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We present an analytical formalism, within the effective-one-body framework, which predicts

gravitational-wave signals from inspiralling and coalescing black-hole binaries that agree, within

numerical errors, with the results of the currently most accurate numerical-relativity simulations for

several different mass ratios. In the equal-mass case, the gravitational-wave energy flux predicted by our

formalism agrees, within numerical errors, with the most accurate numerical-relativity energy flux. We

think that our formalism opens a realistic possibility of constructing a sufficiently accurate, large bank of

gravitational-wave templates, as needed both for detection and data analysis of (nonspinning) coalescing

binary black holes.
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The opening of gravitational-wave (GW) astronomy
depends on our theoretical ability at computing, within
Einstein’s theory of general relativity, a sufficiently accu-
rate approximation to the GW signal emitted by the pre-
mier target of ground-based GW detectors: inspiralling and
coalescing binary black holes (BBH’s). Indeed, to detect
these GW signals and extract physical information from
them, one must correlate the noisy output of the detectors
to a very large bank of ‘‘GW templates,’’ each template
giving an accurate representation of the gravitational wave-
form emitted by a BBH with certain physical parameters
(notably masses and spins). Recent breakthroughs in nu-
merical relativity (NR) [1–6] have given us access to an
accurate knowledge of the waveform emitted during the
late inspiral and merger of a sparse sample of BBH systems
(see [7] for a review). However, BBH simulations are time
consuming. This precludes the sole use of NR simulations
for building the needed bank of GW templates, densely
filling the multidimensional space of BBH physical pa-
rameters (masses and spins). It is urgent to have in hand an
analytical method able to give a sufficiently accurate rep-
resentation of the motion of, and the gravitational radiation
from, coalescing binary black holes with arbitrary masses
and spins. We shall describe here a formalism which hope-
fully solves this problem, in the case of circularized, non-
spinning binary black holes with arbitrary masses m1, m2.

The analytical formalism presented here is a signifi-
cantly improved version of the general effective-one-
body (EOB) method [8–11]. The predictions of previous
(less accurate) implementations of the EOB method have
already been compared, with success, to various types of
results from numerical simulations [12–21]. Before ex-
plaining the improvements that characterize our formal-
ism, let us recall that the four essential elements of the
EOB approach are: (i) a Hamiltonian Hreal describing the
conservative part of the relative dynamics of the two black
holes; (ii) a radiation-reaction force F ’ describing the

loss of (mechanical) angular momentum, and energy, of
the binary system; (iii) the definition of the various multi-
polar components of the ‘‘inspiral-plus-plunge’’ (metric)

waveform h
insplunge
‘m ; and (iv) the attachment of a subsequent

‘‘ringdown waveform’’ h
ringdown
‘m around a certain (EOB-

determined)‘‘merger time’’ tm. The latter fourth facet of
the EOB formalism, namely, the assumption of a sharp
transition, around the BBH merger, between the ‘‘plunge’’
and a ringdown behavior, was inspired by the classic
‘‘plunging test-mass’’ result of [22]. This assumption has
been well confirmed by the results of NR simulations [7],
and we shall not try here to improve on it. We shall follow
here the usual EOB procedure [9] of matching the ‘‘in-
splunge’’ and ‘‘ringdown’’ waveforms around the EOB
merger, and matching, time tm, defined as the location of
the maximum EOB orbital frequency. [We use the specific
procedure of [16,19], with 5 quasinormal modes, and a
‘‘comb’’ of spacing � ¼ 2:3Mf , where Mf is the mass of
the final black hole.]
On the other hand, we propose here to improve the three

other basic elements of the EOB formalism in the follow-
ing way:
(i) The central object entering the relative Hamiltonian,

Hreal ¼ M½1þ 2�ðĤeff � 1Þ�1=2, where M � m1 þ
m2, � � m1m2=M, � � �=M, z3 ¼ 2�ð4� 3�Þ,
and

Ĥ eff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r� þ Að1=rÞð1þ p2

’=r
2 þ z3p

4
r�=r

2Þ
q

(1)

is the EOB radial potential AðuÞ (here u ¼ 1=r; the
EOB radial coordinate r is rescaled by M, with G ¼
c ¼ 1; and pr� is canonically conjugated to the EOB

‘‘tortoiselike’’ radial coordinate r�, defined in [14]).
Current analytical calculations, within the post-
Newtonian (PN) formalism, of the dynamics of
BBH’s have computed the first four terms (3PN
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approximation) in the (Taylor) expansion of the ra-
dial potential AðuÞ in powers of u [10,23], namely
A3PNðuÞ � 1� 2uþ 2�u3 þ ð94=3� 41�2=32Þ�u4.
Here we propose to consider the two-parameter class
of (extensions and) resummations of A3PNðuÞ defined
by

