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We investigate the possibility of observing very small amplitude low frequency solar oscillations with

the proposed laser interferometer space antenna (LISA). For frequencies � below 3� 10�4 Hz the

dominant contribution is from the near zone time-dependent gravitational quadrupole moments associated

with the normal modes of oscillation. For frequencies � above 3� 10�4 Hz the dominant contribution is

from gravitational radiation generated by the quadrupole oscillations which is larger than the Newtonian

signal by a factor of the order ð2�r�=cÞ4, where r is the distance to the Sun, and c is the velocity of light.

The low order solar quadrupole pressure and gravity oscillation modes have not yet been detected above

the solar background by helioseismic velocity and intensity measurements. We show that for frequencies

� & 2� 10�4 Hz, the signal due to solar oscillations will have a higher signal to noise ratio in a LISA

type space interferometer than in helioseismology measurements. Our estimates of the amplitudes needed

to give a detectable signal on a LISA type space laser interferometer imply surface velocity amplitudes on

the sun of the order of 1–10 mm= sec in the frequency range 1� 10�4–5� 10�4 Hz. If such modes exist

with frequencies and amplitudes in this range they could be detected with a LISA type laser

interferometer.
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I. INTRODUCTION

The proposed ESA/NASA gravitational wave laser in-
terferometric space antenna (LISA) [1,2] will give a unique
window into gravitational wave physics. LISA will be
sensitive to gravitational waves in the frequency range
between 10�4 and 1 Hz, a range currently inaccessible
on the ground due to seismic noise. LISA will consist of
three spacecraft at the vertices of an equilateral triangle of
sides 5� 109 meters. The system would be maintained in
this configuration by arranging that the plane of the detec-
tors has an inclination of 60� to the ecliptic and counter-
rotates with the same period as it orbits the Sun. Any two
arms will constitute a Michelson type interferometer, a
mother spacecraft will send a laser beam to the other two
satellites where the signal would be coherently trans-
ponded back. The interferometer readout would be ob-
tained by interfering the incoming signal with the
outgoing one and comparing the fractional change in phase
shift between the two arms.

Current studies of the sensitivity of the LISA experiment
[1] indicate that the instrumental noise, due dominantly to
the residual uncompensated accelerations, would be of the

order 3� 10�18=
ffiffiffiffiffiffi
Hz

p
at 10�4 Hz (in units of dimension-

less strain per root Hertz). In addition there is likely to be
background ‘‘confusion noise’’ from binary systems which
has a comparable magnitude at 10�4 Hz [3–5]. With one
year’s observation the dimensionless strain that could be

detected at a signal to noise ratio of 5 is estimated to be
around 10�21–10�20.
The primary goal of LISA is to detect gravitational

waves from individual sources (close binary systems, neu-
tron star, or black hole coalescence) and any stochastic
background due to the superposition of waves emitted by
binary systems, and possibly from the early Universe [6–
8]. Apart from the primary goal, in general, a LISA type
interferometer is sensitive to any variations in the gravita-
tional field in the frequency range 10�4–1 Hz. Since the
Sun is known to be oscillating in normal modes of small
amplitude with frequencies in this range, if the amplitudes
are large enough the oscillating external gravitational field
could contribute to the signal detected by LISA [9–12]
(previously, independently suggested in [13,14]).
At the present time solar oscillations can only be de-

tected through surface variations in velocity and luminos-
ity. The first evidence of surface layer solar oscillations
dates back to the work [15]. The low order global oscil-
lations, which are the oscillations of interest here, were
detected by [16,17] as resolved peaks in the power spec-
trum of a time series of measurements of the Doppler shift
of a K and Na line using the integrate light from the Sun.
As a result of ground based and space based observational
programs upwards of 107 oscillation modes have been
identified in the frequency range 10�3–10�2 Hz.; knowl-
edge of these frequencies has been used to infer the acous-
tic and dynamical structure of the Sun (pressure, density,
and rotation as a function of radius), placing constraints on
the physics of the solar interior and on models of solar (and
thereby stellar) evolution.
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The relation between the surface amplitude in velocity
and the magnitude of the oscillating gravitational field
depends on a detailed understanding of the behavior of
the oscillations in the outer layers of the Sun which is not
well understood. Such modes (g-modes and low order
p-modes) are difficult to detect above the solar background
noise, which increases at low frequencies. Great effort is
currently being expended in the search for such modes. In
the paper [18] the authors claim to have detected a g-mode
at a frequency of 1:5� 10�4 Hz with an amplitude of the
order 1 cm, but others have not detected any such modes at
this amplitude [19]. Since only quadrupole modes could
have amplitudes large enough to be detected by a gravita-
tional wave detector at 1 a.u., we confine our study to such
modes.

At a distance of r ¼ 1 a:u: these oscillations are in the
near zone (Newtonian regime) for frequencies � such that
c=2�� > r (i.e. � < �r � 3� 10�4 Hz). The observatio-
nal implication of the near zone oscillations for LISAwas
studied in [9]. For larger frequencies, 1 a.u. is already in the
wave zone which means that in addition to the time-
dependent external Newtonian gravitational field the time
varying gravitational quadrupole moments also generate
gravitational waves, which could give a detectable signal
on a LISA type interferometer for frequencies � > �r �
3� 10�4 Hz [10–12].

In the present work we investigate the possibility of
detecting such low frequency quadrupole oscillations
with a LISA type laser interferometer, including both the
Newtonian near zone perturbations and the associated
gravitational wave emission in the frequency range 3�
10�5–10�3 Hz. We compare the gravitational signals de-
tectable by laser interferometry with the velocity signals
detectable by whole disc helioseismolgy, and demonstrate
that low frequency quadrupole oscillations with surface
velocity amplitudes below current helioseismic limits
could nevertheless be large enough to contribute to the
signal detected by LISA. If such modes are first detected
by helioseismic techniques then the measured frequencies
(and predicted power) would provide a valuable calibration
tool for LISA. On the other hand, if they are not detected by
helioseismic means then one can look upon LISA as a
potential telescope for studying the deep solar interior.

The plan of this paper is as follows. In Sec. II we begin
with a discussion of the properties of the solar oscillations
and quantify the relationship between the surface radial
amplitude of an oscillation, its quadrupole moment and its
horizontal amplitude. We express the external gravitational
field in terms of the quadrupole moment tensor expressed
as a sum over a set of basis tensors (corresponding to
surface harmonics) which enables us to relate the genera-
tion of gravitational waves to the surface amplitude of the
oscillation. In Sec. III we derive the expected phase shift in
an interferometer arm due to both the time-dependent
Newtonian field and to the associated gravitational waves

for a given oscillating quadrupole moment. These results
are then used in Sec. IV to determine the response of LISA.
Our analysis shows that above frequencies �� 3�
10�4 Hz the signal is dominated by gravitational waves.
Next, we determine the magnitude of the velocity signal
from each mode in terms of surface amplitude. In Sec. V in
order to analyze the prospects of detectability, we consider
the background noise for both velocity and gravitational
detectors and construct the signal to noise for both gravity
and velocity experiments for a given assumed frequency
resolution. The ratio of these S/N is then independent of the
assumed surface amplitude of the oscillation and if this
ratio is greater than 1 the modes are easier to detect by a
gravitational laser interferometer than by helioseismic ex-
periments. The outcome of these calculations is summa-
rized in Fig. 5. It follows that, for frequencies
� & 2� 10�4 Hz most of the quadrupole modes are
more readily detected in by a LISA type interferometer
than by helioseismic experiments. Finally, we present our
conclusions in Sec. VI.

