3; . . . ) stand, respectively, for the images
of order n on the same side as the primary and secondary
images. For example, �̂e

1p and �̂e
1s, respectively, stand for

effective deflection angles of relativistic images of order 1
on the same side as the primary and secondary images. The
same applies to symbols for angular image positions, mag-
nifications, and time delays.

It is well-known that, on the same side as the source
from the optical axis, the Schwarzschild black hole lensing
gives rise to the primary image which is formed due to light
deflection in weak gravitational field without looping of
the ray of light around the lens. On the other hand, rela-
tivistic images on the same side as the source are produced
due to looping of light rays around the lens, which is
caused by large deflection angles �̂ > 3�=2 in strong
gravitational field. It is natural to ask if, excluding the
primary image, there is any other image (on the same
side as the source from the optical axis) which can form
without looping of the light ray around the black hole.
Computations give no such solutions to the lens equation.
Therefore, on the same side as the source, there is only one
(i.e., the primary) image which forms due to light deflec-
tion in weak field without looping of the light ray around
the lens and there are relativistic images which arise due to
looping of light rays around the lens in strong gravitational
field. In the following, we will show that a simple geomet-
rical argument beautifully supports these numerical results.
See Fig. 1. Assume that, on the same side as the source

from the optical axis, two light rays emitted from the
source S reach the observer O without looping around
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Dds

Dd
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Primary image

Θp

P2
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γ 2

Relativistic image

FIG. 1 (color online). Left: The deflection angle �̂ is plotted against the dimensionless scaled impact parameter J=M. The arrow
attached to the curve indicates that �̂ decreases with increase in the value of J=M. Right: S, L, and O represent positions of the source,
the lens, and the observer, respectively. SP1 and SP2 are tangents on 2 null geodesics at the source position, whereas P1O and P2O are
tangents on, respectively, the same pair of null geodesics at the observer position. �̂1 and �̂2 are light bending angles, whereas 	1 and
	2 are their respective supplementary angles. � and �p stand, respectively, for the angular positions of the source and the primary
image. Angles in this schematic diagram are greatly exaggerated. 	2 > 	1 ) �̂2 < �̂1. According to the �̂ vs J=M plot (on left side),
â2 < �̂1 is possible only if SP2 and P2O are, respectively, tangents at the source and the observer positions on a null geodesic which
loops around the lens at least once giving rise to a relativistic image.
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the lens. SP1 and SP2 are tangents on 2 null geodesics at
the source position, and, similarly, P1O and P2O are,
respectively, tangents on those null geodesics at the ob-
server position. �̂1 and �̂2 are deflections angles corre-
sponding to 2 light rays we considered and 	1 and 	2 are
their respective supplementary angles. The schematic dia-
gram (right of Fig. 1) shows that 	2 >	1. This implies that
�̂2 < �̂1, which is not allowed according to the �̂ vs J=M
graph (see the left of Fig. 1); i.e., a decrease in the impact
parameter should increase �̂. Thus if the light path SP1O is
allowed, then SP2O is not allowed and therefore we con-
clude that there can be only the primary image on the
same side as the source without the light ray looping
around the lens. A similar argument also demonstrates
that there can be only one image (i.e., secondary) on the
opposite side from the source without a light ray going
around the lens.

Now consider that SP2 and P2O represent tangents,
respectively, at the source and the observer position on a
null geodesic that loops around the lens once before reach-
ing the observer. Therefore, �̂2 ¼ �̂e

1p < �̂1, which also

reflects in numerical computations in next section. For a
given value of�, the schematic diagram also shows that the
effective deflection angle of relativistic images on the same

side as the primary image decrease with increase in its
order. Similarly, for a given angular source position, the
effective deflection angles of relativistic images (on the
same side as the secondary) decreases with the increase in
its order. These conclusions based on simple geometrical
analysis are reflected in results of our numerical computa-
tions in the next section.
In Fig. 2, we show that effective deflection angles of

relativistic images on the same side as the primary image
can be positive, zero, or negative depending on the value of
the angular source position. However, for relativistic im-
ages on the same side as the secondary image, effective
deflection angles are always positive. Consider the first
order relativistic images on both side of the optical axis;
i.e., one on the primary image side and the other on the
secondary image side. SC1 and C1O are, respectively,
tangents on null geodesics (giving rise to the 1st order
relativistic image on the primary image side) at the source
and observer positions; C1 is their point of intersection.
Similarly, SC2 and C2O are, respectively, tangents on null
geodesics (giving rise to the 1st order relativistic image on
the secondary image side) at the source and observer
positions; C2 is their point of intersection. As the angular
source position � increases, the intersection points C1 and
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FIG. 2 (color online). Schematic diagram showing the variation in effective deflection angles of relativistic images with respect to
increase in the value of angular source position �. S, L, and O stand for the position of the source, the lens, and the observer,
respectively. SC1 and SC2 are tangents on 2 null geodesics at S, and C1O and C2O are tangents on corresponding null geodesics at O.
�̂e
1p and �̂e

1s stand for effective deflection angles of relativistic images of order 1, respectively, on the primary and secondary image

sides; �1p and �1s are their respective angular image positions. Angles are greatly exaggerated.
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C2 move extremely slowly, respectively, away from and
toward the lens. For small angular source position �, the
effective deflection angle �̂e

1p > 0 (see the extreme left

diagram). As the value of � increases, the value of �̂e
1p

decreases to zero value (see the second and third diagrams
from the left). When �̂e

1p ¼ 0, the angular source position

of this relativistic image and the source coincide. We
denote this critical value of the angular source position as
�1c. (Subscript c stands for the word critical and 1 stands
for the 1st order relativistic image.) A further increase in
the value of�makes the effective deflection angle �̂e

1p < 0

and its value keep decreasing with increase in the value of
�. On the other hand, the effective deflection angles of
relativistic images on the same side as the secondary image
increases with the increase in the value of �. These im-
portant conclusions based on simple geometrical analysis
also appear in our numerical results in the next section.
Therefore, the geometrical analysis using Figs. 1 and 2 also
supports correctness of our computations.

IV. GRAVITATIONAL LENSING BY THE
GALACTIC MDO

In this section, we model the MDO at the center of our
Galaxy (the Milky Way) as a Schwarzschild black hole
lens and study point source GL in a great detail. The MDO
has the mass M ¼ 3:61� 106M� and is at the distance
Dd ¼ 7:62 kpc from us [26]. Therefore, M=Dd � 2:26�
10�11 (note that M � MG=c2). In a recent paper [21], we
already obtained angular positions, deflection angles, mag-
nifications, and time delays for primary and secondary
images for several values of angular source position �
for D � Dds=Ds ¼ 0:5 (i.e., when the lens is situated

halfway between the observer and the source). We also
computed differential time delays of secondary images
with respect to primary images. For comparison and con-
tinuity in discussion, we use those results in this paper and
also put those in Table I. Now considering D ¼ 0:5 and
usingMathematica, we numerically solve the gravitational
lens Eq. (1) for a large number of values for � and obtain
image positions for first and second order relativistic im-
ages on both sides of the optical axis. We further obtain
deflection angles, magnifications, time delays, and differ-
ential time delays for these images. Using Eq. (18), we
obtain effective deflection angles for these relativistic im-
ages. We put these results in Tables II and III. Though we
computed for a large number of values for �, we put only a
few data in tables; however, we use all those for figures. We
further repeat the entire computations for primary and
secondary as well as relativistic images for D ¼ 0:05
and 0.005 to see the effects of changes in image positions,
deflection/effective deflection angles, magnifications, time
delays, and differential time delays due to change in the
lens-source distance. (With the observer-lens distance Dd

fixed, a decrease in the value of D decreases the source-
lens distance Dds.) Throughout our computations in this
paper, we never take either weak or strong gravitational
field approximation and therefore our computations and
hence results are exact in this sense. In the following
paragraphs, we will now discuss results for GL by the
Galactic MDO.
In Fig. 3, we first plot the (absolute) angular positions

(measured from the optical axis) of primary and secondary
images, and their separations against the angular source
position � for D ¼ 0:5, 0.05 and 0.005. As it is well-
known that, for a given value of D, the angular positions

TABLE I. Angular positions, bending angles, magnifications, and time delays of primary and secondary images due to GL by the
Galactic MDO modeled as a Schwarzschild black hole. � stands for the angular source position. �, �̂, �, and � stand, respectively, for
angular positions, deflection angles, magnifications, and time delays of images, with p and s subscripts, respectively, for primary and
secondary images. �s � �p stands for the differential time delay of the secondary image with respect to the primary image. All angles

are expressed in arcsec, and time delays and differential time delays are given in minutes. (a) The Galactic MDO (lens) has mass
M ¼ 3:61� 106M�, which is at distance Dd ¼ 7:62 kpc. M=Dd � 2:26� 10�11, where M � MG=c2. The ratio of the lens-source
distance to the observer-source distance D ¼ 0:5. Results in this table are taken from our recent paper [21].