Aðu; a5; a6; �Þ � P1
5½A3PNðuÞ þ �a5u

5 þ �a6u
6�;
(2)

where P1
5 denotes a (1, 5) Padé approximant. This is

a generalization of the one-parameter (a5) class of
P1
4 Padé-resummed A-potentials considered in pre-

vious EOB works [11,17,18].
(ii) The second (and most novel) improvement that we

introduce here concerns the radiation-reaction force
F ’. We make use of the very recent results of [24]

concerning an ‘‘improved resummation’’ of post-
Newtonian multipolar waveforms. Specifically, we
define F ’ in the following way (� denoting the

EOB orbital frequency):

F ’ � � 1

8��

X‘max

‘¼2

X‘
m¼1

ðm�Þ2jRhð�Þ‘mj2: (3)

Here, we shall take ‘max ¼ 8 and define the indi-

vidual multipolar waveforms hð�Þ‘m (where � ¼ 0, 1
labels the ‘‘even’’ or ‘‘odd’’ parity) in the following
way: (a) the leading quadrupolar contribution to
F ’, i.e. the term � ¼ 0 and ‘ ¼ m ¼ 2 in (3), is

computed by using the quadrupolar waveform de-
fined in Eq. (4) below; while (b) the subdominant
terms (i.e. when, either � ¼ 1, or � ¼ 0 and ‘ � 3),

hð�Þ‘m are defined by Eq. (1) of [24], together with the

other definitions given there (see [25] for details).
(iii) The third improvement introduced here concerns

the (dominant) even-parity, quadrupolar (� ¼ 0 and
‘ ¼ m ¼ 2) insplunge waveform. We take it in the
form

h22 ¼M�

R
n22xY

2;�2

�
�

2
;�

�
ĤeffT22e

i�22f22ðxÞfNQC22 ;

(4)

where, for notational simplicity, we have sup-
pressed the parity label � ¼ 0. Such a multiplica-
tively decomposed form of h22 was introduced in
[16,18]. See these references and [20,24,25] for the
definition of the factors in (4); f22ðxÞ is a modulus
correction, here defined (as in [18], where f22 was
computed, using [26,27], at the 3þ2 PN accuracy;
Eq. (10) there) as being the following Padé-

resummed function fPf22ðx;�Þ ¼ P3
2½fTaylor22 ðx;�Þ�.

The new ingredient of h22 introduced here is the
definition of the last factor in Eq. (4), namely, an

additional ‘‘next-to-quasi-circular’’ (NQC) correc-
tion factor of the form [28]

fNQC22 ða1; a2Þ ¼ 1þ a1p
2
r�=ðr�Þ2 þ a2 €r=r�

2:

(5)

A crucial facet of the new analytical formalism presented
here consists in trying to be as predictive as possible by
reducing to an absolute minimum the number of ‘‘flexibil-
ity parameters’’ entering our theoretical framework. We
shall achieve this aim by ‘‘analytically’’ determining the
two parameters a1, a2 entering (via the NQC factor Eq. (5))

the (asymptotic) quadrupolar EOB waveform R̂hEOB22

(where R̂ ¼ R=M) by imposing: (a) that the modulus

jR̂hEOB22 j reaches, at the EOB-determined ‘‘merger time’’

tm, a local maximum, and (b) that the value of this maxi-
mum EOB modulus is equal to a certain (dimensionless)
function of �, ’ð�Þ. We calibrated ’ð�Þ (independently of
the EOB formalism) by extracting from the best current
numerical relativity simulations the maximum value of the
modulus of the numerical relativity quadrupolar metric

waveform jR̂hNR22 j. Using the data reported in [6,20], and
considering the ‘‘Zerilli-normalized’’ asymptotic metric

waveform �22 ¼ R̂h22=
ffiffiffiffiffiffi
24

p
, we found ’ð�Þ ’