II. SOLAR OSCILLATIONS AND METRIC
PERTURBATION FIELD AROUND THE SUN

The solar oscillations are normally expressed in terms of
a surface harmonic and Fourier time decomposition with
any variable, for example, the radial displacement �r, ex-
pressed in the form

�rðr; tÞ
R�

¼ X1
‘¼0

X‘
m¼�‘

X1
n¼�1

�n‘mðrÞS‘mð�;�Þei!t; (1)

where ! ¼ !n‘m are the cyclic eigenfrequencies of modes
corresponding to a particular surface harmonic S‘mð�;�Þ,
n labels the order of the mode (jnj is essentially the over-
tone number, the number of nodes in the radial direction),
�n‘mðrÞ the corresponding dimensionless eigenfunctions
and ðr; �; �Þ spherical polar coordinates with origin at
the center of the Sun. The modes are classified as p
(pressure) modes with frequencies increasing with increas-
ing n, and g (gravity) modes with frequencies decreasing
with increasing n, [for clarity we use negative n for the g-
modes in (1)]. If the basic unperturbed state is spherically
symmetric the frequencies are independent of azimuthal
order m. Rotation lifts this degeneracy giving frequencies

!n‘m � !n‘0 þm �� where ����� � 3� 10�6 rad= sec
is a weighted mean of the solar angular velocity. With a
frequency resolution of ��� 3� 10�8 Hz, as envisaged
for LISA (with 1 year’s observation time), these individual
m-value modes should be resolved provided there is suffi-
cient power and the line widths are sufficiently narrow. For
frequencies � ¼ !=2�� 10�4 Hz, which is the region of
interest in the present analysis, ��=!� 10�3 and the
eigenfunctions of the modes may be taken to be indepen-
dent of azimuthal order m. The solar rotation axis is
inclined at an angle of about 7� to the ecliptic plane, which
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introduces an additional (small) modulation which is ne-
glected in the present analysis.

There is currently some debate over whether or not any
oscillations with frequencies �� 10�4 Hz have yet been
detected (cf. [18]). The measured line widths at higher
frequencies decrease with decreasing frequency and crude
extrapolation from the measured range suggests �� < 3�
10�8 Hz at frequencies �� 10�4 Hz and consequently
mode lifetimes more than 1 year. We shall assume here
that the lines are narrower than the frequency resolution
and the modes may effectively be considered as monochro-
matic. Since the external gravitational potential of a multi-
pole of order ‘ decreases like 1=r‘þ1 the modes with ‘ ¼ 2
will dominate at 1 a.u.. For this reason we shall only
consider the quadrupole modes ‘ ¼ 2 in the present
work. Furthermore, since the oscillation velocities are
very small compared with the velocity of light only quad-
rupole gravitational radiation will be significant.

The external Newtonian gravitational potential of the
oscillating Sun can then be expressed in the equivalent
forms

Uðr; tÞ ¼ �G
Z
�
�dV

r
¼ U0ðrÞ �G

6
D�	r�	

�
1

r

�

¼ U0ðrÞ �GM�R2�
X2

m¼�2

X1
n¼�1

Jnm
r3

S2mð�;�Þ;

(2)

where U0ðrÞ is the time independent potential, ðr; �; �Þ are
spherical polar coordinates, S2mð�;�Þ surface harmonics
of degree ‘ ¼ 2 (normalized to unity over a sphere), Jnm /
ei!t the dimensionless time-dependent quadrupole mo-
ments corresponding to eigenmodes with cyclical frequen-
cies ! ¼ !nm. In the above expression D�	 is the
quadrupole moment given by

D �	 ¼
Z
�
ð3x�x	 � ��	x
x
Þ�ðtÞdV

¼ M�R2�
X1

n¼�1

X2
m¼�2

CmJnmI
�	
m ; (3)

where, x� correspond to a Cartesian coordinate system
(with x3 along the � ¼ 0 and x1 along � ¼ 0, � ¼ �=2
axes), ��	 the Kronecker delta, r�	 ¼ @2=@x�@x	, and

I�	
m are the set of trace-free basis tensors corresponding to

surface harmonics and C0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi
5=4�

p
, Cm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15=4�
p

(for m � 0. We refer the reader to Appendix A for details.
The properties of the eigenmodes were computed using

the standard Aarhus Solar Model S1 [20], with surface
radial velocity amplitudes normalized to 1 cm= sec at the
solar surface r ¼ R�. The amplitude of oscillating quad-
rupole moments Jn are given in Fig. 1 (we have suppressed
the subscript ‘ ¼ 2 and m, since the eigensolutions are
independent of m). Table I gives a summary of the results
obtained for the amplitudes of relevant quantities derived

in this and subsequent sections. Column 1 gives the radial
order n of the mode, column 2 the frequency �, column 3
the horizontal displacement eigenfunction at the solar sur-
face �h, column 4 the quadrupole moment J and column 5
gives the total kinetic energy of the mode E.
The sun is rotating with a period� 27 days so a frame of

reference fixed relative to the oscillating sun rotates rela-
tive to an inertial frame, producing a modulation of the
time-dependent gravitational field. The solar rotation axis
is inclined to the ecliptic plane, and hence to the orbit plane
of the gravitational detector, producing a further modula-
tion of the signals from the oscillations and a very low
frequency signal (��� 4� 10�7 Hz) from the static
quadrupole moment induced by the rotation. As the incli-
nation is small (about 7�) we neglect these effects in the
present analysis taking the rotation axis of the Sun perpen-
dicular to the orbit plane of the detector.
Since the monopole gravitational field of the Sun is

weak (GM�=rc2 � 10�8 at 1 a.u.), and that of the time-
dependent quadrupole moments and any associated gravi-
tational radiation even weaker, the metric of space-time in
the neighborhood of the Earth is adequately described by
the weak field limit as

ds2 ¼ gikdx
idxk ¼ ð�ik þ hikÞdxidxk

¼
�
1þ 2U

c2

�
c2dt2 �

�
1� 2U

c2

�
dx�dx�

þ hGW�	 dx�dx	; (4)

where �ik ¼ diagð1;�1;�1;�1Þ is the Minkowski met-
ric, jhikj � 1, indices are raised and lowered using the
Minkowski tensor, and a summation over repeated indices
is implied. Roman indeces i, k ¼ 0, 1, 2, 3 whereas Greek
indeces �, 	 ¼ 1, 2, 3. The hik have a contribution from
the time-dependent quadrupole moments

10
−4

10
−3

10
−4

10
−3

10
−2

10
−1

Frequency, (Hz)

J n

FIG. 1 (color online). Normalized quadrupole moments Jn (in
units of GMR2�) for quadrupolar solar oscillations with surface
displacement �nðRÞ ¼ 1.
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TABLE I. The frequency � ðHzÞ and the respective amplitudes of horizontal surface displacement �hðR�Þ, quadrupole moment J, the total kinetic energy of the mode E
(gm � cm2=sec2), gravitational signals Sm and velocity amplitudes Vm (m= sec ), for unit radial surface displacement �rðR�Þ ¼ 1 as a function of the radial order of the mode n
(negative and positive n correspond to g-modes and p-modes, respectively). The last three columns show the expected instrumental noise Bi (1=

ffiffiffiffiffiffi
Hz

p
), binary confusion noise Bb

(1=
ffiffiffiffiffiffi
Hz

p
) and surface velocity noise Bv (m= sec =

ffiffiffiffiffiffi
Hz

p
), respectively, for the LISA mission at the corresponding frequencies.

