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Using lattice simulations, we study the extent of the conformal window for an SU(3) gauge theory with

Nf Dirac fermions in the fundamental representation. We extend our recently reported work, describing

the general framework and the lattice simulations in more detail. We find that the theory is conformal in

the infrared for Nf ¼ 12, governed by an infrared fixed point, whereas the Nf ¼ 8 theory exhibits

confinement and chiral symmetry breaking. We therefore conclude that the low end of the conformal

window Nc
f lies in the range 8 � Nc

f � 12. We discuss open questions and the potential relevance of the

present work to physics beyond the standard model.
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I. INTRODUCTION

The conformal window in a gauge field theory with Nf

light fermions is the range ofNf values such that the theory

is asymptotically free and the infrared coupling is governed
by an infrared fixed point. In an SUðNÞ gauge theory with
Nf Dirac fermions in the fundamental representation, the

conformal window extends from 11N=2 down to some
critical value Nc

f at which a transition is expected to a

phase in which chiral symmetry is broken spontaneously,
and confinement sets in. In a recent paper [1], we provided
the first nonperturbative evidence, using lattice simula-
tions, that the lower end of the conformal window for the
SU(3) gauge theory lies in the range 8<Nc

f < 12.

Gauge theories in or near the conformal window could
play a key role in describing physics beyond the standard
model. If the fermions carry electroweak quantum num-
bers, and if Nf lies outside but near the conformal window,

then the theory could drive electroweak breaking, forming
the basis of walking technicolor theories. If the fermions
do not carry electroweak quantum numbers, then Nf could

lie within the conformal window, and the theory could
describe some new, conformal sector, possibly coupled to
the standard model through SUðNÞ invariant operators. It is
important to learn as much as possible about the extent of
the conformal window in these theories, as well as the
order of the transition atNc

f and the properties of the theory

within the window and near it.
To obtain the result 8<Nc

f < 12 for Dirac fermions in

the fundamental representation of an SU(3) gauge group,
we employed [1] a gauge invariant, nonperturbative run-
ning coupling derived from the Schrödinger functional of
the gauge theory [2–4]. Defined within a Euclidean box of
volume OðL4Þ, it avoids typical finite volume effects by
using L itself as the sliding scale. For the asymptotically
free theories being considered, it agrees with the perturba-
tive running coupling at small enough L, and can be used to
probe for conformal behavior in the large L limit. We made
use of staggered fermions as in Ref. [5], and therefore

restricted attention to values of Nf that are multiples of

4. The valueNf ¼ 16 leads to an infrared fixed point that is

so weak that it is best studied in perturbation theory. The
value Nf ¼ 4 is expected to be well outside the conformal

window, leading to confinement and chiral symmetry
breaking [6] as with Nf ¼ 2. We thus focused on the two

values Nf ¼ 8 and Nf ¼ 12. We argued [1] that for Nf ¼
12, the theory is indeed conformal in the infrared. For
Nf ¼ 8, we showed, in disagreement with an earlier lattice

study [7], that the theory breaks chiral symmetry and
confines. There is no evidence for an infrared fixed point.
In this paper, we provide a more detailed description of

the results of Ref. [1], and extend the analysis in several
ways. Continuing to focus on the valuesNf ¼ 8 and 12, we

describe more extensive numerical simulations of the run-
ning coupling and discuss in more detail the treatment of
lattice artifacts and the extrapolation to the continuum. We
again conclude that 8<Nc

f < 12, with a more precise

determination of the large L behavior of the running
coupling.
This work paves the way for future SU(3) simulations at

other values ofNf, in particular, in the range between 8 and

12, for fermions in other representations of the SU(3)
gauge group, and for other gauge groups. Simulations
using other definitions of the running coupling, for ex-
ample, derived from the Wilson loop, should also be car-
ried out [8]. Conclusions about the conformal window
based on the study of running couplings should be con-
firmed by zero-temperature lattice simulations of the chiral
condensate and other quantities. These include the particle
masses and Goldstone boson decay constants for Nf just

below Nc
f, and various correlation functions within the

conformal window [9].
In Sec. II, we describe what is known from perturbative

and other studies about the conformal window in SUðNÞ
gauge theories. For comparison, we describe briefly the
conformal window in supersymmetric SUðNÞ gauge theo-
ries. In Sec. III, we review the Schrödinger functional
framework [2–4] for our numerical simulations. Our lattice
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simulations are described in Sec. IV. We discuss the algo-
rithms, the use of staggered fermions, the continuum ex-
trapolation, and analysis methods. In Sec. V, we present
our results for both Nf ¼ 8 and 12, and compare to other

studies. We summarize our work and discuss open ques-
tions in Sec. VI. The details of our error analysis are given
in Appendix A, and tables of simulation data appear in
Appendix B.