� Secondary image Primary image

�s �̂s �s �s �s � �p �p �̂p �p �p

0 �1:388176 2.776352 � 14.9220910 0 1.388176 2.776352 � 14.9220910

10�6 �1:388176 2.776353 �694084:2 14.9220919 0.000002 1.388177 2.776351 694085.2 14.9220902

10�5 �1:388171 2.776362 �69407:97 14.9220995 0.000017 1.388181 2.776342 69408.97 14.9220825

10�4 �1:388126 2.776452 �6940:347 14.9221763 0.000171 1.388226 2.776252 6941.347 14.9220057

10�3 �1:387676 2.777353 �693:5848 14.9229442 0.001706 1.388676 2.775353 694.5848 14.9212382

10�2 �1:383185 2.786370 �68:90982 14.9306363 0.017060 1.393185 2.766370 69.90982 14.9135764

10�1 �1:339077 2.878153 �6:454348 15.0089452 0.170636 1.439076 2.678152 7.454345 14.8383092

1 �0:975480 3.950960 �0:322455 15.9468061 1.742193 1.975475 1.950951 1.322453 14.2046135

2 �0:710863 5.421726 �0:073840 17.3803344 3.687537 2.710855 1.421709 1.073838 13.6927977

3 �0:543786 7.087573 �0:024114 19.2981794 5.987040 3.543776 1.087553 1.024113 13.3111391

4 �0:434559 8.869117 �0:009696 21.7471848 8.734391 4.434547 0.869094 1.009695 13.0127934

5 �0:359561 10.71912 �0:004521 24.7549479 11.98479 5.359549 0.719098 1.004521 12.7701628
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of primary and secondary images, respectively, increase
and decrease with an increase in the value of �. For a given
value of �, the angular positions of primary as well as
secondary images increase with an increase in the value of
D. The angular radius of Einstein ring increases with
increase in the value ofD. The angular separation between
primary and secondary images increases with increase in�
and D. The angular positions of relativistic images are
very insensitive to changes in the values of � and D. The
angular position of the first order relativistic images on
both sides of the optical axis have extremely close values;
however, �1p > j�1sj for all values of �, excluding, of

course, at � ¼ 0 for which �1p ¼ j�1sj. The same is true

for any pair of second or higher order relativistic images.
As �np and j�nsj (for the same value of n) have extremely

close values, we plot image positions of relativistic images
only on the same side as the primary image. For theoretical
interest, it is worth investigating variation in the value of

�np and j�nsjwith changes in the value of� andD, though

variations are extremely small. For relativistic images of a
given order n and for a given value ofD, the values in �np
and j�nsj, respectively, increase and decrease with the
increase in the value of�, though the increase and decrease
are extremely small. However, their dependence on D is
much more fascinating. For � ¼ 0 or a small value, �1p is

greater for a greater value of D. As � increases, there is
situation when �1p is the same for all values of D. At this

critical angular source position �1c � 24:3028 microarc-
sec (�as), the effective deflection angle �̂e

1p ¼ 0 for all

values ofD. For a further increase in the value of �, �1p is

smaller for a greater value ofD. The same happens for any
relativistic images on the same side as the primary image;
however, critical angular source position �nc decreases
with an increase in the order n of the image; for example,
�2c � 24:2724 �as. On the other hand, for any fixed value
of �, image positions of relativistic images (on the sec-

TABLE III. Effective deflection angles, magnifications, and time delays of relativistic images (on the same side as the secondary
image) due to GL by the Galactic MDO modeled as a Schwarzschild black hole. �̂e, �, and � stand, respectively, for effective
deflection angles, magnifications, and time delays, with subscripts 1s and 2s, respectively, are used for the first and the second order
relativistic images on the secondary image side. �1s � �1p, �1s � �p, �1s � �s, and �2s � �1p are differential time delays. The angular

positions of the first and second order relativistic images on the secondary image side are, respectively, �1s � �24:30283 �as and
�2s � �24:27240 �as for all values of angular source position � considered in this table. (a) The same as (a) of Table II.

� First (outer) relativistic image Second (inner) relativistic image

�̂e
1s �1s �1s �1s � �1p �1s � �p �1s � �s �̂e

2s �2s �2s �2s � �1p

0 48.605666 � 38.3608537 0 23.438763 23.438763 48.544793 � 48.0274920 9.666638229

10�6 50.605666 �7:21� 10�12 38.3608537 2:99� 10�11 23.438764 23.438762 50.544793 �1:34� 10�14 48.0274920 9.666638229

10�5 68.605666 �7:21� 10�13 38.3608537 2:99� 10�10 23.438771 23.438754 68.544793 �1:34� 10�15 48.0274920 9.666638230

10�4 248.60567 �7:21� 10�14 38.3608537 2:99� 10�9 23.438848 23.438677 248.54479 �1:34� 10�16 48.0274920 9.666638232

10�3 2048.6057 �7:21� 10�15 38.3608540 2:99� 10�8 23.439616 23.437910 2048.5448 �1:34� 10�17 48.0274923 9.666638259

10�2 20048.606 �7:21� 10�16 38.3608846 2:99� 10�7 23.447308 23.430248 20048.545 �1:34� 10�18 48.0275228 9.666638528

10�1 200048.61 �7:21� 10�17 38.3639276 2:99� 10�6 23.525618 23.354982 200048.54 �1:34� 10�19 48.0305658 9.666641214

1 2000048.6 �7:21� 10�18 38.6681048 2:99� 10�5 24.463491 22.721299 2000048.5 �1:34� 10�20 48.3347430 9.666668077

TABLE II. Effective deflection angles, magnifications, and time delays of relativistic images (on the same side as the primary image)
due to GL by the Galactic MDO modeled as a Schwarzschild black hole. �̂e, �, and � stand, respectively, for effective deflection
angles, magnifications, and time delays, with 1p and 2p subscripts, respectively, are used for the first and the second order relativistic
images on the same side as the primary image. �2p � �1p, �1p � �p, and �1p � �s are differential time delays. The angular positions of

the first and second order relativistic images on the primary image side are, respectively, �1p � 24:30283 �as and �2p �
24:27240 �as for all values of angular source position � considered in this table. (a) The angular source positions and the effective
deflection angles are, respectively, expressed in arcsec and �as, whereas time delays and differential time delays are given in minutes.
The mass and distance of the lens are as given in (a) of Table I.

� Second order (inner) relativistic image First order (outer) relativistic image

�̂e
2p �2p �2p �2p � �1p �̂e

1p �1p �1p �1p � �p �1p � �s

0 48.544793 � 48.0274920 9.666638229 48.605666 � 38.3608537 23.438763 23.438763

10�6 46.544793 1:34� 10�14 48.0274920 9.666638229 46.605666 7:21� 10�12 38.3608537 23.438764 23.438762

10�5 28.544793 1:34� 10�15 48.0274920 9.666638229 28.605666 7:21� 10�13 38.3608537 23.438771 23.438754

10�4 �151:45521 1:34� 10�16 48.0274920 9.666638229 �151:39433 7:21� 10�14 38.3608537 23.438848 23.438677

10�3 �1951:4552 1:34� 10�17 48.0274922 9.666638229 �1951:3943 7:21� 10�15 38.3608540 23.439616 23.437910

10�2 �19951:455 1:34� 10�18 48.0275225 9.666638229 �19951:394 7:21� 10�16 38.3608843 23.447308 23.430248

10�1 �199951:46 1:34� 10�19 48.0305628 9.666638231 �199951:39 7:21� 10�17 38.3639246 23.525615 23.354979

1 �1999951:5 1:34� 10�20 48.3347132 9.666638248 �1999951:4 7:21� 10�18 38.6680749 24.463461 22.721269
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ondary image side) j�nsj always increase with an increase
in D. The angular separation between relativistic images
of the first order (i.e, �1p � �1s) increases with an increase

in the value of � (for a fixed D). The increase rate of the
angular separation with increase in � is higher for lower
value of D. For � ¼ 0 or a small value, this angular
separation is higher for a higher value of D. (This is
qualitatively similar to the case of image separation be-
tween primary and secondary images.) However, for large
value of �, the angular separation �1p � �1s is higher for

lower value ofD. For any two values ofD, there exist a �
at which values of �1p � �1s are equal for both D. The

angular separations between outermost 2 relativistic im-
ages (both of them either on the primary or on the second-
ary image side) have just opposite qualitative dependence

on � and D in the following sense. �1p � �2p increases

with increase in � (for a fixed D), but decreases with
increase in D (for a fixed �). On the other hand, j�1s �
�2sj decreases with increase in � (for a fixed D), but
increases with increase in D (for a fixed �). The in-
crease/decrease rate with change in the value of � (for a
fixedD) is smaller for higher value ofD. The variations in
angular separations between relativistic images are very
small with respect to changes in � andD. Among angular
separations �1p � �1s, �1p � �2p, and j�1s � �2sj, the first
one is the least sensitive to those changes. As relativistic
images would be observationally important for very small
values of �, we conclude that angular separations between
relativistic images of our interest are extremely insensitive
to change in the value of D.
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FIG. 3 (color online). Top left and middle: The angular positions of primary images �p, secondary images j�sj, and their separations
�p � �s are plotted against the angular source position � for D ¼ 0:5, 0.05 and 0.005. Top right: The angular positions of relativistic

images (on the same side as the primary image) of the first order �1p and of the second order �2p are plotted against � for the same

values ofD as in the figures on left. The curves for �1p (for different values ofD) intersect for �1c � 24:3028 �as, whereas those for