1 2 3 4 5 6 7 8 9 10 11 12 13

n � �h J E S0 S1 S2 V0 V2 BI Bb Bv

�22 5:06� 10�5 3:86 1:04� 10�2 1:31� 1050 1:28� 10�14 1:62� 10�13 2:12� 10�13 2:32� 105 2:85� 105 1:19� 10�17 1:08� 10�17 2:89� 101

�21 5:29� 10�5 3:54 1:08� 10�2 1:13� 1050 1:21� 10�14 1:53� 10�13 2:01� 10�13 2:24� 105 2:75� 105 1:09� 10�17 1:02� 10�17 2:85� 101

�20 5:54� 10�5 3:23 1:10� 10�2 9:35� 1049 1:13� 10�14 1:43� 10�13 1:87� 10�13 2:16� 105 2:65� 105 9:91� 10�18 9:53� 10�18 2:77� 101

�19 5:81� 10�5 2:93 1:14� 10�2 7:93� 1049 1:07� 10�14 1:35� 10�13 1:77� 10�13 2:08� 105 2:55� 105 9:01� 10�18 8:88� 10�18 2:69� 101

�18 6:11� 10�5 2:65 1:19� 10�2 6:67� 1049 1:01� 10�14 1:27� 10�13 1:67� 10�13 2:00� 105 2:45� 105 8:15� 10�18 8:19� 10�18 2:65� 101

�17 6:44� 10�5 2:38 1:25� 10�2 5:53� 1049 9:49� 10�15 1:20� 10�13 1:57� 10�13 1:93� 105 2:36� 105 7:34� 10�18 7:52� 10�18 2:59� 101

�16 6:80� 10�5 2:13 1:30� 10�2 4:50� 1049 8:87� 10�15 1:12� 10�13 1:46� 10�13 1:85� 105 2:27� 105 6:57� 10�18 6:94� 10�18 2:40� 101

�15 7:21� 10�5 1:89 1:36� 10�2 3:67� 1049 8:30� 10�15 1:04� 10�13 1:37� 10�13 1:78� 105 2:18� 105 5:84� 10�18 6:29� 10�18 2:45� 101

�14 7:68� 10�5 1:67 1:44� 10�2 2:95� 1049 7:76� 10�15 9:74� 10�14 1:28� 10�13 1:71� 105 2:09� 105 5:16� 10�18 5:53� 10�18 2:35� 101

�13 8:20� 10�5 1:46 1:53� 10�2 2:34� 1049 7:23� 10�15 9:05� 10�14 1:19� 10�13 1:64� 105 2:01� 105 4:52� 10�18 4:77� 10�18 2:23� 101

�12 8:79� 10�5 1:27 1:63� 10�2 1:82� 1049 6:72� 10�15 8:39� 10�14 1:10� 10�13 1:58� 105 1:93� 105 3:93� 10�18 4:01� 10�18 2:21� 101

�11 9:47� 10�5 1:09 1:74� 10�2 1:39� 1049 6:21� 10�15 7:72� 10�14 1:01� 10�13 1:52� 105 1:86� 105 3:39� 10�18 3:57� 10�18 2:18� 101

�10 1:03� 10�4 9:30� 10�1 1:87� 10�2 1:05� 1049 5:72� 10�15 7:06� 10�14 9:25� 10�14 1:46� 105 1:79� 105 2:89� 10�18 3:25� 10�18 2:13� 101

�9 1:12� 10�4 7:81� 10�1 2:01� 10�2 7:77� 1048 5:23� 10�15 6:40� 10�14 8:39� 10�14 1:41� 105 1:73� 105 2:43� 10�18 3:06� 10�18 2:05� 101

�8 1:23� 10�4 6:47� 10�1 2:16� 10�2 5:52� 1048 4:73� 10�15 5:70� 10�14 7:47� 10�14 1:37� 105 1:68� 105 2:02� 10�18 2:83� 10�18 2:06� 101

�7 1:36� 10�4 5:29� 10�1 2:30� 10�2 3:86� 1048 4:23� 10�15 4:98� 10�14 6:52� 10�14 1:35� 105 1:65� 105 1:65� 10�18 2:65� 10�18 1:89� 101

�6 1:52� 10�4 4:24� 10�1 2:42� 10�2 2:59� 1048 3:71� 10�15 4:21� 10�14 5:51� 10�14 1:33� 105 1:63� 105 1:33� 10�18 2:48� 10�18 1:87� 101

�5 1:71� 10�4 3:33� 10�1 2:47� 10�2 1:62� 1048 3:18� 10�15 3:39� 10�14 4:43� 10�14 1:33� 105 1:63� 105 1:04� 10�18 2:34� 10�18 1:76� 101

�4 1:94� 10�4 2:57� 10�1 2:37� 10�2 9:12� 1047 2:61� 10�15 2:52� 10�14 3:28� 10�14 1:36� 105 1:66� 105 8:05� 10�19 2:22� 10�18 1:68� 101

�3 2:22� 10�4 1:97� 10�1 2:02� 10�2 4:87� 1047 1:99� 10�15 1:65� 10�14 2:15� 10�14 1:41� 105 1:73� 105 6:15� 10�19 2:08� 10�18 1:73� 101

�2 2:57� 10�4 1:49� 10�1 1:35� 10�2 3:33� 1047 1:28� 10�15 8:42� 10�15 1:09� 10�14 1:49� 105 1:83� 105 4:62� 10�19 1:88� 10�18 1:45� 101

�1 2:97� 10�4 1:13� 10�1 4:72� 10�3 2:37� 1047 4:64� 10�16 2:26� 10�15 2:88� 10�15 1:61� 105 1:97� 105 3:46� 10�19 1:63� 10�18 1:47� 101

0 3:56� 10�4 7:89� 10�2 4:25� 10�3 1:36� 1047 4:87� 10�16 1:50� 10�15 1:85� 10�15 1:80� 105 2:20� 105 2:40� 10�19 1:32� 10�18 1:30� 101

1 3:84� 10�4 6:77� 10�2 5:66� 10�3 8:06� 1046 7:14� 10�16 1:79� 10�15 2:16� 10�15 1:90� 105 2:32� 105 2:06� 10�19 1:21� 10�18 1:22� 101

2 5:15� 10�4 3:74� 10�2 1:08� 10�3 1:78� 1046 2:16� 10�16 2:77� 10�16 2:72� 10�16 2:37� 105 2:91� 105 1:15� 10�19 8:95� 10�19 1:07� 101

3 6:64� 10�4 2:24� 10�2 3:21� 10�4 8:80� 1045 1:03� 10�16 9:78� 10�17 7:17� 10�17 2:96� 105 3:63� 105 6:90� 10�20 7:03� 10�19 8:95
4 8:12� 10�4 1:49� 10�2 1:10� 10�4 4:43� 1045 5:21� 10�17 4:51� 10�17 2:73� 10�17 3:55� 105 4:34� 105 4:63� 10�20 5:64� 10�19 8:00
5 9:60� 10�4 1:06� 10�2 4:29� 10�5 2:37� 1045 2:82� 10�17 2:36� 10�17 1:31� 10�17 4:15� 105 5:08� 105 3:32� 10�20 4:66� 10�19 7:06
6 1:11� 10�3 7:95� 10�3 1:84� 10�5 1:32� 1045 1:60� 10�17 1:31� 10�17 7:00� 10�18 4:74� 105 5:81� 105 2:52� 10�20 3:84� 10�19 6:01
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hNik ¼
2�U

c2
�ik ¼ �GM�R2�

3c2
�ikD�	r�	

�
1

r

�

¼ �GM�R2�
3c2

�ikr�	

�
1

r

� X1
n¼�1

X2
m¼�2

CmJnmI
�	
m ; (5)

and a spacelike contribution from the gravitational quad-
rupole radiation, which with time dependence / ei!t is

hGW�	 ¼ 2G

3c4r

d2

dt2
ð ~D�	Þ ¼ � 2!2G

3c4r
~D�	

¼ � 2!2GM�R2�
3c4r

X1
n¼�1

X2
m¼�2

CmJnm����	
~I�
m :

(6)

In the above expression ~D�	 is the retarded, transverse

(i.e. lying in the plane perpendicular to the radial direction
of propagation of the waves) and trace-free part of D�	.
~I�	
m are the retarded, transverse, trace-free tensors corre-

sponding to the basis tensors I�	
m .