II. THE CONFORMALWINDOW

We first review what is known from the perturbative
expansion of the beta function, and then discuss briefly a
nonperturbative approach based on the counting of degrees
of freedom and some other, quasiperturbative studies.

A. Perturbation theory

The existence of a conformal window in SUðNÞ gauge
theories has been known since the computation of the two-
loop beta function by Caswell in 1974 [10]. If the number
of massless fermions Nf is near but just below the number

Naf
f at which asymptotic freedom sets in, then the two-loop

term is opposite in sign to the one-loop term and the
resultant infrared fixed point is weak, accessible in pertur-
bation theory. There is no confinement and chiral symme-
try is unbroken. The properties of this phase were studied
by expanding in Naf

f � Nf in Ref. [11].

As Nf is reduced, the strength of the infrared fixed point

grows, with Nf ultimately reaching the value Nc
f at which

the transition to the chirally broken and confining phase is
thought to set in. There is no a priori reason to expect the
infrared fixed point to remain perturbative through this
window, although arguments to this effect have been ad-
vanced [12].

If the theory is formulated in the continuum and a
running coupling �g2ðLÞ is defined at some length scale L,
we have Lð@=@LÞ �g2ðLÞ ¼ ��ð �g2ðLÞÞ, where
��ð �g2ðLÞÞ ¼ b1 �g

4ðLÞ þ b2 �g
6ðLÞ þ b3 �g

8ðLÞ þ b4 �g
10ðLÞ

þ � � � : (1)

For the case of SU(3), the first two (scheme-independent)
coefficients are

b1 ¼ 2

ð4�Þ2
�
11� 2

3
Nf

�
;

b2 ¼ 2

ð4�Þ4
�
102� 38

3
Nf

�
:

(2)

The next two coefficients depend on the renormalization

scheme. In the MS scheme, they are given by [13]

bMS
3 ¼ 2

ð4�Þ6
�
2857

2
� 5033

18
Nf þ 325

54
N2

f

�
; (3)

and

bMS
4 ¼ 2

ð4�Þ8 ð29 243:0� 6946:30Nf þ 405:089N2
f

þ 1:499 31N3
fÞ: (4)

For Nf close to 33=2, the two-loop infrared fixed point

value �g2� is very small, and therefore corrected very little by
the higher order terms.
If the loop expansion is reliable to estimate �g2�, other

quantities can also be estimated. An example is the
(scheme-dependent) parameter � governing the approach
to the fixed point. If the beta function is linearized in the
vicinity of the fixed point,

��ð �g2ðLÞÞ ’ �½ �g2� � �g2ðLÞ�; (5)

then as L ! 1, the approach to the fixed point from either
side is given by

�g 2ðLÞ ! �g2� � const

L� : (6)

For Nf ¼ 12, there is a two-loop infrared fixed point at

�g2� ’ 9:48, corrected to ’ 5:47 at three loops in the MS
scheme, and to ’ 5:91 at four loops. The critical exponent

is then � ¼ 0:36 at two loops, and in the MS scheme is
given by � ¼ 0:296 at three loops and � ¼ 0:282 at four
loops. The convergence of the loop expansion is not guar-
anteed, but the fact that the expansion parameter at the
fixed point �g2�=4� is relatively small suggests that it could
be reliable, and therefore that Nf ¼ 12 lies inside the

conformal window. For Nf ¼ 8, there is no two-loop in-

frared fixed point. A fixed point can appear at three loops
and beyond in some schemes, but its scheme dependence
and typically large value means that there is no reliable
evidence for an infrared fixed point accessible in perturba-
tion theory. A nonperturbative study is essential.