�2p intersect for �2c � 24:2724 �as. Below: The angular separations among relativistic images versus the angular source position �

are plotted forD ¼ 0:5, 0.05 and 0.005. �np and �ns (n ¼ 1, 2) stand for angular positions of relativistic images on the primary and the

secondary image sides, respectively. The Galactic MDO is modeled as the Schwarzschild lens, which has mass M ¼ 3:61� 106M�
and is situated at the distance Dd ¼ 7:62 kpc so that M=Dd � 2:26� 10�11.
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In Fig. 4, we show variations in deflection angles for
primary and secondary as well as effective deflection an-
gles for relativistic images with respect to changes in
values for � and D. It is known that for a given value of
D, the deflection angles for primary and secondary im-
ages, respectively, decrease and increase with an increase
in the value of �. For a fixed value of �, deflection angles
for these images increase with decrease in the value of D.
Like primary and secondary images, the deflection angles
of relativistic images are always positive, and the same is
true for effective deflection angles of relativistic images on
the secondary image side. However, for a fixed value of
M=Dd, the effective deflection angles of relativistic images
on the same side as the primary image decrease with an

increase in the value of �, and can be positive, zero, or
negative depending on the value of �. For a relativistic
image (of any order) on the same side as the primary
image, there exists a critical value of � for which the
effective deflection angle is zero. These results are as
expected from the schematic diagram in Fig. 2. Our nu-
merical computations give �2c � 24:2724 �as and �1c �
24:3028 �as showing that �2c < �1c. The effective de-
flection angle is positive, zero, and negative, respectively,
for the angular source position less than, equal to, and
greater than the critical value of the angular source posi-
tion. The critical source positions are independent of the
value of D. As expected from the schematic diagram (see
Fig. 2), our computations also show that effective deflec-
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FIG. 4 (color online). Top left: The deflection angles of primary images �̂p and secondary images �̂s are plotted against the angular
source position � for D ¼ 0:5, 0.05 and 0.005. Top middle and right: The effective deflection angles of the first order relativistic
images on the same side as the primary image �̂e

1p and on the same side as the secondary image �̂e
1s are plotted against � forD ¼ 0:5,

0.05 and 0.005. Below left and right: The effective deflection angles of the second order �̂e
2p (left) and of the first order �̂e

1p (right), both

on the same side as the primary image, are plotted against � for D ¼ 0:5, 0.05 and 0.005 in the vicinity of zero effective deflection
angle. �2c � 24:2724 �as and �1c � 24:3028 �as, where �2c and �1c are, respectively, critical angular source positions for the
second and first order relativistic images. The gravitational lens is the same as for the Fig. 3.
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tion angles of relativistic images on the secondary image
side are always positive and increase with increase in the
value of � (for fixed D).

In Fig. 5, we show changes in (absolute) magnifications
of primary and secondary images as well as relativistic
images with changes in the values of � and D. Images on
the same side as the source and opposite side from the
source have, respectively, positive and negative magnifica-
tions and therefore have, respectively, positive and nega-
tive parities. The (absolute) magnifications of primary,
secondary, and relativistic images decrease with an in-
crease in the value of angular source position �.
However, there are 2 important differences between abso-
lute magnifications of primary-secondary pair and relativ-

istic images. First, the absolute magnifications of
relativistic images are extremely small and decrease
much faster than those of primary and secondary images
with an increase in the angular source position �.
Secondly, as opposed to the case of primary and secondary
images, for a fixed value of �, the absolute magnifications
of relativistic images increase with decrease in the value of
D. Therefore, it would be easier to observe relativistic
images of those sources which are relatively nearer to the
lens. The absolute magnifications of relativistic images of
the same order on each side of the optical axis have
extremely close values (images on the same side as the
primary image have though slightly higher value than
images on the same side as the secondary image). This is
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FIG. 5 (color online). Top left and middle: The magnifications of primary images �p, the absolute magnifications of secondary
images j�sj, and their ratios j�p=�sj are plotted against the angular source position � for different values of D. Top right and below

left: The magnifications of relativistic images (on the same side as the primary image) of the first order �1p and the second order �2p

are plotted against the angular source position � for D ¼ 0:5, 0.05 and 0.005. Below middle and right: The magnifications ratios
j�1p=�1sj (where �1s stands for magnification of the first order relativistic image on the same side as the secondary image) and

�1p=�2p vs � are plotted for the same values of D as in the figure on below left. The lens is the same as for the Fig. 3.
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why we plot only for relativistic images on the primary
image side. For a fixed value of D, the ratios of absolute
magnifications of primary and secondary images j�p=�sj,
and of relativistic images j�1p=�1sj and�1p=�2p increase

with increase in the value of �. However, for a given value
�, these decrease with an increase in D. Compared to the
(absolute) magnifications ratio of primary and secondary
images, the ratios of (absolute) magnifications of relativ-
istic images are much less sensitive to changes in� andD.

In Fig. 6, we first plot time delays of primary and
secondary images, and differential time delays of second-
ary images with respect to their respective primary images
against the angular source position � for D ¼ 0:5, 0.05,
and 0.005. For Einstein rings (� ¼ 0 case), time delay
decreases with a decrease in the value ofD. For any given
value of D, the time delays of primary and secondary
images, respectively, decrease and increase with increase
in the value of �. Similarly, for any given value of �, time
delay of a primary image decreases with a decrease in the
value of D. However, there is no such simple dependence
for the time delays of secondary images onD. For a small
value of �, time delay of secondary image is smaller for
smallerD and the difference decreases as � increases. For

a certain value of �, time delays for secondary image for 2
different values of D become equal. For a further increase
in�, time delays for secondary images are higher for lower
value of D and the difference keeps increasing with in-
crease in �. For a fixed value of D, the differential time
delay of secondary image with respect to the primary
image increases with increase in �. However, for a fixed
value of �, this differential time delay increases with
decrease in D. We now plot time delays of relativistic
images of the first and second orders (both on the same side
as the primary image), and the differential time delay of the
first with respect to the second against � for D ¼ 0:5,
0.05, and 0.005. The time delays of relativistic images of
the same order on each side of the optical axis have
extremely close values (images on the same side as the
primary image though have lower values than images on
the same side as the secondary image). This is why we plot
only for relativistic images on the primary image side. The
differential time delay (�2p � �1p) has simple dependence

on � and D. For a fixed value of D, the differential time
delay increases with an increase in the value of�; however,
for any fixed value of �, the differential time delay in-
creases with a decrease in the value of D. For fixed � and
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FIG. 6 (color online). Top: The time delays of primary images �p and secondary images �s, and the differential time delays of the
secondary images with respect to their respective primary images (i.e., �s � �p) are plotted against the angular source position � for

D ¼ 0:5, 0.05 and 0.005. Below: The time delays of relativistic images (on the same side as the primary image) of the first order �1p,

second order �2p, and the differential time delays (i.e., �2p � �1p) are plotted against � for the same valuesD as in figures on top. The

lens is the same as for the Figs. 3 through 5.
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D, time delays of relativistic images increase with increase
in the order; i.e., inner relativistic images have higher time
delays relative to outer relativistic images. For a given
value of D and order n, time delay of a relativistic image
increases with increase in the value of �; the rate of
increase is higher for lower values of D. However, for a
fixed value of � and order n of relativistic image, the
dependence of time delays onD is not so simple. For � ¼
0 or a small value, the time delay of a relativistic image of a
given order is smaller for a smaller valueD; however, for a
certain value of �, both equal and as � increases further,
time delay is higher for a lower value of D.

In Fig. 7, we plot ratios of the mass of the lens to
differential time delays among images against the angular
source position � forD ¼ 0:5, 0.05, and 0.005. We choose
4 differential time delays: (a) differential time delay of
secondary image with respect to the primary image; i.e.,
�s � �p, (b) differential time delay of the first order rela-

tivistic image (on the same side as the primary image) with
respect to the primary image, i.e., �1p � �p, (c) differential

time delay of the first order relativistic image (on the same
side as the primary image) with respect to the secondary
image, i.e., �1p � �s, and (d) differential time delay of the

second order relativistic image with respect to the first
order relativistic image (both on the same side as the
primary image), i.e., �2p � �1p. We do not consider some

other combinations for differential time delays for obvious
reasons; for example, we do not use �1s � �1p, because

these are too small (see Tables II and III) to be measured
possibly in several decades to come. For a fixed value of
D, ratios M=ð�s � �pÞ, M=ð�1p � �pÞ, and the ratio

M=ð�2p � �1pÞ decrease and M=ð�1p � �sÞ increase with

increase in the value of �. For any given value of �,
M=ð�s � �pÞ and M=ð�2p � �1pÞ decrease and M=ð�1p �
�sÞ increases with a decrease in the value of D; however,
dependence of M=ð�1p � �pÞ on D is somewhat complex

and fascinating. For � ¼ 0 or a small value, the ratio
M=ð�1p � �pÞ is higher for smaller D. As � increases, 2

curves for 2 different values of D intersect and hence this
ratio is the same for both values of D. For a further
increase in �, the ratio is now higher for higher value of

D. Figure 7 shows that the ratioM=ð�2p � �1pÞ is the most

insensitive to changes in values of � andD. In fact, as the
relativistic images can be observed only for � ¼ 0 or a
very small value, the variation in the ratio M=ð�2p � �1pÞ
due to change inD is extremely small. In the next section,
we will show that this ratio is in fact extremely insensitive
to change in the value of M=Dd as well. Therefore, the
physical quantity M=ð�2p � �1pÞ can be approximately

considered as a constant, which can be used to compute
very accurate values for masses of black holes once differ-
ential time delays �2p � �1p are measured.