The subdivision in expression (4) of the metric field into
the Newtonian potential and gravitational wave field at the
border between the near and the wave zones is obviously a
serious over simplification. Nevertheless, this subdivision
picks out the essential physical aspects of the problem, and
there are no obvious reasons for the exact analysis to yield
qualitatively different answers. In a recent paper [21], the
authors conducted a thorough analysis of light propagation
through the intermediate zone between the wave and the
near zones. In following papers we hope to analyze the
problem of solar oscillations and their detectability by
LISA using the exact analysis in [21].

III. PHASE SHIFT IN A PERTURBED
GRAVITATIONAL FIELD

In order to analyze the response of a LISA type inter-
ferometer to solar oscillations we first need to study the
relative phase shift for light traveling along the arms of the
interferometer in the perturbed gravitational field (4). In
order to proceed, let us consider an electromagnetic wave
of frequency !e and wave 4-vector ki propagating along
the arm of a detector from an emitter at coordinate position
xiA to a receiver at coordinate position xiB. The phase � of
the wave at xiB is given by

Z B

A
kidx

i ¼ ðkiBxiB � kiAx
i
AÞ �

Z B

A
xidki

¼ kiAðxiB � xiAÞ þ
Z B

A
ðxiB � xiÞdki: (7)

In Minkowski space the wave vector ki is constant ¼ kiA ¼
!eð1; n�Þ=c and the phase difference �ðBÞ ��ðAÞ is sim-
ply kiAðxiB � xiAÞ. The second term on the right hand side
(7) is identically zero in the Minkowski limit.

In the time-dependent space-time gik the first order
perturbation in phase, due both to the departure from
Minkowski space-time and the displacement of the re-
ceiver B (taking A as fixed) is given by

�’ ¼ kiA�ðxiB � xiAÞ þ
Z B

A
ðxiB � xiÞdki: (8)

We take A as the origin of coordinates so xiA ¼ 0, and
take the unperturbed ray to be given by xi ¼ �ki, where �
is an affine parameter varying from 0 at A, to � at B. Since
ki ¼ dxi=d�, the null geodesic equation in this weak field
approximation reduces to

dki

d�
¼ ��i

mnk
mkn � 1

2
hmn;ik

mkn:

and the last term in (8) can be expressed asZ �

0
ð�� �Þkidki ¼ 1

2

Z �

0
ð�� �Þhmn;ik

mknkid�

¼ 1

2

Z �

0
ð�� �Þ dhmn

d�
kmknd�:

Substituting this result into (8), defining li ¼ ðxiB � xiAÞ,
�li ¼ �ðxiB � xiAÞ, and integrating by parts gives

�’ ¼ kiA�l
i þ

�
1

2
ð�� �Þhmnk

mkn
�
�

0

þ 1

2

Z �

0
hmnk

mknd�: (9)

�li is given by the geodesic deviation equation

D2

D�2
ð�liÞ ¼ Ri

jkm

dxj

d�

dxk

d�
lk;

which, in the slow motion approximation appropriate to the
current analysis, reduces to

d2

dt2
ð�liÞ ¼ Ri

okol
k: (10)

Since in the weak field approximation

Rj
oko ¼ �j

ok;o � �j
oo;k þ �j

oi�
i
ok � �j

ki�
i
oo

� 1
2�

ijðhki;oo � hoi;ok þ hoo;ik þ hok;ioÞ; (11)

from (10) and (11) it follows that Ro
oko ¼ 0 and

d2�lo=dt2 ¼ 0, respectively. Recalling that ho� ¼ 0, and
li ¼ lio þ �li with lio ¼ ð1; n�Þ we obtain

d2

dt2
ð�l�Þ ¼ 1

2

�
d2

dt2
ðh�	Þ � c2���r2

�	hoo

�
l	o ; (12)

where r2
�	 ¼ @2=@x�@x	. In view of the time dependence

of hik / ei!t, this equation can be integrated to give

�l� ¼ 1

2

�
h�	 � c2���

!2
r2

�	hoo

�
l	o : (13)

Now since k� ¼ !en
�=c, � ¼ cl=!e, where !e is the
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frequency of the electromagnetic wave, substitution into
(9) gives

�’ ¼ !el

2c

�
h�	n

�n	 � c2

!2
n�n	r2

�	hoo

�

�!el

2c
hmnn

mnn þ!e

2

Z l=c

0
hmnn

mnndt; (14)

where we have introduced l ¼ n�l
�
o as the unperturbed

distance between A and B.
We now write �’ ¼ �’N þ �’GW, where �’N is the

contributions from the Newtonian potential �U and �’GW

is the contribution from gravitational waves. Using expres-
sion (4) and expanding the hmn in (14) by Taylor series
yields

�’N ¼ �!el

2c
hoo �!elc

2!2
n�n	r2

�	hoo

þ 1

2
!ehoo

Z l=c

0
ei!tdtþ 1

2
!en

�r�hoo

�
Z l=c

0
ei!tctdtþ 1

4
!en

�n	r2
�	hoo

�
Z l=c

0
ei!tc2t2dtþ . . . ;

�’GW ¼ 1

2
!e

Z l=c

0
hGW�	 n�n	dt � 1

2

!el

c
n�n	hGW�	 : (15)

Taking into account (5) and (6), retaining just the leading
terms in powers of !l=c � 1 and l=r � 1 in (15), the
phase shift is given by

�’ ¼ �!el

2c
n�n	

�
c2

!2
r2

�	hoo � hGW�	

�

¼ !el

c

G

6!2
n�n	

�
D�r4

�	�

�
1

r

�
þ 2!4

c4r
~D�	

�
;

(16)

wherer4
�	�� ¼ @4=@x�@x	@x�@x. Since the unperturbed

phase shift is ’ ¼ !el=c, the fractional change in phase
shift can be expressed in the form

�
�’

’

�
¼ T

2!2r5

�
T�	D�	 þ 2!4r4

3c4
N�	

~D�	
�
; (17)

where N�	 ¼ n�n	, and

T�	 ¼ 1

3
r5N�r4

�	�

�
1

r

�
¼ 2n�n	 � 10
ðn� �n	 þ �n�n	Þ þ 5ð7
2 � 1Þ �n� �n	;

(18)

and �n� is the unit vector in the radial direction and 
 ¼
n� �n�. The details of the derivation of T�	 are given in

Appendix B.

IV. RESPONSE OF THE INTERFEROMETER

A laser interferometer detector such as LISA consists of
3 arms AB, AC, CB, in circular orbit around the Sun. The
interferometer’s response is given by the difference in the
fractional change in phase shifts of the round trip signals
along any two of the arms, for example, ABA and ACA, as

S ¼
�
�’

’

�
AB

�
�
�’

’

�
AC

¼ G

2!2r5

�
�T�	D�	 þ 2!4r4

3c4
�N�	

~D�	
�

(19)

where � indicates the difference between the arms AB and
AC.
The response S is a function of the angles �, �, c , �, the

quadrupole moments Jm and the frequency !. � is the
angle between the radius vector to the detector and the
instantaneous orientation of the reference axes corotating
with the sun, � the inclinations of the plane of the detector
to the orbit plane, c the angle between the arm AB and the
direction of the orbit and � the angle between the two arms
of the detector. In the LISA concept, � ¼ � ¼ �=3 and the
detector rotates with the same period as it orbits the Sun.
The angle c decreases as the position angle � of the
detector (on its orbit relative to a fixed inertial frame)
increases, i.e. c ¼ c 0 �� where c 0 is a constant equal
to the orientation of the detector relative to the orbit plane
at the arbitrary zero of the orbit angle �.
We now express the quadrupole moment tensor in terms

of the trace-free basis tensors I�	
m [see (3)] and determine

the response Sm for both gravitational waves and the
Newtonian signal for quadrupole modes of azimuthal order
m and frequency � ¼ !=2�. Introducing the effective
gravitational amplitudes

heff ¼ 2Sm;

we have

heff ¼ hGWeff þ hNeff ;

where the Newtonian and gravitational wave contributions
to the signal can be represented in the form

hGWeff ¼ 2

3
CmJm

�
R�
r

�
5
�
��
�

�
2
�
�

�r

�
4
fGWm ;

hNeff ¼ CmJm

�
R�
r

�
5
�
��
�

�
2
fNm;

(20)

where (see Appendix C for details)

fGWm ¼ ~I�	
m �N�	; fNm ¼ I�	

m �T�	; (21)

and

�� 	 1

2�

ffiffiffiffiffiffiffiffiffiffiffi
GM�
R3�

s
� 10�4 Hz;

�r 	
�

c

2�r

�
� 3� 10�4 Hz:
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Note that, as follows from (20), for fNm and fGWm of com-
parable order the gravitational wave contribution domi-
nates for � > �r � 3� 10�4 Hz.