B. An upper bound on Nc
f

We next review a conjectured inequality which leads to
an upper bound on Nc

f [14]. For any asymptotically free

theory, the thermodynamic free energy may be computed
perturbatively as T ! 1, approaching the (free) Stefan-
Boltzman expression�ð�2T4=90ÞfUV, with fUV ¼ ½NB þ
ð7=8Þ4NF�, where NB and NF are the numbers of (under-
lying) bosonic fields and four-component Dirac fields.
Similarly, as T ! 0, if the effective low energy theory is
infrared free, the free energy approaches the expression
�ð�2T4=90ÞfIR, where fIR counts the (massless) infrared
degrees of freedom in the same way. The conjectured
inequality is simply fIR � fUV.
For a nonsupersymmetric SUðNÞ theory with Nf mass-

less Dirac fermions in the fundamental representation,
fUV ¼ 2ðN2 � 1Þ þ ð7=8Þ4NNf. If this theory is in the

chirally broken phase at zero temperature, then fIR simply
counts the number of Goldstone bosons: fIR ¼ N2

f � 1.

The inequality then gives Nc
f � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 16=81

p
. For
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SU(3), this is consistent with Nf ¼ 12 being within the

conformal window.
It is interesting to note that for a supersymmetric SUðNÞ

gauge theory with Nf massless Dirac fermions in the

fundamental representation, where Nc
f denotes the transi-

tion point between the phase with infrared conformal
symmetry and the free-magnetic phase, the same inequal-
ity gives Nc

f � ð3=2ÞN, a limit precisely saturated by the

result from duality arguments [15]. It is natural to ask to
what extent the inequality is also saturated in the non-
supersymmetric case.

C. Other studies

Finally, we note that several groups over the years have
attempted to determine the value of Nc

f, as well as the

nature of the transition as Nf ! Nc
f from below and fea-

tures of the bound-state spectrum in this limit, by studying
continuum Schwinger-Dyson (SD) equations [16–18].
Some truncation of the SD equations must be adopted. It
is then assumed that the infrared behavior is governed by
an infrared fixed point appearing in the perturbative beta
function, and solutions corresponding to broken chiral
symmetry are sought. This leads to a value for Nc

f slightly

below 4N, approaching it in the large-N limit, as well as
information about the theory in the broken phase near the
transition. The reliability of these results is not clear,
however, since higher order effects are not obviously small.

III. THE SCHRÖDINGER FUNCTIONAL
FORMALISM

A. Introduction

The Schrödinger functional is the partition function
describing the quantum mechanical evolution of a system
from a prescribed state at time t ¼ 0 to another state at
time t ¼ T in a spatial box of size L with periodic bound-
ary conditions [2–4]. Dirichlet boundary conditions are
imposed at t ¼ 0 and t ¼ T where T is OðLÞ. They are
chosen such that the minimum-action configuration is a
constant chromoelectric background field of strength
Oð1=LÞ. This can be implemented in the continuum [2]
or with lattice regularization [19]. In either case, by con-
sidering the response of the system to small changes in the
background field, a gauge invariant running coupling can
be defined, valid for any coupling strength.

The Schrödinger functional can be represented as the
path integral

Z½W; �; �� ;W 0; � 0; �� 0�
¼

Z
½DADcD �c �e�SGðW;W 0Þ�SFðW;W 0;�; ��;� 0; �� 0Þ; (7)

where A is the gauge field and c , �c are the fermion fields.
W and W 0 are the (fixed) boundary values of the gauge

fields, and � , �� , � 0, �� 0 are the boundary values of the
fermion fields at t ¼ 0 and t ¼ T, respectively.
Although the Schrödinger functional can be formulated

completely in the continuum, from here on we will intro-
duce a Euclidean spacetime lattice. The quantity SG is
chosen to be the standard Wilson gauge action [20] with
a boundary improvement counterterm:

SG ¼ ��

N

X
P

wðPÞReTrUP

¼ � �

4N
a4
X
x

TrF̂��F̂
�� � �

4N
ð1� ctÞa5

�X
x

½�ðt� 0Þ þ �ðt� TÞ�TrF̂0�F̂
0� þOða6Þ; (8)

where Tr represents a color trace, a is the lattice spacing,
and � � 2N=g20 with g0 the lattice coupling constant. The

improvement coefficient wðPÞ ¼ ct when multiplying
timelike plaquettes which intersect the Dirichlet bounda-
ries, and is equal to 1 elsewhere. For this computation we
set ct equal to its value as determined in one-loop lattice
perturbation theory [5],

ct ¼ 1þ g20½�0:089 00ð5Þ þ 0:004 74ð1ÞNf�: (9)

The operator F̂�� is defined similarly to the continuum

field strength tensor,

F̂ �� � �f
�A� � �f

�A� þ ½A�; A�� (10)

with �f
�gðxÞ � ðgðxþ a�̂Þ � gðxÞÞ=a the discrete for-

ward derivative operator. If we take the continuum limit
of the action (8), we recover the standard Yang-Mills
action. The sum over plaquettes P may be expanded out
in terms of individual gauge links:X

P

ReTrUP ¼ X
x

X
�<�

ReTr½U�ðxÞU�ðxþ �̂Þ

�Uy
� ðxþ �̂þ �̂ÞUy

�ðxþ �̂Þ�: (11)

For the fermionic action, we use the staggered approach
as in Ref. [5], which reduces the 16 doubler species of a
naively discretized fermion field to 4 degrees of freedom.
In the continuum limit, a single staggered fermion field can
be interpreted as four degenerate Dirac fermion fields. For
Nf divisible by four, the total fermionic action SF is then

given by

SF ¼ X
Nf=4

Sf; (12)

where Sf is the fermion action for a single staggered field

as in [5],

Sf ¼ 1

2

X
x;�

��ðxÞ �	ðxÞ½U�ðxÞ	ðxþ �̂Þ

�Uy
�ðx� �̂Þ	ðx� �̂Þ�; (13)
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with �� the usual staggered phase factor �� ¼
ð�1Þ

P
�<�

x� .
Without affecting the action, the spatial-periodicity con-

dition can be generalized to include a phase rotation on the
fermion fields at the spatial boundaries,

	ðxþLk̂Þ ¼ ei
k	ðxÞ; �	ðxþLk̂Þ ¼ �	ðxÞe�i
k ; (14)

where k runs over all of the spatial directions. Imposing a
nonzero value on the 
k has been shown in QCD to
improve the ratio of the largest and smallest eigenvalues
of the Dirac matrix [21], which in turn improves computa-
tional speed. However, this result is based on nonperturba-
tive tuning, and is not guaranteed to extend to the theories
we are considering. We therefore set 
k ¼ 0 for simplicity.

B. Temporal boundary values and definition of the
Schrödinger functional coupling

The gauge boundary values W, W 0 are chosen such that
the minimum-action configuration is a constant chromo-
electric field whose magnitude is of Oð1=LÞ and is con-
trolled by a dimensionless parameter �. The Schrödinger
functional (SF) running coupling is then defined in terms of
the response of the action to variations in �. The setup is as
follows: we take for the particular boundary values of the
gauge fields

Ukð ~x; t¼ 0Þ¼ expðaCkÞ Ukð ~x;t¼TÞ¼ expðaC0
kÞ; (15)

where the Ck, C
0
k are spatially constant and Abelian,

Ck ¼ i

L

�1

�2

�3

0
@

1
A;

C0
k ¼

i

L

�0
1

�0
2

�0
3

0
@

1
A:

(16)

Classically, boundary conditions of this form lead to a
constant chromoelectric background field, with field
strength proportional to 1=L. We adopt the particular set
of boundary values

�1 ¼ �� �

3
�0

1 ¼ ��� �

�2 ¼ � 1

2
� �0

2 ¼
1

2
�þ �

3

�3 ¼ � 1

2
�þ �

3
�0

3 ¼
1

2
�þ 2�

3
;

(17)

which are chosen to ensure that the background field is a
stable solution to the classical field equations for small �
[22].