We mentioned in the first section of this paper that
Bozza et al. [17] analytically obtained approximate ex-
pressions for image positions and magnifications of rela-
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FIG. 7 (color online). The ratios of mass M of the lens to differential time delays of images are plotted against the angular source
position � for D ¼ 0:5, 0.05 and 0.005. �p and �s stand for time delays of primary and secondary images, respectively. �1p and �2p,

respectively, represent time delays of relativistic images (on the same side as the primary image) of orders 1 and 2. The gravitational
lens is the same as for the Figs. 3 through 6.
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tivistic images. In order to calculate angular positions of
these images, they first obtained an expression for effective
deflection angles (though they did not use this term). Here,
we briefly compare our results with their by giving some
examples. For the purpose of comparison, we consider the
MDO at the center of the Milky way as the lens. This lens
has M=Dd � 2:26� 10�11. We consider the lens to be
situated halfway between the source and the observer
(i.e., D ¼ 0:5) and the angular source position � ¼
1 �as. Compared to our results, Bozza et al. expressions
give � 0:5% higher values for each of the following: �̂e

1p

(effective deflection angle of the relativistic image of order
1 on the primary image side), �1p (angular position of the

relativistic image of order 1 on the primary image side),
and �1p � �1s (angular separation between relativistic im-

ages of the first order). Though, percentage differences
appear small, these are significant for 2 reasons. We have
shown that the angular positions of relativistic images and
their separations are extremely insensitive to changes in the
angular source position as well as lens-source distance. In
view of this fact, the above percentage differences are
significant. In the next section, we show that angular
separation between 2 relativistic images can be used to
obtain very accurate value for distance of a lens. Therefore,
percentage errors in Bozza et al. results will decrease
accuracies in determination of distances of MDOs.
Secondly, observation of relativistic images would provide
a method to test the general theory of relativity against
alternative theories of gravity in strong gravitational field

region. Angular positions of relativistic images of the same
order and the same parity in different theories of gravity are
expected to be very close. Therefore, very accurate theo-
retical results for image positions would be required to
compare different theories of gravity. We now compare
results for magnifications of relativistic images due to the
same lens. ForD ¼ 0:5 and� ¼ 1 �as, Bozza et al. result
yields � 372% higher value than our for �1p (magnifica-

tion of the first order relativistic image on the primary
image side). This very large percentage difference appears
to be due to unrealistic approximation they took in their
calculation. Moreover, according to their result, the abso-
lute magnification of relativistic images of the same order
are equal; i.e. j�np=�nsj ¼ 1, which is obviously not

correct due to the asymmetry (� � 0). Our results show
that j�np=�nsj> 1, as expected. For qualitative similar-

ities between Bozza et al. and our results, see [17]. Bozza
and Mancini [18] also analytically obtained approximate
expressions for differential time delays among relativistic
images. In the next section, we show that there are again
large percentage errors in their results.

V. GRAVITATIONAL LENSING BY MDOS AT
CENTERS OF MANY GALAXIES

In this section, we model MDOs at centers of 40 galaxies
as Schwarzschild black hole lenses and, like in the previous
section, study point source GL by them. Gebhardt [27]
tabulated updated values of masses and distances of many

TABLE IV. Masses and distances of MDOs at centers of 40 galaxies are presented in the decreasing order of dimensionless ratio of
mass to distance [i.e., M=Dd � MG=ðc2DdÞ] of MDOs. The mass and distance of the Galactic MDO and all other MDOs are,
respectively, taken from [26,27].

MDO in

galaxy

Mass M
in M�

Distance Dd

in Mpc

M
Dd

MDO in

galaxy

Mass M
in M�

Distance Dd

in Mpc

M
Dd

Milky Way 3:61� 106 0.00762 2:26467� 10�11 NGC5845 2:4� 108 25.9 4:42959� 10�13

NGC4486(M87) 3:0� 109 16.1 8:90733� 10�12 NGC3377 1:0� 108 11.2 4:26810� 10�13

NGC4649 2:0� 109 16.8 5:69080� 10�12 NGC3608 1:9� 108 22.9 3:96616� 10�13

NGC4594 1:1� 109 9.80 5:36561� 10�12 NGC4473 1:1� 108 15.7 3:34923� 10�13

NGC3115 1:0� 109 9.70 4:92811� 10�12 NGC6251 5:3� 108 93.0 2:72424� 10�13

NGC224(M31) 7:0� 107 0.760 4:40288� 10�12 NGC7052 3:3� 108 58.7 2:68737� 10�13

IC1459 2:5� 109 29.2 4:09270� 10�12 NGC2787 4:1� 107 7.50 2:61321� 10�13

NGC5128(cenA) 2:4� 108 4.20 2:73158� 10�12 NGC4258 3:9� 107 7.20 2:58931� 10�13

NGC4374(M84) 1:0� 109 18.4 2:59797� 10�12 NGC4596 7:8� 107 16.8 2:21941� 10�13

NGC3998 5:6� 108 14.1 1:89855� 10�12 NGC4459 7:0� 107 16.1 2:07838� 10�13

NGC4486B 6:0� 108 16.1 1:78147� 10�12 NGC1023 4:4� 107 11.4 1:84502� 10�13

NGC4350 6:0� 108 16.8 1:70724� 10�12 NGC4564 5:6� 107 15.0 1:78463� 10�13

NGC4342 3:1� 108 15.3 9:68551� 10�13 NGC221(M32) 2:9� 106 0.810 1:71145� 10�13

NGC3031(M81) 6:8� 107 3.90 8:33483� 10�13 NGC821 8:5� 107 24.1 1:68599� 10�13

NGC4261 5:2� 108 31.6 7:86627� 10�13 NGC3384 1:6� 107 11.6 6:59348� 10�14

NGC4697 1:7� 108 11.7 6:94569� 10�13 NGC1068 1:5� 107 15.0 4:78027� 10�14

CygnusA 2:9� 109 240. 5:77616� 10�13 NGC4742 1:4� 107 15.5 4:31766� 10�14

NGC4291 3:1� 108 26.2 5:65604� 10�13 NGC7332 1:5� 107 23.0 3:11757� 10�14

NGC3245 2:1� 108 20.9 4:80314� 10�13 NGC2778 1:4� 107 22.9 2:92244� 10�14

NGC3379 1:0� 108 10.6 4:50969� 10�13 NGC4945 1:4� 106 3.70 1:80875� 10�14
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MDOs. In Table IV, we consider most of those and arrange
in the decreasing order of M=Dd (i.e., the ratio of mass M
and the distance Dd) of MDOs. (Only for the Galactic
MDO, we use the updated values of mass and distance
given in [26].) The aim of this section is to study variations
in angular positions of images and their separations, de-

flection angles (effective deflection angles for relativistic
images), magnifications and their ratios, time delays, dif-
ferential time delays, and ratios of the mass of the lens to
differential time delays due to changes in the value of
M=Dd for D � Dds=Ds ¼ 0:5, 0.05, and 0.005. We men-
tioned in the first section that the central thread in this

TABLE V. Angular positions, magnifications, and time delays of primary and secondary images due to GL by MDOs (modeled as
Schwarzschild black holes) at centers of many galaxies. �, �, and � stand, respectively, for angular positions, magnifications and time
delays of images; subscripts p and s attached to them stand, respectively, for primary and secondary images. �s � �p stands for the

differential time delay of the secondary image with respect to the primary image. The time delays and differential time delays are given
in minutes, whereas angular positions of images are expressed in arcsec. (a) The first column gives the names of galaxies having MDOs
with decreasing value of the ratio of mass to the distance (i.e., M=Dd). The ratio of the lens-source distance to the observer-source
distance D ¼ 0:5. The angular source position � ¼ 1 �as.