To determine the functions fNm, f
GW
m consider the detec-

tor to be at the point P on its orbit with orbit angle �
relative to a fixed inertial frame, and let � be the angle
between the radius vector to P and the x1 axis of the
corotating system x�. We then define local transverse
Cartesian coordinates �� at P such that �1 is in the outward
radial direction, �2 in the direction of the orbit and �3

perpendicular to the orbit plane. The basis tensors in the ��

coordinates are given by

I�m ¼ e��e	I
�	
m ;

where

e1 ¼ ðcos�; sin�; 0Þ; e2 ¼ ð� sin�; cos�; 0Þ;
e3 ¼ ð0; 0; 1Þ;

are the unit vectors along the �� axes in the x� coordinate
system. The transverse trace-free tensors ~I� are then given
by (see Appendix C)

~I 23
m ¼ ~I32m ¼ I23m ; ~I22m ¼ �~I33m ¼ 1

2ðI22m � I33m Þ;
~I1�m ¼ 0:

In the �� coordinates, in light of the definitions of angles �,
c , and �, the unit vectors n�B, n

�
C are given by

n�B ¼ ð� sinc cos�; cosc ; sinc sin�Þ;
n�C ¼ ð� sinc 0 cos�; cosc 0; sinc 0 sin�Þ; c 0 ¼ c þ �:

In light of the definition the coordinate system ��, the unit
radial vector �n� is given by

�n � ¼ ð1; 0; 0Þ;
After some laborious algebra we determine the tensors
�N�,�T� in the �

� coordinates, and hence the functions

fNm, f
GW
m defined in (21). The solutions for arbitrary �, �, c ,

� are given in Appendix C.
For LISA, setting � ¼ � ¼ �=3 and c 0 ¼ 0 (i.e. c ¼

��), we obtain

fN0 ¼ 3
ffiffiffi
3

p
8

sinð2c þ�=3Þ;

fGW0 ¼ 21
ffiffiffi
3

p
16

sinð2c þ�=3Þ;
fN1 ¼�3½2cos� sinð2c þ�=3Þ� sin�cosð2c þ�=3Þ
;

fGW1 ¼ 3

2
sin�cosð2c þ�=3Þ;

fN2 ¼�
ffiffiffi
3

p
2

�
25

4
cos2� sinð2c þ�=3Þ

� 8sin2�cosð2c þ�=3Þ
�
;

fGW2 ¼�7
ffiffiffi
3

p
16

cos2� sinð2c þ�=3Þ:

(22)

The values for m ¼ �1, �2 are obtained from those for
m ¼ 1, 2 by replacing � by �� �=2m.
Relative to a fixed inertial frame at time t the detector is

at orbit angle � ¼ �dt and the corotating x1 axis is at an
angle��t, where�d is the angular velocity of the detector
around the sun and �� the angular velocity of the Sun
relative to this inertial frame. The angle between the radius
vector from the sun to the detector and the rotating x1 axis
is therefore � ¼ �st where �s ¼ 2�=Ps where Ps �
26:75 days is the synodic period of solar rotation, that is
the period relative to a reference frame orbiting the sun at
1 a.u. Thus, substituting c ¼ �� and � ¼ ð�s=�dÞ�
into (22) gives fNmð�Þ and fGWm ð�Þ as a function of the
position of the detector on its orbit determined by the orbit
phase angle �. In Fig. 2, for illustration, we show the
fNmð�Þ and the fGWm ð�Þ modes. Since m ¼ 0 correspond
to axially symmetric modes, the functions f0ð�Þ are inde-
pendent of the rotation of the Sun. The other modes (m ¼
�1, �2) display the modulation of the signal due to solar
rotation. Combining the contributions from fN and fGW

gives

S0ð�;�Þ ¼ 3
ffiffiffi
3

p
16

C0J0
R5�
r5

�2�
�2

�
1þ 7

3

�4

�4
r

�
sinð2c þ �=3Þ;

S1ð�;�Þ ¼ 3

2
C1J1

R5�
r5

�2�
�2

��
1þ 1

3

�4

�4
r

�
� sin� cosð2c þ �=3Þ
� 2 cos� sinð2c þ �=3Þ

�
;

S2ð�;�Þ ¼ 2
ffiffiffi
3

p
C2J2

R5�
r5

�2�
�2

�
sin2� cosð2c þ �=3Þ

� 25

32

�
1þ 7

75

�4

�4
r

�
cos2� sinð2c þ �=3Þ

�
;

(23)

where

c ¼ ��; � ¼ �Pd=P� � 13:65�;

C0 ¼ �
ffiffiffiffiffiffiffi
5

4�

s
; Cm ¼

ffiffiffiffiffiffiffi
15

4�

s
; m ¼ �1;�2:

Again, in a similar fashion to (22), values form ¼ �1,�2
are obtained from those for m ¼ 1, 2 by replacing � by
�� �=2m. The expressions in (23) contain both the con-
tributions, from the Newtonian potential and gravitational
waves (terms proportional to ð�=�rÞ4). As anticipated
above, the gravitational wave contribution dominates
when � > �r � 3� 10�4 Hz.
The amplitude of the signal of given ðm; �Þ varies with

the rotation of the sun around its axis and over the coarse of
the year. For an observation time T � 1 year the amplitude
is given by the root mean square averaged over T. The
resulting amplitudes are given in Table I (columns 5, 6 and
7 for m ¼ 0, 1 and 2, respectively) for values of the
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quadrupole moments given in column 4. These signals
scale linearly with the value of the quadrupole moments.

V. DETECTABILITY OF GRAVITATIONAL
SIGNALS FROM THE SUN AND COMPARISON

WITH VELOCITY EXPERIMENTS

The expected sensitivity of the LISA experiment for a
single 2-arm detector has been evaluated in [22]. At low
frequencies the dominant contribution is from the accel-
eration noise / 1=!2, at intermediate frequencies from
shot noise, and at high frequencies the sensitivity declines
when the path length along the detector becomes compa-
rable to and greater than the wavelength of the gravita-
tional wave. In the frequency range of interest this
instrumental noise level is given by

hIð�Þ �
�
1

sini

��
2� 10�41 þ 1� 10�51 1

�4

�
1=2
� ffiffiffiffiffiffi

Hz
p

;

(24)

where i ¼ �=3 is the angle between the arms of the
interferometer. In addition to the instrumental noise there
is also a ‘‘confusion noise’’, hBð�Þ, due to the integrated

gravitational wave contribution from galactic and extraga-
lactic binary systems. The magnitude of this ‘‘confusion
noise,’’ hBð�Þ, is uncertain but has been estimated in [3]
and their estimate is given in column 12 of Table I and
shown in Fig. 3.
Thus, for LISA, the threshold of detectability hTD at a

signal to noise level S=N, when direction to the source is
known, is given by

hTD � ðhI þ hBÞ
�
1ffiffiffiffi
T

p
��

S

N

�
; (25)

where T is the time of observation (in secs).
Let us now turn to the sensitivity of velocity experi-

ments. The solar oscillations of low degree are obtained by
taking the power spectrum of a time series of measure-
ments of the Doppler shift (or velocity) of a given spectral
line in the integrated light from the sun. The frequencies
are the peaks in this power spectrum. The velocity ampli-
tude of a given quadrupole oscillation is therefore given by
integrating the component of the surface velocity in the
direction of the observer over the visible solar disc,

FIG. 2. Signal functions fNmð�Þ (left panel) and fGWm ð�Þ (right panel) for gravitational waves from oscillations as a function of phase
angle for modes ‘ ¼ 2, m ¼ 0, �1, �2.
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V ¼
R
~k�v�fð
Þ
dSR
fð
Þ
dS

; (26)

where ~k� is the unit vector in the direction of the observer,


 ¼ ~k�r̂� is the cosine of the angle between the unit radius
vector r̂� and the direction to the observer, and fð
Þ the
appropriate solar limb darkening function which incorpo-
rates the angular dependence of the intensity of radiation at
the solar surface (see, for example, [23]). We here take
fð
Þ ¼ aþ b
 with a ¼ 0:55, b ¼ 0:45, which is a rea-
sonable approximation for the whole disc velocity mea-
surements by the GOLF [24] and BiSON [25] experiments.