With the boundary conditions fixed in this way, the SF
running coupling �g2ðL; TÞ is defined by taking

k

�g2ðL; TÞ ¼ � @

@�
logZj�¼0; (18)

where

k ¼ 12

�
L

a

�
2
�
sin

�
2�a2

3LT

�
þ sin

�
�a2

3LT

��
: (19)

The factor k is chosen so that �g2ðL; TÞ equals the bare
coupling at tree level. In general, �g2ðL; TÞ can be thought
of as the response of the system to small changes in the
background chromoelectric field.
The fermionic Dirichlet boundary values � , �� , � 0, �� 0 are

subject only to multiplicative renormalization for stag-
gered fermions [23]. As we are free to choose these values,
we take them equal to zero, simplifying the calculation.
The staggered approach to discretization of fermions can

be thought of as splitting the 16 degrees of freedom of a
single spinor over a 24 hypercube of lattice sites. This
framework makes it evident that staggered simulations
require an even number of lattice sites in each direction.
Thus with periodic boundary conditions in space, the spa-
tial extent L=a of the lattice must be even. However, in the
Schrödinger functional formalism, the Dirichlet bounda-
ries in the time direction require an odd temporal extent
T=a in order for the number of lattice sites to be even, since
the sites located at t ¼ 0 and t ¼ T are distinct.
As a result, one cannot simulate with T ¼ L, only with

T ¼ L� a. In the continuum limit T ¼ L is recovered, but
at a finite lattice spacing this results in the introduction of
OðaÞ lattice artifacts into observables. This is particularly
undesirable, since staggered fermion simulations contain
bulk artifacts at Oða2Þ and higher. Fortunately, simulating
at T ¼ L� a and averaging over the observed values
eliminates this effect [5]. We adopt this technique here,
defining the central observable

1

�g2ðLÞ ¼ 1

2

�
1

�g2ðL; L� aÞ þ
1

�g2ðL; Lþ aÞ
�
; (20)

which depends on only one large distance scale L. To be
more explicit, this running coupling can be written as
�g2ð�; L=aÞ where � � 2N=g20. From this point on we

will fix N ¼ 3, and so � ¼ 6=g20.

C. Schrödinger functional perturbation theory

The SF coupling �g2ðLÞ has been normalized to give the
bare lattice coupling g20 at tree level. With the lattice as a

regulator, it can be expanded as a power series in g20 with
coefficients depending on a=L. By rearranging this series
in terms of a coupling defined at an arbitrary scale and
setting to zero terms that vanish as a ! 0, a continuum
beta function can be defined. Its perturbation expansion
leads to the universal coefficients b1 and b2 of Eq. (2) at the
one- and two-loop levels.
The three-loop, scheme-dependent coefficient has been

computed in the Schrödinger functional scheme by com-
bining the two-loop perturbative computation of the SF
running coupling in lattice perturbation theory with a

similar lattice computation of the MS coupling constant
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[19]. The result is

bSF3 ¼ bMS
3 þ b2c2

4�
� b1ðc3 � c22Þ

16�2
; (21)

where bMS
3 is given by Eq. (3) with c2 ¼ 1:256þ 0:040Nf

and c3 ¼ c22 þ 1:197ð10Þ þ 0:140ð6ÞNf � 0:0330ð2ÞN2
f.

The perturbative behavior discussed in Sec. II, based on

the MS scheme, is qualitatively unchanged by the modifi-
cation of the three-loop coefficient. ForNf ¼ 12, the three-

loop SF coupling has a fixed point at �g2� 	 5:18, compared

with �g2� 	 5:47 at three loops in the MS scheme. At three
loops in the SF scheme, the value of the critical exponent
Eq. (6) is � ¼ 0:286.

The four-loop coefficient in the SF scheme has not yet

been computed. But the fact that in the MS scheme the
four-loop correction shifts the fixed point by less than 10%
from its three-loop value suggests that the same may be
true in the SF scheme. This and the relative smallness of
the expected loop expansion parameter Oð �g2ðLÞ=ð4�2ÞÞ at
the fixed point indicates that perturbation theory could be
reliable to describe infrared behavior forNf ¼ 12, and that

the infrared fixed point might truly exist. ForNf ¼ 8, since

the universal one- and two-loop coefficients are both posi-
tive, there is no reliable, perturbative evidence for the
existence of an infrared fixed point. As observed in
Sec. II, a nonperturbative study is essential.