MDO in galaxy Secondary image Primary image

�s �s �s �s � �p �p �p �p

Milky Way �1:388176 �694084:2 14.92209 1:71� 10�6 1.388177 694085.2 14.92209

NGC4486(M87) �0:870593 �435294:8 12859.74 0.00226 0.870594 435295.8 12859.74

NGC4649 �0:695869 �347933:4 8720.112 0.00189 0.695870 347934.4 8720.110

NGC4594 �0:675695 �337846:2 4806.677 0.00107 0.675696 337847.2 4806.675

NGC3115 �0:647562 �323779:8 4383.655 0.00101 0.647563 323780.8 4383.654

NGC224(M31) �0:612081 �306039:8 308.1496 0.00008 0.612082 306040.8 308.1495

IC1459 �0:590127 �295062:6 11035.30 0.00278 0.590128 295063.6 11035.29

NGC5128(cenA) �0:482112 �241055:1 1075.303 0.00033 0.482113 241056.1 1075.302

NGC4374(M84) �0:470173 �235085:9 4488.653 0.00140 0.470174 235086.9 4488.652

NGC3998 �0:401930 �200964:7 2542.451 0.00091 0.401931 200965.7 2542.450

NGC4486B �0:389340 �194669:5 2730.318 0.00101 0.389341 194670.5 2730.317

NGC4350 �0:381143 �190570:7 2734.506 0.00103 0.381144 190571.7 2734.505

NGC4342 �0:287079 �143539:0 1441.646 0.00071 0.287080 143540.0 1441.646

NGC3031(M81) �0:266310 �133154:8 317.9070 0.00017 0.266311 133155.8 317.9068

NGC4261 �0:258716 �129357:8 2435.988 0.00132 0.258717 129358.8 2435.987

NGC4697 �0:243107 �121553:1 799.8507 0.00046 0.243108 121554.1 799.8503

CygnusA �0:221697 �110848:0 13732.21 0.00858 0.221698 110849.0 13732.20

NGC4291 �0:219379 �109689:4 1468.994 0.00093 0.219380 109690.4 1468.993

NGC3245 �0:202163 �101081:3 1000.754 0.00068 0.202164 101082.3 1000.754

NGC3379 �0:195890 �97944:75 477.5836 0.00034 0.195891 97945.75 477.5833

NGC5845 �0:194143 �97071:07 1146.906 0.00081 0.194144 97072.07 1146.905

NGC3377 �0:190571 �95285:11 478.4866 0.00034 0.190572 95286.11 478.4862

NGC3608 �0:183707 �91852:93 911.4108 0.00068 0.183708 91853.93 911.4101

NGC4473 �0:168815 �84407:35 530.7089 0.00043 0.168816 84408.35 530.7085

NGC6251 �0:152252 �76125:46 2575.005 0.00228 0.152253 76126.46 2575.003

NGC7052 �0:151218 �75608:63 1604.042 0.00143 0.151219 75609.63 1604.041

NGC2787 �0:149117 �74558:08 199.4783 0.00018 0.149118 74559.08 199.4781

NGC4258 �0:148433 �74216:33 189.8064 0.00017 0.148434 74217.33 189.8062

NGC4596 �0:137422 �68710:93 381.5847 0.00037 0.137423 68711.93 381.5844

NGC4459 �0:132985 �66491:96 343.2016 0.00035 0.132986 66492.96 343.2012

NGC1023 �0:125296 �62647:94 216.5861 0.00023 0.125297 62648.94 216.5859

NGC4564 �0:123229 �61614:25 275.9607 0.00030 0.123230 61615.25 275.9604

NGC221(M32) �0:120676 �60337:77 14.31073 0.00002 0.120677 60338.77 14.31072

NGC821 �0:119775 �59887:15 419.6616 0.00047 0.119776 59888.15 419.6611

NGC3384 �0:074902 �37450:84 81.45874 0.00014 0.074903 37451.84 81.45860

NGC1068 �0:063777 �31888:16 77.15868 0.00015 0.063778 31889.16 77.15853

NGC4742 �0:060612 �30305:91 72.24847 0.00015 0.060613 30306.91 72.24832

NGC7332 �0:051504 �25751:92 78.21023 0.00019 0.051505 25752.92 78.21004

NGC2778 �0:049866 �24932:96 73.14462 0.00018 0.049867 24933.96 73.14444

NGC4945 �0:039231 �19615:00 7.424624 0.00002 0.039232 19616.00 7.424600
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paper is the study of relativistic images and we know that
these images may be observed only when the lens compo-
nents (the observer, the lens, and the source) are perfectly
or highly aligned. In view of this we take the angular
source position � ¼ 1 �as for computations. (As we
also want to compute magnifications of images due to point
source GL, we do not take � ¼ 0.) For � ¼ 1 �as, D ¼

0:5, and different values of M=Dd for several MDOs, we
numerically solve the lens equation to obtain image posi-
tions of primary and secondary as well as relativistic
images of orders 1 and 2. Further, we compute deflection
angles, magnifications, time delays, and differential time
delays for primary and secondary as well as relativistic
images. From deflection angles of relativistic images, we

TABLE VI. Angular positions, magnifications, and time delays of the first and second order relativistic images on the same side as
the primary image. MDOs at centers of many galaxies are modeled as Schwarzschild black hole lenses. �, �, and � stand, respectively,
for angular positions, magnifications, and time delays of images. Subscript p stands for the primary image, whereas 1p, and 2p stand,
respectively, for the first and second order relativistic images on the same side as the primary image. Angular positions of the images
are expressed in �as, whereas the time delays and differential time delays are given in minutes. Other inputs are the same as (a) of
Table V.

MDO in galaxy Second order relativistic image First order relativistic image

�2p �2p �2p �2p � �1p �1p �1p �1p �1p � �p

Milky Way 24.272396 1:34� 10�14 48.02749 9.66664 24.302833 7:21� 10�12 38.36085 23.43876

NGC4486(M87) 9.5467556 2:07� 10�15 40830.26 8033.22 9.5587269 1:12� 10�12 32797.05 19937.31

NGC4649 6.0993161 8:43� 10�16 27514.08 5355.48 6.1069644 4:55� 10�13 22158.61 13438.50

NGC4594 5.7507837 7:49� 10�16 15153.98 2945.51 5.7579950 4:05� 10�13 12208.46 7401.788

NGC3115 5.2818819 6:32� 10�16 13804.24 2677.74 5.2885053 3:41� 10�13 11126.50 6742.847

NGC224(M31) 4.7189445 5:05� 10�16 968.8844 187.442 4.7248619 2:73� 10�13 781.4426 473.2931

IC1459 4.3864944 4:36� 10�16 34662.92 6694.35 4.3919950 2:36� 10�13 27968.57 16933.28

NGC5128(cenA) 2.9276717 1:94� 10�16 3359.469 642.657 2.9313429 1:05� 10�13 2716.812 1641.509

NGC4374(M84) 2.7844704 1:76� 10�16 14014.24 2677.74 2.7879620 9:49� 10�14 11336.50 6847.846

NGC3998 2.0348357 9:38� 10�17 7905.583 1499.53 2.0373873 5:07� 10�14 6406.049 3863.599

NGC4486B 1.9093511 8:26� 10�17 8482.795 1606.64 1.9117454 4:46� 10�14 6876.151 4145.834

NGC4350 1.8297948 7:59� 10�17 8491.171 1606.64 1.8320893 4:10� 10�14 6884.527 4150.022

NGC4342 1.0380797 2:44� 10�17 4444.741 830.099 1.0393814 1:32� 10�14 3614.642 2172.996

NGC3031(M81) 0.8933152 1:81� 10�17 978.3253 182.086 0.8944354 9:77� 10�15 796.2390 478.3322

NGC4261 0.8430953 1:61� 10�17 7491.180 1392.42 0.8441526 8:70� 10�15 6098.755 3662.769

NGC4697 0.7444293 1:26� 10�17 2455.980 455.216 0.7453628 6:78� 10�15 2000.764 1200.914

CygnusA 0.6190806 8:69� 10�18 42071.51 7765.44 0.6198569 4:69� 10�15 34306.07 20573.87

NGC4291 0.6062068 8:33� 10�18 4499.436 830.099 0.6069670 4:50� 10�15 3669.337 2200.344

NGC3245 0.5147940 6:01� 10�18 3059.264 562.325 0.5154395 3:24� 10�15 2496.939 1496.185

NGC3379 0.4833420 5:29� 10�18 1458.860 267.774 0.4839481 2:86� 10�15 1191.086 713.5030

NGC5845 0.4747576 5:11� 10�18 3502.675 642.657 0.4753529 2:76� 10�15 2860.018 1713.113

NGC3377 0.4574487 4:74� 10�18 1460.666 267.774 0.4580223 2:56� 10�15 1192.892 714.4060

NGC3608 0.4250877 4:09� 10�18 2779.838 508.770 0.4256208 2:21� 10�15 2271.068 1359.658

NGC4473 0.3589661 2:92� 10�18 1615.480 294.551 0.3594163 1:58� 10�15 1320.929 790.2203

NGC6251 0.2919802 1:93� 10�18 7819.582 1419.20 0.2923463 1:04� 10�15 6400.381 3825.378

NGC7052 0.2880290 1:88� 10�18 4870.271 883.654 0.2883902 1:02� 10�15 3986.617 2382.577

NGC2787 0.2800806 1:78� 10�18 605.4707 109.787 0.2804318 9:60� 10�16 495.6833 296.2053

NGC4258 0.2775189 1:75� 10�18 576.0530 104.432 0.2778669 9:43� 10�16 471.6212 281.8150

NGC4596 0.2378733 1:28� 10�18 1156.050 208.864 0.2381716 6:93� 10�16 947.1863 565.6019

NGC4459 0.2227576 1:12� 10�18 1038.988 187.442 0.2230370 6:07� 10�16 851.5464 508.3452

NGC1023 0.1977463 8:86� 10�19 654.7971 117.821 0.1979942 4:79� 10�16 536.9766 320.3907

NGC4564 0.1912746 8:29� 10�19 833.9894 149.953 0.1915144 4:48� 10�16 684.0360 408.0756

NGC221(M32) 0.1834313 7:62� 10�19 43.22856 7.76544 0.1836613 4:12� 10�16 35.46312 21.15240

NGC821 0.1807017 7:40� 10�19 1267.462 227.608 0.1809283 4:00� 10�16 1039.854 620.1931

NGC3384 0.0706679 1:13� 10�19 243.5083 42.8438 0.0707566 6:11� 10�17 200.6645 119.2059

NGC1068 0.0512343 5:95� 10�20 229.8712 40.1661 0.0512985 3:21� 10�17 189.7051 112.5466

NGC4742 0.0462761 4:85� 10�20 215.0139 37.4883 0.0463341 2:62� 10�17 177.5255 105.2772

NGC7332 0.0334136 2:53� 10�20 231.9743 40.1661 0.0334555 1:37� 10�17 191.8082 113.5982

NGC2778 0.0313223 2:22� 10�20 216.8061 37.4883 0.0313615 1:20� 10�17 179.3178 106.1734

NGC4945 0.0193859 8:52� 10�21 21.90093 3.74883 0.0194102 4:60� 10�18 18.15210 10.72750
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compute effective deflection angles. In Tables Vand VI, we
present results, respectively, for primary and secondary
images, and for relativistic images. Though we do not
display results for deflection angles of primary and sec-
ondary images, and effective deflection angles for relativ-
istic images in tables, we use those in figures. Further, we
repeat the entire computations forD ¼ 0:05 and 0.005. As
in the previous section, we do not take either weak or
strong gravitational field approximation in any part of
our computations and therefore our results are very accu-
rate. With all results available, we present several plots and
discuss these in the following paragraphs. We do not
present some results for relativistic images on the second-