0:3215�ð1� 0:131ð1� 4�ÞÞ. Our requirements (a) and
(b) impose, for any given AðuÞ potential, two constraints
on the two parameters a1, a2. We can solve these two
constraints (by an iteration procedure) and thereby
uniquely determine the values of a1, a2 corresponding to
any given AðuÞ potential. In particular, in the case consid-
ered here where Aðu;a5; a6; �Þ is defined by
Eq. (2), this uniquely determines a1, a2 in function of a5,
a6, and �.
Finally, our analytical formalism contains only two an-

alytically undertermined parameters, namely a5 and a6,
which parametrize some flexibility in the Padé resumma-
tion of the basic radial potential AðuÞ, connected to the yet
uncalculated higher PN contribution [29]. We have first
compared the ða5; a6Þ-dependent predictions made by our
formalism to the high-accuracy waveform from an equal-
mass BBH (� ¼ 1=4) computed by the Caltech-Cornell
group [6] (and now made available on the web). We found
that there is a strong degeneracy between a5 and a6 in the
sense that there is an excellent EOB-NR agreement for an
extended region in the ða5; a6Þ plane. More precisely, the
phase difference between the EOB (metric) waveform and
the Caltech-Cornell one, considered between GW frequen-
cies M!L ¼ 0:047 and M!R ¼ 0:31 (i.e., the last 16 GW
cycles before merger), stays smaller than 0.02 radians
within a long and thin bananalike region in the ða5; a6Þ
plane. This ‘‘good region’’ approximately extends between
the points ða5; a6Þ ¼ ð0;�20Þ and ða5; a6Þ ¼ ð�36;
þ520Þ. As an example (which actually lies on the bound-
ary of the ‘‘good region’’), we shall consider here the
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specific values a5 ¼ 0, a6 ¼ �20 (to which correspond,
when � ¼ 1=4, a1 ¼ �0:036 347, a2 ¼ 1:2468). We
henceforth use M as a time unit.

Figure 1 compares (the real part of) our analyticalmetric
quadrupolar waveform �EOB

22 =� to the corresponding

(Caltech-Cornell) NR metric waveform �NR
22 =� (obtained

by a double time-integration, à la [20], from the original
NR curvature waveform c 22

4 ). [We used the ‘‘two-
frequency pinching technique’’ of [19] with !1 ¼ 0:047
and !2 ¼ 0:31.] The agreement between the analytical
prediction and the NR result is striking, even around the
merger (see the close-up on the right). The phasing agree-
ment is excellent over the full time span of the simulation
(which covers 32 cycles of inspiral and about 6 cycles of
ringdown), while the modulus agreement is excellent over
the full span, apart from two cycles after merger where one
can notice a difference. A more quantitative assessment of
the phase agreement is given in Fig. 2, which plots the
(!1-!2-pinched) phase difference�� ¼ �EOB

metric ��NR
metric.

�� remains remarkably small (��0:02 radians) during
the entire inspiral and plunge (!2 ¼ 0:31 being quite near
the merger, see inset). By comparison, the root-sum of the
various numerical errors on the phase (numerical trunca-
tion, outer boundary, extrapolation to infinity) is about
0.023 radians during the inspiral [6]. At the merger, and
during the ringdown, �� takes somewhat larger values
(��0:1 radians), but it oscillates around zero, so that, on
average, it stays very well in phase with the NR waveform
(as is clear on Fig. 1). By comparison, we note that [6]
mentions that the phase error linked to the extrapolation to
infinity doubles during ringdown. We also found that the
NR signal after merger is contaminated by unphysical
oscillations. We then note that the total ‘‘two-sigma’’ NR
error level estimated in [6] rises to 0.05 radians during
ringdown, which is comparable to the EOB-NR phase
disagreement. Figure 3 compares the analytical and nu-
merical metric moduli, j�22j=�. Again our (Padé-re-
summed, NQC-corrected) analytical waveform yields a
remarkably accurate description of the inspiral NR wave-
form. During the early inspiral the fractional agreement

between the moduli is at the 3� 10�3 level; as late as time
t ¼ 3900, which corresponds to 1.5 GW cycles before
merger, the agreement is better than 1� 10�3. The dis-
crepancy between the two moduli starts being visible only
just before and just after merger (where it remains at the
2:5� 10�2 level). This very nice agreement should be
compared with the previously considered EOB waveforms
(which had a more primitive NQC factor, with a2 ¼ 0
[19,20]) which led to large moduli disagreements
(� 20%, see Fig. 9 in [20]) at merger. By contrast, the
present moduli disagreement is comparable to the esti-
mated NR modulus fractional error (whose two-sigma
level is 2:2� 10�2 after merger [6]).
We also explored another aspect of the physical sound-

ness of our analytical formalism: the triple comparison
between (i) the NR GW energy flux at infinity (which
was computed in [21]); (ii) the corresponding analytically
predicted GW energy flux at infinity (computed by sum-

ming j _h‘mj2 over (‘, m)); and (iii) (minus) the mechanical
energy loss of the system, as predicted by the general EOB

FIG. 1 (color online). Equal-mass case: agreement between NR (black online) and EOB-based (red online) ‘ ¼ m ¼ 2 metric
waveforms.