In a system of spherical coordinates ðr; �;�0Þ corotating
with the sun, the velocity on the solar surface due to an
oscillation mode is

v� ¼ ðvr; v�; v�Þ

¼ !R�
�
�r; �h

@

@�
; �h

1

sin�

@

@�0

�
S2mð�;�0Þ;

where �r, �h are the dimensionless radial and horizontal
displacement eigenfunction at the solar surface R ¼ R�.
Let the corotating axes be at an angle�0 to the direction to
the observer and take � ¼ �0 ��0 then

~k�v� ¼ vr sin� cos�þ v� cos� cos�� v� sin�;


 ¼ sin� cos�:

Evaluating the integral (26) gives the velocity amplitudes

V0 ¼ �!R�

ffiffiffiffiffiffiffi
5

4�

s �ð16aþ 15bÞ�r þ 6ð8aþ 5bÞ�h
40ð3aþ 2bÞ

�
;

V�2 ¼
ffiffiffi
3

p
V0

cos2�0

sin2�0

 !
; (27)

For m ¼ �1, S2m / cos� is antisymmetric about � ¼ �=2
and the integrals (26) for V�1 are identically zero. Them ¼
�1 modes are not detectable in integrated velocity in the
equatorial plane.

The surface horizontal displacement �h is known in
terms of the surface value of the radial displacement ei-
genfunction �r from integration of the eigenvalue equa-
tions for the oscillation (column 3 in Table I). Since the
normalized value of the quadrupole moment is J2 � 1 for
all modes (column 4), it follows from the equations gov-
erning the oscillations that �h � �rg=!

2R� (see [26]). The
velocity amplitudes with �r ¼ 1 are listed in columns 9 and
10. The background noise in velocity experiments is pre-
dominantly from velocity fields on the solar surface (active
regions, granulation, meso-granulation, supergranulation)
and the cumulative effect of these motions has been esti-
mated in [27]. However, in contrast to the gravitational
case, this background noise has been measured in a number
of helioseismology experiments and in Fig. 4 we show
the background velocity noise determined by the GOLF
experiment on SOHO [24,28]. This is in reasonable
agreement with the value obtained by the ground-based
whole disc networks BiSON [29], that obtained

900 cm= sec =
ffiffiffiffiffiffi
Hz

p
at � ¼ 5� 10�4 Hz and IRIS experi-

ment [30] which obtained 2� 103 cm= sec =
ffiffiffiffiffiffi
Hz

p
at � ¼

10�4 Hz. These values are a factor �5 below the model
predictions of [27]. In the region of interest this back-
ground noise Bvð�Þ can be approximated by

Bvð�Þ � 2� 103
�
10�4

�

�
1=2 cm= secffiffiffiffiffiffi

Hz
p : (28)

We now make the following comparison. We assume a
frequency resolution in the power series analysis of 3�
10�8 Hz (corresponding to 1 yr’s observation time) and the
value of a velocity signal from an oscillation mode that has
S=N ¼ 3 using the above background noise estimate (28).
This gives a value of the dimensionless radial eigenfunc-
tion �r through (27) for the velocity amplitude for each
frequency and m ¼ 0, 2. This then determines the ampli-
tude of the quadrupole moment J and the gravitational
signal strength S obtained by simply scaling Sm in
Table I by the value of �r. We then compare this gravita-
tional signal strength with the background noise for the

FIG. 3. Limits on detectable signal from LISA with signal to
noise S=N ¼ 5. (a) Instrumental noise, (b) binary confusion
noise (Bender and Hils 1997).

FIG. 4. Solar background noise in velocity (m2=sec2=Hz) as
determined from the GOLF experiment on SOHO.
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LISA experiment computed from (24) under the same
assumptions. The results are shown in Fig. 5. We see that
for frequencies � < 2� 10�4 Hz the signal from the m ¼
2 modes are stronger in the gravitational experiment
than in the velocity experiment. In Fig. 5 we also show
the S=N for the gravitational experiment when binary
confusion noise is included. Note that since the averaged
velocity for the m ¼ �1 modes is zero there is no limit
on the gravitational signal set by the helioseismology
experiments.

This comparison between the 2 experiments is of course
independent of the assumed S=N in the velocity experi-
ment, what is being compared is the detectability of an
oscillation mode by the two techniques and is essentially
the ratio of the S=N for the gravitational experiment to
S=N for the velocity experiment.

We can reverse the comparison and ask what would be
the velocity amplitude of modes that are at the margin of
detectability with the gravitational detector, and how does
this compare with the solar background noise? This is done
in Fig. 6, here we see that the velocity amplitude at low
frequencies for the m ¼ 2 mode is well below the noise
level of velocity experiments for a frequency resolution of
30 nHz. For high frequencies � * 3� 10�4 Hz the gravi-
tational signal is predominantly determined by the gravi-
tational wave component. For comparison, the figure also
shows values for the velocity amplitude obtained from [9].
These values were calculated using expression (3) and the
data in Table I in [9], note that these values are averaged
overm-modes. As can be seen, the estimates from [9] are in
a reasonable agreement (taking into account the averaging
over m-modes) with our results at lower frequencies � &
3� 10�4 Hz. Let us compare the results for frequencies
� * 3� 10�4 Hz. As was mentioned above, at these fre-

quencies the major contribution to the signal comes from
the gravitational waves. This gravitational wave contribu-
tion was not analyzed in [9]. For this reason, as can be seen
on Fig. 6, at higher frequencies [9] give higher values for
the detectability threshold in comparison with present
results. In other words, the incorporation of the gravita-
tional wave contribution makes detection of solar oscilla-
tions by LISA more feasible.
In the above considerations we have assumed that the

signal is monochromatic, or rather that the line is narrower
than the frequency resolution. This is the prediction from
extrapolating the p-modes observed by helioseismology at
higher frequencies. Since the rotational splitting of the
modes is known, signal enhancement techniques can be
used, superposing power in frequency bins separated by
m��, as is being done in the search for g-modes in
helioseismology by the Phoebus group [31]. If the modes
have a line width in excess of the frequency resolution the
detectability in both velocity and gravity is correspond-
ingly reduced but the ratio of S=N for the two experiments
remains the same.