ary image side, because computations show that those
results for the same order relativistic images on both sides
of the optical axis are extremely close and therefore graphs
for those do not appear resolved on figure.
In Fig. 8, we first plot the angular positions of primary

and secondary images, and their separations against the
ratios of the mass of the lens to its distance (i.e.,M=Dd) for
D ¼ 0:5, 0.05, and 0.005. As expected from well-known
analytical expressions for primary and secondary image
positions, the angular positions of these images, for a given
value of the angular source position �, increase with
increase in the values of M=Dd and D. As we have taken
� ¼ 1 �as (a very small value), the curves for primary and
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FIG. 8 (color online). Top left and middle: The angular positions of primary images �p (represented by continuous curves),
secondary images j�sj (represented by dotted curves), and their separations �p � �s are plotted against M=Dd of MDOs at centers of

many galaxies forD ¼ 0:5, 0.05 and 0.005. Top right: The angular positions of the relativistic images (on the same side as the primary
image) of the first order �1p are plotted against M=Dd for the same values of D as in figures on left. The curves for �1p for different

values of D intersect for ðM=DdÞ1c � 9:31854� 10�13. Below middle and right: The angular separations �1p � �2p and �1p � �1s
among relativistic images versus M=Dd are plotted for the same values of D as in figures on top. �2p and �1s stand for angular

positions of relativistic images of second order on the primary image side and of first order on the secondary image side, respectively.
The angular source position � ¼ 1 �as for all figures.
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secondary images are too close to appear resolved on the
figure. However, angular position of a primary image is
always greater than that of a secondary image. The angular
separation between primary and secondary images in-
creases with increase in the value of M=Dd and D.
Further, we plot position of the first order relativistic image
�1p against M=Dd for D ¼ 0:5, 0.05, and 0.005. (We do

not plot image positions for the second order relativistic
images �2p, because on chosen scales these do not appear

separate from the curve for �1p.) For a fixed value ofD and

order n, �np increases with increase in M=Dd. The curves

for different values ofD are too close to appear separate on
the figure. Note that there is a critical value of M=Dd at
which curves for different values of D intersect. For the

first order relativistic images on the primary image side,
ðM=DdÞ1c � 9:31854� 10�13. For M=Dd < ðM=DdÞ1c
andM=Dd > ðM=DdÞ1c, the value of �1p are, respectively,

lower and higher for higher value of D. Obviously, for
M=Dd ¼ ðM=DdÞ1c, �1p is the same for any value of D.

Similarly, the critical value for the second order relativistic
images, ðM=DdÞ2c � 9:33022� 10�13 and the above re-
sults apply for �2p also. We find that ðM=DdÞ2c >
ðM=DdÞ1c. For any given value of M=Dd and order n, the
angular positions of relativistic images (on the secondary
image side) are higher for higherD. In the next paragraph,
we show that at critical values for M=Dd, the effective
deflection angles of relativistic images on the primary side
are zero. The critical value ofM=Dd for any given order of
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FIG. 9 (color online). Top left: The deflection angles of primary images �̂p (represented by continuous curves) and of secondary
images �̂s (represented by dotted curves) are plotted againstM=Dd of MDOs at centers of many galaxies forD ¼ 0:5, 0.05 and 0.005.
Top middle and right: The effective deflection angles of relativistic images of the first order on the same side as the primary image �̂e

1p

and on the secondary image side �̂e
1s are plotted against M=Dd of MDOs for the same values of D as in the left figure. Below: The

effective deflection angles of relativistic images on the primary image side of the second order �̂e
2p and of the first order �̂e

1p versus

M=Dd are plotted in the vicinity of zero effective deflection angle for the same values of D. The curves for different values of D on
left and right figures intersect, respectively, for ðM=DdÞ2c � 9:33022� 10�13 and ðM=DdÞ1c � 9:31854� 10�13. The angular source
position � ¼ 1 �as for all figures.
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relativistic image depends on the value of the angular
source position. We further plot angular separations be-
tween first order relativistic images (i.e., �1p � �1s) and

between relativistic images (both on the primary image
side) of the first and second orders (i.e., �1p � �2p) against

M=Dd forD ¼ 0:5, 0.05, and 0.005. Our results show that
variations in angular positions of relativistic images and
their separations are extremely small (insignificant) due to
change in the value of D.

In Fig. 9, we first plot deflection angles for primary and
secondary images against M=Dd (the ratio of mass to
distance of lens) for D ¼ 0:5, 0.05, and 0.005. As we

have taken the angular source position � a very small
value, the curves for primary and secondary images do
not appear separate on the figure. The deflection angles for
these images increase with increase in the value of M=Dd

(for a fixed value ofD) and decrease with an increase inD
(for a fixed value of M=Dd). We now plot the effective
deflection angles of the first order relativistic images on
each side of the optical axis. The dependence of these
effective deflection angles onD andM=Dd is qualitatively
similar as for deflection angles for primary and secondary
images. However, there is an important difference. The
deflection angles of primary and secondary images, and
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FIG. 10 (color online). Top left and top middle: The magnifications of primary images�p (represented by continuous curves) and the
absolute magnifications of secondary images j�sj (represented by dotted curves), and their ratios j�p=�sj vs M=Dd of MDOs at

centers of many galaxies are plotted for D ¼ 0:5, 0.05 and 0.005. Top right and below left: The magnifications of relativistic images
(on the same side as the primary image) of the first order�1p and of the second order�2p are plotted againstM=Dd of MDOs for same

values of D. Below middle: The ratio of absolute magnifications of relativistic images of first order on the primary image side �1p to

that on the secondary image side j�1sj are plotted against M=Dd for D ¼ 0:5, 0.05 and 0.005. Below right: The ratio of absolute
magnifications of relativistic images (on the primary image side) of the first order �1p to the second order �2p are plotted against

M=Dd for same values of D as in other plots. The curves �1p=�2p vs M=Dd for different values of D intersect for M=Dd �
7:07130� 10�13. For all figures, the angular source position � ¼ 1 �as.
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effective deflection angles of relativistic images on the
secondary image side are always positive. However, the
effective deflection angles of relativistic images on the
primary image side are negative, zero, or positive depend-
ing on the value of M=Dd. The critical value of the ratio
(where the effective deflection angles are zero) for the first
and second order relativistic images are ðM=DdÞ1c �
9:31854� 10�13 and ðM=DdÞ2c � 9:33022� 10�13, re-
spectively. These values are exactly the same as we ob-
tained for intersections of curves for image positions for
different values of D (see the previous paragraph).

In Fig. 10, we first plot (absolute) magnifications of
primary and secondary images, and their ratios against
M=Dd for D ¼ 0:5, 0.05, and 0.005. The magnifications
increase with increase in the value of M=Dd (for a fixed
value of D) as well as D (for a fixed value of M=Dd). As
the chosen angular source position is very small, the ratio
of these magnifications is very close to 1. We then plot
magnifications of relativistic images of first and second
orders (both on the primary image side) forD ¼ 0:5, 0.05,
and 0.005. We also plot the ratios of (absolute) magnifica-
tions of relativistic images of order 1 on the primary image
side to the secondary image side againstM=Dd. We finally
plot the ratio of magnifications of relativistic images of

orders 1 and 2 (both on the primary image side) versus
M=Dd for same values of D. Compared to the ratios of
(absolute) magnifications of primary to secondary images,
the ratios of (absolute) magnifications of relativistic im-
ages are much less sensitive to changes in M=Dd and D.
The curves �1p=�2p vs M=Dd, for different values of D,

intersect for M=Dd � 7:07130� 10�13. For M=Dd less
and more than its value on the intersection point,
�1p=�2p are, respectively, higher and lower for a lower

value of D. As for the case of primary and secondary
images for any given value of D, magnifications of rela-
tivistic images increase with increase in the value of
M=Dd. However, there is a substantially and observatio-
nally very important difference in both cases. For a given
value of M=Dd, just opposite to the case of primary and
secondary images, the (absolute) magnifications of relativ-
istic images increase with decrease in the value of D.
Therefore, sources nearer to the lens (with other conditions
remaining the same) would give relativistic images of
higher magnifications.
In Fig. 11, we first study the variation in the ratio of mass

of lens to differential time delays among images for the
change in the value ofM=Dd forD ¼ 0:5, 0.05, and 0.005.
We consider differential time delays between secondary
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FIG. 11 (color online). Top left, top right, and below left: The ratios of massM of the lens to the differential time delays of images vs
M=Dd (the ratio of the mass of the lens to its distance) are plotted for D ¼ 0:5, 0.05 and 0.005. �p and �s stand, respectively, for time

delays of primary and secondary images, whereas �1p and �2p, respectively, represent time delays of relativistic images (on the same

side as the primary image) of orders 1 and 2. The curves on below left plot intersect for M=Dd � 9:32438� 10�13. For a given value
ofD, ratios of mass to differential time delay are strictly increasing function ofM=Dd. Below right: The ratios of massM of the lens to
the differential time delay ð�2p � �1pÞ of images are plotted against the distance Dd of the lens for same values of D. The ratio