FIG. 2 (color online). Phase difference between the analytical
and numerical (metric) waveforms of Fig. 1.
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formalism, i.e. the ‘‘work’’ done by the radiation reaction
_Emechanical ¼ �F ’. This comparison is shown in Fig. 4,

which should be compared to Fig. 9 of [21]. We kept the
same vertical scale as [21] which compared the NR flux to
older versions of (resummed and nonresummed) analytical
fluxes and needed such a �10% vertical scale to accom-
modate all the models they considered. [The horizontal
axis is the frequency $ of the differentiated metric wave-

form _h22.] By contrast, we see again the striking closeness
(at the �2� 10�3 level) between the analytical and NR
GW fluxes. As both fluxes include higher multipoles than
the (2, 2) one, this closeness is a further test of the agree-
ment between our analytical formalism and NR results.
[We think that the �2� difference between the (coincid-

ing) analytical curves and the NR one on the left of the
figure is due to uncertainties in the flux computation of

[21], possibly related to their method of computing _h.]
Note that the rather close agreement between the analytical
energy flux and the mechanical energy loss during late
inspiral is not required by physics (because of the well-
known ‘‘Schott term’’ [30]), but is rather an indication

that _h‘m can be well approximated by �im�h‘m (used in
Eq. (3)).
Finally, as the power of our formalism resides in the ease

with which it can accommodate continuous variations in
the basic physical parameters of the considered BBH, we
shall discuss an unequal-mass system (� < 1=4). The
highest-accuracy data that we had in hand is the Jena-group
simulation of a 2:1mass ratio BBH (� ¼ 2=9 ¼ 0:222 22).
When a5 ¼ 0, a6 ¼ �20, and � ¼ 2=9, one finds a1 ¼
�0:017 017, a2 ¼ 1:1906. Using the data reported in [20]
(and the function’ð�Þ quoted above), we compare in Fig. 5
(the real part of) our analytical metric quadrupolar wave-
form �EOB

22 =� to the corresponding (Jena, 2:1 mass ratio)
NR metric waveform �NR

22 =�. [We use, as in [20], the
pinching frequencies !1 ¼ 0:1005, !2 ¼ 0:4542.] Again
we have an excellent analytical-numerical agreement, both
in phase and in modulus. The small differences between
the two are within the numerical errors (see [20]).
Conclusions. We have described a specific analytical

formalism (within the EOB framework), which contains
as arbitrariness only the resummation-flexibility parame-
ters of the crucial EOB AðuÞ potential. We have shown that
for certain values [31] of these parameters (a5; a6): (i) the
waveform predicted by our analytical formalism agrees,
essentially within numerical errors, with the currently most
accurate numerical-relativity simulations; this agreement
holds for several different mass ratios (1:1, 2:1 and 4:1—
not shown here); and (ii) the gravitational-wave energy flux

FIG. 4 (color online). Triple comparison between NR and
EOB GW energy fluxes and the EOB mechanical energy loss.

FIG. 3 (color online). Equal-mass case: metric-amplitudes
comparison. The maximum of the orbital frequency � defines
the EOB merger.

FIG. 5 (color online). Unequal-mass case: Comparison be-
tween metric waveforms for the 2:1 mass ratio.
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predicted by our formalism agrees, within numerical er-
rors, with the most accurate numerical-relativity energy
flux. We think that our formalism (possibly after some
further minor improvements) opens a realistic possibility
of constructing (with minimal computational resources) a
very accurate, large bank of gravitational-wave templates,
thereby helping in both detecting and analyzing the signals
emitted by inspiralling and coalescing binary black holes.
[Though we have in mind essentially ground-based detec-
tors, we think our method could also apply to space-based
ones.] Finally, from a theoretical point of view, we think
that our method can be extended to the description of
(nearly circularized) spinning black-hole systems (see
[11]).

After the submission of this work, a paper [32] compar-
ing Caltech-Cornell numerical data to a different version of
the EOB formalism appeared on the archives. The EOB
formalism of [32] does not use our novel (predictive)
radiation reaction Eq. (3) (but rather the vpole-tuned one

advocated in [18]), nor our a6-improved A potential,
Eq. (2). Moreover, by contrast to the approach advocated
here to reduce to an absolute minimum the number of
adjusted parameters, namely, two, ða5; a6Þ, Ref. [32] tunes
six parameters: (a5ð1=4Þ, vpoleð1=4Þ, ah223 ð1=4Þ, ah224 ð1=4Þ,
ah225 ð1=4Þ, and t22matchð1=4Þ).
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