In perturbation theory, the SF running coupling behaves
just like the running coupling defined in other, more famil-
iar ways. Its behavior is identical through two loops, and
then qualitatively similar at three loops and beyond. Other
definitions of the running coupling are based on Green
functions of local operators or quantities such as the
Wilson loop, while the Schrödinger functional and the
associated running coupling dependence on a background
field act across the entire lattice. This definition of the
running coupling is nonperturbative, but its relation to
other nonperturbative definitions in the strong-coupling
regime is not yet clear. Nevertheless, the SF running cou-
pling is adequate for our purposes: to distinguish between
conformal and confining behavior in the infrared.

IV. LATTICE SIMULATIONS

A. Setup and procedure

To measure the running coupling on the lattice, we
generate an ensemble of gauge configurations distributed
with the appropriate weighting by the Euclidean action.
The running coupling is then computed as an average over
this ensemble. Simulations are performed using the MILC
code [24], with some customization. Evolution of the
gauge configurations is accomplished using the hybrid
molecular dynamics (HMD) approach, with the fermionic
contribution included using the R algorithm [25].
Trajectories are taken to be of unit length, while the step
size �� of the MD integrator is varied. The R algorithm is
known to introduce errors of Oðð��Þ2Þ into observables;

we discuss this effect along with other sources of error
below.
Sets of gauge configurations are generated at a fixed box

size L=a and fixed bare coupling�. For each (�, L=a), two
independent ensembles are created at T=a ¼ L=a� 1, and
then averaged together as in Eq. (20). The data are col-
lected over a wide range of � values and for 6 � L=a �
20, in order to capture the evolution of �g2ðLÞ over a large
range of scales. It is important to note that in the range of �
values employed, for bothNf ¼ 8 andNf ¼ 12, there is no

evidence for a bulk phase transition. We have explored this
issue by examining the plaquette time series within this
range and at lower values of �. At lower values, we have
indeed found evidence for a bulk phase transition. These
lower values are, however, well separated from the mini-
mum � shown in our data tables and used in our analysis.
There is no such evidence in the range of � values em-
ployed here.
Simulations were also performed at L=a ¼ 4, but these

values were not used in our analysis. Examination reveals
large lattice-artifact corrections in the L=a ¼ 4 data. Their
presence is not unexpected, particularly on the smaller
43 � 3 lattices; with only a single lattice site between the
Dirichlet boundaries, the OðaÞ boundary operators appear-
ing in Eq. (8) overlap. In addition, the 43 � 3 lattices fail to
satisfy the conditions of the ‘‘stability theorem’’ of Lüscher
et al., meaning that the background chromoelectric field
being expanded around may not be an absolute minimum
of the action [2]. This also precludes the use of data from
43 � 5 lattices, since although they satisfy the stability
criterion, without the 43 � 3 lattices we cannot use the
averaging procedure described in Sec. III B.1

Since updating of the gauge fields is accomplished
locally, while the running coupling is simulated on the
scale of the box size L, a large number of updates is
required to generate statistically independent values of
�g2ðLÞ. To remove statistical bias from our results, we
collect a large number of gauge configurations at each
point in parameter space, ranging from 20 000 to 160 000
MD trajectories with a greater number required for mea-
surements at stronger coupling. These run lengths are
established based on our analysis of autocorrelations, dis-
cussed in Appendix A.

B. Step scaling

We are interested in mapping out the behavior of the
running coupling over a large range of scales, from the
ultraviolet to the infrared. Often, a lattice simulation (i.e. a
set of gauge configurations, generated using a fixed set of

1There has been some ongoing work by Perez-Rubio et al.
attempting to remove the bulk OðaÞ artifact directly through a
counterterm, rather than via the averaging procedure, which
might allow useful measurement of the SF running coupling
on the 43 � 5 lattices [26].
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parameters) is focused on measuring quantities at distance
scales lying between the lattice spacing a and the box size
L. Our use of the Schrödinger functional instead places the
observable �g2ðLÞ at the scale L, eliminating the latter
restriction. However, the range of scales L over which
we can measure the coupling strength with fixed lattice
spacing a before the computational expense becomes pro-
hibitive is still rather limited. To achieve our goal, there-
fore, we must measure the coupling using a wide range of a
values, and then match these measurements together. To
accomplish this, we use a procedure known as step scaling
[27,28].