M=ð�2p � �1pÞ is not a function of Dd. The angular source position � ¼ 1 �as for all figures.
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and primary images (�s � �p), the first order relativistic

image on the primary image side and the primary image
(�1p � �p), and second order and first order relativistic

images both on the primary image side (�2p � �1p). We

take the angular source position � ¼ 1 �as. The ratio
M=ð�s � �pÞ increases with an increase in M=Dd (for a

fixed value of D) as well as an increase in D (for a fixed
value ofM=Dd). It is obvious from the figure that this ratio
is very sensitive to changes in distances involved in GL.
The ratio M=ð�1p � �pÞ increases with increase in M=Dd

(for a fixed value of D); however, it decreases with in-
crease in D (for a fixed value of M=Dd). This ratio is less
(compared to the first we discussed) sensitive to changes in
M=Dd and D. The third ratio M=ð�2p � �1pÞ also in-

creases with an increase in M=Dd (for a fixed value of
D); however, for a fixed M=Dd, the variation againstD is
more fascinating. There exists a critical value of M=Dd �
9:32438� 10�13 for which curves for different values of
D intersect. For M=Dd less and more than this critical
value, the ratio M=ð�2p � �1pÞ is, respectively, less and

more for smaller value of D. This ratio is extremely
insensitive to changes in D and M=Dd, and also in � (as
shown in Sec. V). Therefore, this ratio can be considered
almost a constant and can be used to estimate very accurate
values for masses of lenses once the differential time
delays �2p � �1p are known. We also compute this ratio

for all MDOs (listed on Table IV) for a few values ofD>
0:5 (these results are not shown on the plot). We find that
the slope at any point on M=ð�2p � �1pÞ vs M=Dd curve

tends to 0 as D ! 1. We finally plot M=ð�2p � �1pÞ
against Dd for different values of D. We find that the ratio
M=ð�2p � �1pÞ is extremely insensitive to changes inD as

well as Dd. Fluctuation in the value of this ratio decreases

with increase inD. For a fixed value ofD, we find that the
ratio M=ð�2p � �1pÞ has more than 1 value for the same

value of Dd; therefore, this ratio is not a function of Dd.
However, note that, for any fixed value ofD, ratios of mass
of the lens to the differential time delay are strictly increas-
ing functions of M=Dd.

Comparison with Bozza and Mancini’s results

Bozza and Mancini (BM) [18] obtained differential time
delays among relativistic images due to GL by a general
static spherically symmetric spacetime. They further mod-
eled MDOs of 12 galaxies as Schwarzschild lenses, con-
sidered D ¼ 0:5 (i.e., the lenses to be symmetrically
situated between sources and observers) and the angular
source position � ¼ 0. Using their analytical expression
for differential time delays among relativistic images, they
computed differential time delays between relativistic im-
ages of orders 1 and 2; i.e., (�2 � �1), where �1 and �2 are,
respectively, time delays of relativistic images of orders 1
and 2 for � ¼ 0. We put their results in Table VII in
decreasing order of M=Dd of lenses. We now consider
the same set of MDOs and use the same values for mass
M and distance Dd used in their paper. We do not use the
updated values forM andDd in this subsection, because we
want to compare BM’s results with ours. Our approach is
numerical and we do not take either weak or strong field
approximation. As considered by those authors, we also
take D ¼ 0:5 and � ¼ 0, and compute differential time
delays of relativistic images of orders 1 and 2. We then
compute percentage difference ¼ 100ðx� yÞ=x between
ours and their results, where x and y are, respectively,
differential time delays obtained by us and BM. We find
that the percentage difference ranges approximately from

TABLE VII. Comparison of Bozza and Mancini’s approximate analytical [18] and our numerical results. Mass and distance of
MDOs are given in the units of solar mass and Mpc, respectively. M=Dd in the third column is dimensionless (M � MG=c2).
Differential time delays �2 � �1 are expressed in minutes. �2 and �1 stand, respectively, for time delays of the first and second order
relativistic images for the angular source position � ¼ 0. The ratio of source-lens to source-observer distances D ¼ 0:5. The ratio of
mass of an MDO to the differential time delayM=ð�2 � �1Þ is expressed in terms of solar mass/minute. Masses and distances of MDOs
in this table are taken the same as in [18].

MDO in galaxy Mass M Distance Dd M=Dd Differential time delay ð�2 � �1Þ M=ð�2 � �1Þ
Analytical Numerical %difference Analytical Numerical

Milky Way 2:8� 106 0.0085 1:57� 10�11 6 7.4977 20.0 466666.666666667 373449.374476538

NGC3115 2:0� 109 8.4 1:14� 10�11 5430 5355.5 �1:4 368324.125230203 373449.374476535

NGC4486(M87) 3:3� 109 15.3 1:03� 10�11 8958 8836.5 �1:4 368385.800401875 373449.374476534

NGC4594 1:0� 109 9.2 5:20� 10�12 2712 2677.7 �1:3 368731.563421829 373449.374476530

NGC4374(M84) 1:4� 109 15.3 4:37� 10�12 3798 3748.8 �1:3 368615.060558189 373449.374476529

NGC224(M31) 3:0� 107 0.7 2:05� 10�12 84 80.332 �4:6 357142.857142857 373449.374476527

NGC4486B(M104) 5:7� 108 15.3 1:78� 10�12 1548 1526.3 �1:4 368217.054263566 373449.374476527

NGC4342(IC3256) 3:0� 108 15.3 9:37� 10�13 816 803.32 �1:6 367647.058823529 373449.374476527

NGC3377 1:8� 108 9.9 8:69� 10�13 486 481.99 �0:8 370370.370370370 373449.374476527

NGC4261 4:5� 108 27.4 7:85� 10�13 1224 1205.0 �1:6 367647.058823529 373449.374476526

NGC7052 3:3� 108 58.7 2:69� 10�13 894 883.65 �1:2 369127.516778523 373449.374476526

NGC0221(M32)f 3:4� 106 0.7 2:32� 10�13 12 9.1043 �31:8 283333.333333333 373449.374476526
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�31:8% to 20.0%, which are large. It is possible that
MDOs of other galaxies (i.e., excluding those considered
by BM) give even higher percentage differences. We plot
the percentage difference in these results against M=Dd

(see Fig. 12). Further, using BM as well as our results, we
compute M=ð�2 � �1Þ for MDOs. We give these results in
Table VII. We then plot this ratio against M=Dd (see
Fig. 12). Results obtained by BM show that the ratio
M=ð�2 � �1Þ fluctuates quite irregularly (showing no
rhythm) with an increase in the value of M=Dd for other-
wise constant situation. There seems to be no physical
argument in support for this. On the other hand, our results
show that M=ð�2 � �1Þ is a strictly increasing (though the
increase rate is extremely small) function ofM=Dd. As we
did not take either weak or strong field approximation at
any stage of computation and performed numerical com-
putation with high precision, our results are very accurate.
Therefore, we consider percentage differences in results as
percentage errors in their results.

VI. DISCUSSION AND SUMMARY

It is well-known that the observation of primary and
secondary images due to GL by an MDO at the center of
a galaxy is very difficult due to a large extinction of
electromagnetic radiation (larger extinction for smaller
wavelength) in the vicinity of a galactic center. In addition,
radiations at several wavelengths from materials accreting
on an MDO badly hinders observation of these images.
These obstacles would be even bigger for relativistic im-
ages as, compared to primary and secondary images, these
are formed much closer to the center of a galaxy.

Unfortunately, observations of relativistic images would
be much more difficult due to some additional reasons.
Relativistic images are very much demagnified, unless the
lens components (the source, the lens, and the observer) are
perfectly or highly aligned (� � 1 �as), and therefore
these images are extremely difficult to be observed.
Supernovae could be more suitable sources for observation
of relativistic images, but the probability that a supernova
will be highly aligned with the lens and observer is ex-
tremely small. However, there is a silver lining to the
demagnification problem associated with observation of
relativistic images: magnifications of relativistic images
increase rapidly with the decrease in the value of D; i.e.,
with the decrease in the source-lens distance for otherwise
constant situation. Thus, sources closer to a galactic center
would give less demagnified relativistic images. Despite
this, there is no doubt that the observation of relativistic
images would be a Herculean task. However, with im-
proved observational facilities in future and through lucky
observations (due to a bright source close to a galactic
center and highly aligned with the galactic center and the
observer), the relativistic images could possibly be de-
tected some day. Today’s these almost unthinkable events
may be tomorrow’s observations. The detection of relativ-
istic images would be definitely one of the most important
discovery in astronomy and would have immense implica-
tions for general relativity and relativistic astrophysics. For
examples, these observations would provide a test for the
general theory of relativity in a strong gravitational field. In
[9], we discussed that observation of relativistic images
would give upper bound to the compactness of MDOs and
therefore would strongly support that these MDOs are
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FIG. 12 (color online). Left: The percentage difference in values for differential time delays ð�2 � �1Þ obtained by Bozza and
Mancini [18] (using analytical method) and by us (using numerical method) is plotted against M=Dd of MDOs at centers of a few
galaxies. �1 and �2, respectively, stand for time delays of relativistic images of orders 1 and 2. Right: The ratios of massM of the lens to
the differential time delay ð�2 � �1Þ vs M=Dd are plotted for both cases. Our numerical results show that the ratio M=ð�2 � �1Þ is
strictly increasing function ofM=Dd. Masses and distances of MDOs are taken from [18] and are given in Table VII.D ¼ 0:5 and the
angular source position � ¼ 0 in both figures.
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black holes. The measurements of physical quantities for
relativistic images would also give very accurate values for
masses and distances of black holes.