VI. DISCUSSION AND CONCLUSIONS

In this work we have analyzed the prospects of detecting
the gravitational signal from solar oscillations in a LISA
type interferometer, and compared them with capabilities
of velocity experiments. At low frequencies, � &
3� 10�4 Hz, the quadrupole oscillations of the Sun might
be detected in LISA through their contribution to the time
varying Newtonian (near zone) gravitational potential. At
higher frequencies, � > 3� 10�4 Hz, LISAmight observe
a gravitational wave (far zone) signal from the solar oscil-
lations. For frequencies � & 2� 10�4 Hz the signal will
have a higher S=N in a LISA type space interferometer
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FIG. 5 (color online). Comparison of signal to noise (S=N) in
LISA experiment for S=N ¼ 3 in solar velocity experiments, for
oscillation modes with ‘ ¼ 2, m ¼ 2. The solid line shows the
S=N when only the instrumental noise is included, while the
dashed line shows the S=N when both the instrumental noise and
the noise from binary systems is included.
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FIG. 6 (color online). Minimum surface velocity amplitude for
signal to be detectable by LISA with S=N ¼ 1 for modes with
m ¼ 0 (solid line) and m ¼ 2 (dashed line). The thin dotted line
show the velocity amplitudes evaluated from [9].
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than in helioseismology measurements, while for higher
frequencies the signal would be more readily observable
through helioseismology measurements.

Although, as was mentioned at the end of Sec. II, our
analysis was based on the subdivision of the gravitational
field into Newtonian potential and gravitational wave field
at the border between the near and the wave zones, there is
no reason to believe that an exact analysis will give quali-
tatively different results. In particular, the characteristic
features in signal to noise ratio curve on Fig. 5 should
remain, although there might be a slight change in the
height of the curve around frequencies �� 3� 10�4 Hz
corresponding to the intermediate zone. In a following
paper we hope to analyze this question in more detail.

The low frequency solar oscillation modes, considered
in this paper, are more sensitive to the structure of the solar
core than the higher frequency p-modes. Helioseismology
experiments have so far been able to measure only the
higher frequency p-modes. Hence, if the low frequency
modes are detected by LISA, they would advance our
understanding of the structure of this central core. This is
because the helioseismology experiments measure the sur-
face velocity, which is dependent on the detailed structure
of the outer layers of the sun, and this has to be subtraced
off to give diagnostic information on the solar interior. On
the other hand, the interferometer experiments measure the
actual quadrupole moments which are determined by the
oscillations in the deep high density solar interior and
therefore encode information about the solar interior which
is independent of the structure and physics of the outer
layers.

The predicted amplitudes of these low n modes are still
uncertain. The p-modes are thought to be stochastically
excited by the convective motions, and if this is the exci-
tation mechanism of the g-modes the predicted amplitudes
of the low frequency modes are very small. But as was first
pointed out in [32,33], the steep gradient of 3He in the inner
half of the sun could also provide an excitation mechanism
for these modes which may be damped by parametric
resonance with other modes or by mild turbulent diffusion,
but still be of sufficient amplitude to give rise to a detect-
able gravitational signal.

We note also that the frequency of 10�4 Hz corresponds
to a period of the order of 160 minutes. There have been
repeated suggestions that such a signal has been seen in
helioseismology experiments, many but not all of the
claims being withdrawn following more detailed analysis
(see [34]). An analysis of the GOLF data [35] placed an
upper limit on the velocity amplitude of such a mode at
about 1 cm= sec , an estimate compatible with searches by
the Phoebus group [31]. We note that for such a 160 min
mode an S=N ¼ 1 in the helioseismic velocity experiments
would correspond to an S=N ¼ 20 in a LISA type
experiment.

The search for g-modes in the helioseismology experi-
ments is ongoing and hopefully will result in the confirmed

detection of some modes prior to the launch of LISA. Were
such modes to have been identified, they would provide a
valuable known signal for the space interferometer which
could then be used to calibrate and test the experiment,
giving more credence to the interpretation of signals from
more distant astrophysical sources.
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APPENDIX A: THE QUADRUPOLE BASIS
TENSORS I�� AND SURFACE HARMONICS S2m

The quadrupole gravitational potential can be expressed
in the two equivalent forms [see (2)]

GM�R2�
X2

m¼�2

X1
n¼�1

Jnm
r3

S2mð�;�Þ ¼ G
1

6
D�	r�	

�
1

r

�
;

(A1)

where r, �,� are spherical polar coordinates, x� ¼ ðx; y; zÞ
Cartesian coordinates with � ¼ 0 the z axis and � ¼ 0,
� ¼ �=2 the x axis, and r�	 ¼ @2=@x�@x	. Jnm are the

(dimensionless) quadrupole moments, D�	 the quadru-
pole moment tensor and S2m are the real surface harmonics
normalised to unity over the sphere

S2;0 ¼
ffiffiffiffiffiffiffi
5

4�

s
3cos2�� 1

2
;

S2;�1 ¼
ffiffiffiffiffiffiffiffiffi
15

16�

s
sin2�

cos�

sin�

 !
;

S2;�2 ¼
ffiffiffiffiffiffiffiffiffi
15

16�

s
sin2�

cos2�

sin2�

 !
:

We define a set of 5 independent trace-free tensors I�	
m as

I 0 ¼
1 0 0
0 1 0
0 0 �2

0
@

1
A; I1 ¼

0 0 1
0 0 0
1 0 0

0
@

1
A;

I�1 ¼
0 0 0
0 0 1
0 1 0

0
@

1
A; I2 ¼

1 0 0
0 �1 0
0 0 0

0
@

1
A;

I�2 ¼
0 1 0
1 0 0
0 0 0

0
@

1
A:

Taking into account

r�	

�
1

r

�
¼ @2

@x�@x	

�
1

r

�
¼
�
3x�x	 � r2��	

r5

�
;
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where ��	 is the Kronecker delta, and

x1 ¼ x ¼ r sin� cos�; x2 ¼ y ¼ r sin� sin�;

x3 ¼ z ¼ r cos�;

the I�	
m satisfy the relations

I�	
0 r�	

�
1

r

�
¼ 3

r5
ðx2þy2�2z2Þ¼ 6

r3
1�3cos2�

2

¼� 6

r3

ffiffiffiffiffiffiffi
4�

5

s
S2;0;

I�	
1 r�	

�
1

r

�
¼ 3

r5
2xz¼ 6

r3
sin�cos�cos�¼ 3

r3

ffiffiffiffiffiffiffiffiffi
16�

15

s
S2;1;

I�	
�1r�	

�
1

r

�
¼ 3

r5
2yz¼ 6

r3
sin�cos�sin�¼ 3

r3

ffiffiffiffiffiffiffiffiffi
16�

15

s
S2;�1;

I�	
2 r�	

�
1

r

�
¼ 3

r5
ðx2�y2Þ¼ 3

r3
sin2�cos2�¼ 3

r3

ffiffiffiffiffiffiffiffiffi
16�

15

s
S2;2;

I�	
�2r�	

�
1

r

�
¼ 3

r5
2xy¼ 3

r3
sin2�sin2�¼ 3

r3

ffiffiffiffiffiffiffiffiffi
16�

15

s
S2;�2:

(A2)

We now expand the quadrupole moment tensor in the form

D �	 ¼ M�R2�
X1

n¼�1

X2
m¼�2

CmJnmI
�	
m :

Inserting the above expansion into the right side of (A1),
taking into account (A2), we arrive at the following ex-
pression for the coefficients Cm

C0 ¼ �
ffiffiffiffiffiffiffi
5

4�

s
; Cm ¼

ffiffiffiffiffiffiffi
15

4�

s
m ¼ �1;�2: (A3)

APPENDIX B: DERIVATION OF THE DETECTOR
TENSOR T��

We use a Cartesian coordinate system x� with x�x� ¼
r2. Then

r

�
1

r

�
¼�x

r3
; r�

�
1

r

�
¼���

r3
þ 3

xx�

r5
;

r	�

�
1

r

�
¼þ3

��x	

r5
þ 3

�	x�

r5
þ 3

x��	

r5
� 15

xx�x	

r7
;

r4
�	�

�
1

r

�
¼ 3

r5
ð���	� þ�	��� þ����	Þ

� 15

r7
ð��x	x� þ�	x�x� þ��x�x	

þ��	xx� þ���xx	 þ�	�xx�Þ
þ 105

r9
xx�x	x�: (B1)