Step scaling provides a systematic way to combine
multiple lattice measurements of the running coupling
�g2ðLÞ into a single measurement of the continuum evolu-
tion of the coupling as the scale changes from L ! sL,
where s is a scaling factor called the step size. In a con-
tinuum setting, the evolution is described by the ‘‘step-
scaling function,’’

ðs; �g2ðLÞÞ � �g2ðsLÞ; (22)

which can be thought of as a discrete version of the usual
continuum evolution described by the beta function. In a
lattice calculation, the extracted step-scaling function will
be a function also of a=L, which we must extrapolate to the
continuum:

ðs; �g2ðLÞÞ ¼ lim
a!0

�ðs; �g2ðLÞ; a=LÞ: (23)

Step scaling is generically implemented on the lattice as
follows. First, an initial value u ¼ �g2ðLÞ is chosen. Several
ensembles with different values of a=L are then generated,
with � tuned so that the coupling measured on each is
equal to the chosen value, �g2ðLÞ ¼ u. A second ensemble
is generated at each �, but with L ! sL. The value of the
coupling measured on this larger lattice is exactly
�ðs; u; a=LÞ. An extrapolation a=L ! 0 can then recover
the continuum value ðs; uÞ. Taking ðs; uÞ to be the new
starting value, we can then iterate this procedure until we
have sampled �g2ðLÞ over a large range of L values. In
practice we take s ¼ 2.

There is a natural caveat on the step-scaling procedure.
In the limit a=L ! 0with �g2ðLÞ fixed, g20ða=LÞ depends on
the short-distance behavior of the theory, and it is impor-
tant that it remains bounded so that it does not trigger a
bulk phase transition. If asymptotic freedom governs the
short distance behavior, this is automatic since g20ða=LÞ !
1= logðL=aÞ. While this is our principal focus, the exis-
tence of an infrared fixed point for the Nf ¼ 12 theory will

lead us to consider also values of �g2ðLÞ lying above the
fixed point. Then g20ða=LÞ increases as a ! 0, with no

evidence from our simulations that it remains bounded
and therefore that the continuum limit exists. Neverthe-
less, one can consider small values of a=L providing that

g20ða=LÞ remains small enough not to trigger a bulk phase

transition. We return to this point in our discussion of the
Nf ¼ 12 simulation data.

C. Interpolating functions

Carrying out the above procedure directly can be ex-
pensive in computational power since each tuning of �
may require several attempts. The procedure also severely
limits the rate at which computations may be performed,
since each simulation must be finished and the value of
ðs; uÞ extracted before the next iteration. We instead
measure �g2ðLÞ for a limited set of values for � and L=a,
and then generate an interpolating function. This function
is then used to tune � as described above, and renders the
cost of extracting a step-scaling function independent of
the number of steps taken.
For any value of L=a in our range, �g2ð�;LÞ is a mono-

tonically decreasing function of � ¼ 6=g20. One procedure
is simply to interpolate linearly between the available �
values for each L=a. This works reasonably well in the
perturbative region, reproducing the correct continuum
perturbative running once the step-scaling procedure is
carried out. For stronger coupling, however, linear inter-
polation leads to some anomalies due to statistical fluctua-
tions. A better procedure is to use a smooth interpolating
function fit to the data.
For our results reported in Ref. [1], we fit �g2ð�; LÞ to a

single function based on a truncated Laurent series with
poles at small, unphysical values of �, well below the
simulation range. Here we employ a set of interpolating
functions, one for each L=a, focused directly on the lattice
observable 1= �g2ð�;L=aÞ. Motivated by the fact that in
lattice perturbation theory this quantity takes the form

1

�g2ð�; L=aÞ ¼ 1

g20
½1þOðg20Þ� ¼

�

6

�
1þO

�
1

�

��
; (24)

we use a fit to �g2ð�;L=aÞ at each L=a as a function of �,
with n-th order polynomial dependence on g20 ¼ 6=�:

1

�g2ð�;L=aÞ ¼ �

6

�
1�Xn

i¼1

ci;L=a

�
6

�

�
i
�
: (25)