For any fixed value of D, the ratio of mass M of a
Schwarzschild lens to differential time delay ð�2p � �1pÞ
or ð�2s � �1sÞ is not a function of the lens-observer dis-
tance Dd; however, it is a strictly increasing function of
M=Dd. Computations show that the ratioM=ð�2p � �1pÞ is
extremely insensitive to changes in the angular source
position as well as the observer-lens and lens-source dis-
tances, and therefore this awesome physical quantity must
be treasured as an almost constant for purpose of measure-
ments. Thus, once we succeed in detecting relativistic
images and measuring the differential time delay, we can
immediately compute a very accurate value of mass of the
MDO acting as a lens. (The accuracy of the result for the
mass of the MDO will however depend on the accuracy of
the measurement of differential time delay.) Our compu-
tations show that for M=Dd ¼ ð0; 2:265� 10�11Þ and
D ¼ ½0:005; 1Þ,

M � 3:734493744773� 105ð�2p � �1pÞ; (19)

where mass M of the MDO and the differential time delay
�2p � �1p are expressed in units of solar mass and minute,

respectively. As relativistic images can possibly be ob-
served when the lens components are perfectly or highly
aligned, we took the angular source position � ¼ 1 �as
for computations. However, we found extremely small
changes in results for computations with � ¼ 0. Once,
the value of mass of the MDO is known, its distance can
be computed from the results given in Fig. 8 (below).
Angular separations between relativistic images depend
on the ratio M=Dd, but fortunately it is extremely insensi-
tive to the change in the value of D. This would help us
measure the distance of the MDO very accurately once we
have the mass of the MDO and the angular separation
between relativistic images is measured. It is worth men-
tioning that accuracies in determination of distances of
black holes would, however, depend on accuracies of our
measurements of differential time delays and angular sep-
arations between relativistic images. The dependence of
(absolute) magnifications ratio of relativistic images of the
first order (i.e., j�1p=�1sj) on M=Dd is extremely small

(see Fig. 10). Therefore, measurement of the magnifica-
tions ratio would give very accurate value for D. This
result with already obtained value for observer-lens dis-
tance Dd would give observer-source distance Ds. In
Sec. V, we discussed that results of Bozza and Mancini
[18] show that the ratioM=ð�2 � �1Þ fluctuates quite irreg-
ularly with an increase in the value of M=Dd and their
results have large errors. In [28], they expressed this ratio
as a constant; however, that also yields result with consid-
erable error.

Effective deflection angles of relativistic images play a
very significant role in analyzing and understanding these

images. The deflection angles for primary-secondary im-
age pair as well as relativistic images of Schwarzschild
black hole lensing are always positive. The effective de-
flection angles of relativistic images of any order on the
secondary image side are also always positive. However,
the effective deflection angles of relativistic images of any
order on the primary image side may be positive, zero, or
negative depending on the value of the angular source
position � and the ratio of mass of the lens to its distance
(i.e., M=Dd). For a relativistic image (on the primary
image side) of any order n and for any value of M=Dd of
the lens, there exists a critical angular source position �nc

such that the effective deflection angle �̂e
np for that rela-

tivistic image is zero. For �<�nc, �̂
e
np > 0, and for �>

�nc, �̂
e
np < 0. For a given value of M=Dd, �nc is smaller

for smaller n. All sources at� ¼ �nc are lensed to give rise
to nth order relativistic images (on primary image side) at
the same angular position �np ¼ �nc. For a fixed value of

M=Dd, the angular positions of relativistic images are
extremely insensitive to changes in the angular source
position as well as the lens-source distance. However, for
a theoretical interest, it is worth noting that for �<�nc

and �>�nc, the value of �np is, respectively, higher and

lower for higher value of D. The critical angular source
position plays a role of flipping point for image positions
with respect to the change in the value of D. These results
help us conclude the following: For different sources at the
same angular position, relativistic images with positive,
zero, and negative effective deflection angles have, respec-
tively, bigger, equal, and smaller (absolute) angular posi-
tions for bigger values of D. This is also true for primary
and secondary images, as deflection angles for them are
always positive. These conclusions can be also derived
from the lens equation. Therefore, these results support
correctness of our numerical computations.
In GL observations, differential time delays among im-

ages (not the time delays of individual images) have been
measured until now. For this reason, studies of time delays
of images have not drawn enough attention. The most well-
known book on GL gives an expression for time delays of
gravitationally lensed images [see Eq. (4.67) in [3]]. The
equation has an additive constant term. The authors clearly
stated that the constant term is the same for all rays from
the observer to the source plane. Though the value for the
constant term is not yet determined, the expression given in
the book is good enough to compute differential time
delays among images. This is because the constant term
cancels for images of the same source by the same lens. It
is of theoretical interest to study time delays of gravita-
tionally lensed images. It might also be possible in future to
develop a method to measure time delays of images. These
motivated us to first compute time delays of images and
then use these results to compute differential time delays
among them. As Eq. (4.67) in [3] cannot be used to
compute time delays of images, we used the method given
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in Weinberg’s book. Our results for time delays of primary
and secondary images turn out to be counterintuitive and
very fascinating (see Fig. 6). For instance, time delays of
primary images are always smaller for sources nearer to the
lens for otherwise constant situation. Time delays results
for relativistic images are also very interesting and
important.

GL as well as gravitational retro-lensing give rise to very
much demagnified images due to light deflections in strong
gravitational field. Images due to these two phenomena can
be observationally easily differentiated by the fact that the
images due to the latter are ‘‘orphans’’ in a sense that these
are not accompanied by primary-secondary images pair as
their ‘‘parents’’. In this paper, we have studied only images
due to GL. Eiroa and Torres [29] studied retro-lensing by a
Schwarzschild black hole. They compared magnifications
of gravitationally retro-lensed images and relativistic im-
ages of GL of the same order (i.e., the number of turns a
light ray makes around the lens before reaching the ob-
server) and found that the former is significantly greater
than the latter. Black holes have angular momentum.
Therefore, Cunninghom and Bardeen [30] and Rauch and
Blandford [31] pioneered Kerr black hole lensing. As there
has been mounting observational evidence in support of
existence of black holes, Kerr lensing has become a very
lively research topic (see [32] and references therein) these
days. It is worth investigating the behavior of the ratio of
mass M of the lens to differential time delays of images of
strong field lensing due to changes in �, M=Dd, D, and
a=M (a is the rotational parameter of the Kerr metric).
These investigations are likely to have immense implica-
tion for relativistic astrophysics.

With increasing observational support for MDOs at
centers of galaxies and stellar size black hole candidates
to be black holes, the pressure to believe in the existence of
black holes in the Universe has began to mount. However,
by the definition of a black hole, there cannot be an iron-
clad observational evidence that a black hole candidate is
indeed a black hole. Given that theweak cosmic censorship
hypothesis (WCCH) of Penrose is still unproven (see [33]
and references therein), there is no compelling scientific
reason to accept that all black hole candidates are black
holes and none of them can be interpreted as a naked
(visible) singularity. Despite the fact that the concept of
naked singularity does not ‘‘smell right’’ to majority of
researchers, it may not be wise to completely ignore the

possibility of existence of naked singularities. Researchers
think that in the vicinity of a spacetime singularity, a
mysterious violent marriage of general relativity and quan-
tum physics is solemnized and opportunities to observe
these (through outgoing geodesics from there to us) could
help us obtain an unanimously acceptable viable quantum
gravity theory. Philosophically, it is not clear to us why the
nature should be malicious to always hide such awesome
holy marriages from us. Inspired by these ideas, we ini-
tiated a new theoretical research project using GL phe-
nomena that investigates whether or not black holes and
naked singularities could be observationally differentiated
(see [19–21]). Our computations yielded encouraging dis-
tinctive results. Whether or not the weak cosmic censorship
hypothesis of Penrose finally turns out to be true, there has
to be a cosmic censorship which forbids arbitrary large
values of those nakedness parameters [e.g., ðQ=MÞ2 in the
Reissner-Nordström solution to the Einstein-Maxwell
equations, where Q and M stand for electric charge and
mass parameters, respectively] which make the system
unphysical. Motivated by this idea, we hypothesize a new
cosmic censorship: Generically, marginally and strongly
naked singularities do not occur in a realistic gravitational
collapse. (For definitions of weakly naked, marginally
naked, and strongly naked singularities, see [21]). The
new cosmic censorship hypothesis (CCH) allows the ex-
istence of weakly naked singularities, but does not say that
these do exist. This hypothesis does not imply that the
well-known weak cosmic censorship hypothesis is incor-
rect. Rather, it says that in case the WCCH of Penrose turns
out to be incorrect, the new cosmic censorship will hold
good. In [34], we showed that a Vaidya naked singularity is
weakly naked and therefore it is not a counter-example to
the new CCH. The proof of the pudding is in the eating. It
may be of an astrophysical interest to investigate this
subject further. We will discuss the new CCH in detail in
[35].
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