Defining the unit vector in the radial direction

�n  ¼
�
x1
r
;
x2
r
;
x3
r

�
;

we get

r4
�	�

�
1

r

�
¼ 1

r5
ð3ð���	� þ �	��� þ ����	Þ

� 15ð�� �n	 �n� þ �	 �n� �n� þ �� �n� �n	

þ ��	 �n �n� þ ��� �n �n	 þ �	� �n �n�Þ
þ 105 �n �n� �n	 �n�Þ:

Defining 
 ¼ n �n and contracting with nn� gives

nn�r4
�	�

�
1

r

�
¼ 3

r5
ð��	 þ n	n� þ n�n	

� 5ð �n	 �n� þ
n	 �n� þ
n� �n	

þ
n	 �n� þ
n� �n	 þ
2��	Þ
þ 35
2 �n	 �n�Þ: (B2)

Since this tensor is to be contracted with the symmetric
trace-free tensor D	� ¼ D�	 and �	�D	� ¼ 0 we only

require the trace-free components of this tensor. For this
reason the terms with ��	 can be removed in (B2) leaving

T�	 ¼ r5

3

�
nn�r4

�	��

�
1

r

��
trace-free

¼ 2n	n� � 10
n	 �n� � 10
n� �n	

þ 5ð7
2 � 1Þ �n	 �n�: (B3)

APPENDIX C: THE FUNCTIONS fN
j ð�Þ, fGW

j ð�Þ
Here we compute the source tensor in local transverse

Cartesian coordinates �� at a point P on the orbit of the
detector where �1, �2 are in the orbit plane, �1 in the
outward radial direction, �2 is in the direction of motion
and �3 perpendicular to the orbit plane. � is the angle
between �1 and the x1 direction of the coordinate system
x� in which the multipole moments are determined. The
unit vectors along the �� axes in the x� coordinate system
are

e1� ¼ ðcos�; sin�; 0Þ; e2� ¼ ð� sin�; cos�; 0Þ;
e3� ¼ ð0; 0; 1Þ:

Hence the basis quadrupole tensors in the � coordinate
system are given by I�m ¼ e��e	I

�	 and are explicitly

given by
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I0 ¼
1 0 0
0 1 0
0 0 �2

0
@

1
A; I1 ¼

0 0 cos�
0 0 � sin�

cos� � sin� 0

0
@

1
A; I�1 ¼

0 0 sin�
0 0 cos�

sin� cos� 0

0
@

1
A;

I2 ¼
cos2� � sin2� 0
� sin2� � cos2� 0

0 0 0

0
@

1
A; I�2 ¼

sin2� cos2� 0
cos2� � sin2� 0
0 0 0

0
@

1
A:

The transverse-trace-free radiation tensors in the � coordinates are then

~I 0 ¼ 3

2

0 0 0
0 1 0
0 0 �1

0
@

1
A; ~I1 ¼ � sin�

0 0 0
0 0 1
0 1 0

0
@

1
A; ~I�1 ¼ cos�

0 0 0
0 0 1
0 1 0

0
@

1
A;

~I2 ¼ � 1

2
cos2�

0 0 0
0 1 0
0 0 �1

0
@

1
A; ~I�2 ¼ � 1

2
sin2�

0 0 0
0 1 0
0 0 �1

0
@

1
A:

Now let the plane of the detector be at an inclination angle � to the plane of the orbit (� ¼ �=3 in the LISA experiment), and
let the detector arm AB be at an angle c to the direction of the orbit (�2). In the � coordinate system, the unit vector along
the arm of the arm AB of the detector is

n� ¼ ð� sinc cos�; cosc ; sinc sin�Þ;
so the projection tensor N�	

AB ¼ n�n	 is

NAB ¼
sin2c cos2� � sinc cosc cos� �sin2c sin� cos�

� sinc cosc cos� cos2c cosc sinc sin�
�sin2c sin� cos� cosc sinc sin� sin2c sin2�

0
B@

1
CA:

Let the angle between the arms AC and AB of the detector be � so that ACmakes an angle c þ �with the �2 direction, the
projection tensor N�	

AC is given by the above result with c replaced by c þ � so the difference

�N ¼ NAB � NAC ¼ sin�
� sinð2c þ �Þcos2� cosð2c þ �Þ cos� sinð2c þ �Þ sin� cos�
cosð2c þ �Þ cos� sinð2c þ �Þ � cosð2c þ �Þ sin�

sinð2c þ �Þ sin� cos� � cosð2c þ �Þ sin� � sinð2c þ �Þsin2�

0
B@

1
CA:

The signal functions for gravitational waves fGWj are given
by

fGWm ¼ �N�	
~I�	m

¼ sin�ðsinð2c þ �Þ~I22m � 2 cosð2c þ �Þ sin�~I23m
� sinð2c þ �Þsin2�~I33m Þ;

which gives

fGW0 ¼ 1:5 sin�ð1þ sin2�Þ sinð2c þ �Þ;
fGW1 ¼ 2 sin� sin� sin� cosð2c þ �Þ;
fGW�1 ¼ �2 sin� sin� cos� cosð2c þ �Þ;
fGW2 ¼ �0:5 sin�ð1þ sin2�Þ cos2� sinð2c þ �Þ;
fGW�2 ¼ �0:5 sin�ð1þ sin2�Þ sin2� sinð2c þ �ÞÞ:

(C1)

The Newtonian signal functions fNm ¼ �T�	I
�	
m where

�T�	 ¼ 2�N�	 þ 10�M�	 þ 5�R�	;

with

M�	 ¼ 
ð �n�n	 þ �n	n�Þ; R�	 ¼ ð7
2 � 1Þ �n� �n	;

 ¼ �n�n�:

In the � coordinates �n� ¼ ð1; 0; 0Þ, and for the detector arm
AB 
 ¼ n� �n� ¼ � sinc cos� so

MAB ¼
2sin2c cos2� � sinc cosc cos� �sin2c sin� cos�

� sinc cosc cos� 0 0
�sin2c sin� cos� 0 0

0
B@

1
CA;
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and hence

�M ¼ MAB �MAC ¼ sin�
�2 sinð2c þ �Þcos2� cosð2c þ �Þ cos� sinð2c þ �Þ sin� cos�
cosð2c þ �Þ cos� 0 0

sinð2c þ �Þ sin� cos� 0 0

0
B@

1
CA:

The tensor RAB ¼ ð7
2 � 1Þ �n� �n	 gives

�R ¼ �7 sin� sinð2c þ �Þcos2�
1 0 0
0 0 0
0 0 0

0
@

1
A:

So finally the tensor �T�	 is

�T ¼ sin�
�17 sinð2c þ �Þcos2� �8 cosð2c þ �Þ cos� �8 sinð2c þ �Þ sin� cos�
�8 cosð2c þ �Þ cos� 2 sinð2c þ �Þ �2 cosð2c þ �Þ sin�

�8 sinð2c þ �Þ sin� cos� �2 cosð2c þ �Þ sin� �2 sinð2c þ �Þsin2�

0
B@

1
CA:

The signal functions fNm ¼ I�	m �T�	 are then

fN0 ¼ sin�ð6� 21cos2�Þ sinð2c þ �Þ;
fN1 ¼ �4 sin� sin�½4 cos� cos� sinð2c þ �Þ � sin� cosð2c þ �Þ
;
fN�1 ¼ �4 sin� sin�½4 cos� sin� sinð2c þ �Þ þ cos� cosð2c þ �Þ
;
fN2 ¼ � sin�½ð17cos2�þ 2Þ cos2� sinð2c þ �Þ � 16 cos� sin2� cosð2c þ �Þ
;
fN�2 ¼ � sin�½ð17cos2�þ 2Þ sin2� sinð2c þ �Þ þ 16 cos� cos2� cosð2c þ �Þ
:

(C2)

Setting � ¼ � ¼ �=3 in (C1) and (C2) brings us to expression (22) for the specific case of LISA.
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