The order n of the polynomial is varied with L=a in order
to achieve the optimal 	2 per degree of freedom when
fitting to our data. The values of the parameters with
associated errors, determined by fits to the simulation
data for both Nf ¼ 8 and Nf ¼ 12, are recorded in

Appendix B.
This function is used for interpolation within the mea-

sured range, as a basis for the step-scaling procedure. It is
based on empirical observation of the g20 dependence of our
observable, and is not meant to imply that perturbation
theory is applicable to our nonperturbative, strong-
coupling results. More elaborate interpolating functions
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could be used, in particular, modeling explicitly the L=a
dependence or including nonanalytic terms in g20, but such
functional forms do not significantly alter the fit quality or
the results of step scaling based on the collected data set.

D. Statistical and systematic errors

We account for numerous sources of statistical and
systematic error in our analysis. A detailed discussion of
the estimation and/or elimination of these errors is given in
Appendix A. We conclude that potential systematic errors
in our procedure are small compared to current statistical
errors. Our final results for continuum running are there-
fore shown with only a statistical-error band.

We note that this conclusion differs from that of Ref. [1].
In that reference, statistical errors were estimated in a less
sophisticated way, in particular, ignoring the accumulation
of error over repeated step-scaling steps. This led to very
small statistical error bars. In contrast, the systematic error
as determined by uncertainty in the correct form of the
continuum extrapolation was large, due primarily to the
inclusion of values of �g2ðLÞ computed on L=a ¼ 4 vol-
umes, which we now discard for reasons discussed in
Sec. IVA. Thus, with the more extensive analysis de-
scribed here, statistical errors dominate rather than
systematic.

V. RESULTS

A. Nf ¼ 8

The simulation data for �g2ðLÞ as a function of� and L=a
are displayed in Table I. Each data point is the average
given by Eq. (20), with the statistical error in parentheses.
The table ranges from � ¼ 4:55–192 and L=a ¼ 6–16.
The lower limit is chosen to insure that the lattice coupling
is weak enough so as not to induce a bulk phase transition.
The upper limit is taken to be large so that we can check the
agreement of our simulations with perturbation theory
when the coupling is very weak. The final results reported
here depend sensitively only on simulations below� ¼ 10.
The data becomes more sparse with increasing L=a, re-
flecting the growing computational time involved. In par-
ticular, only a very limited amount of L=a ¼ 20 data, at
very weak coupling, is available at Nf ¼ 8, so we exclude

these points from our analysis. The L=a ¼ 10 data is thus
also excluded, since it cannot be used in step scaling at s ¼
2 without the L=a ¼ 20 points. The listed values of �g2ðLÞ
are perturbative ( �g2ðLÞ=4� 
 1) throughout much of the
table, except for small �.
In order to carry out the step-scaling procedure, we

employ the interpolating function of Eq. (25). The result-
ing best-fit mean values and errors for the parameters at
each L=a are shown in Table II. More details, including

TABLE I. Measurements of �g2ð�;L=aÞ, Nf ¼ 8.

� L=a

6 8 10 12 16

4.550 13:06ðþ34
�33Þ 17:12ðþ61

�64Þ
4.560 12:10ðþ32

�32Þ
4.570 11:51ðþ20

�24Þ
4.580 10:21ðþ19

�19Þ
4.590 10:00ðþ22

�22Þ
4.600 9:78ðþ24

�24Þ 11:6ðþ1:2
�1:3Þ 14:40ðþ69

�69Þ 21:9ðþ10:0
�9:4 Þ

4.650 7:887ðþ99
�95Þ 9:63ðþ26

�26Þ 11:23ðþ34
�34Þ 11:5ðþ1:1

�1:0Þ
4.700 6:91ðþ14

�12Þ 8:21ðþ50
�55Þ 10:85ðþ68

�66Þ
4.800 5:626ðþ98

�79Þ 6:56ðþ25
�25Þ 7:11ðþ23

�22Þ 7:61ðþ41
�35Þ 9:5ðþ1:4

�1:2Þ
4.900 4:761ðþ51

�52Þ 5:18ðþ16
�17Þ

5.000 4:204ðþ54
�65Þ 4:68ðþ15

�15Þ 4:96ðþ17
�12Þ 5:64ðþ34

�31Þ 6:45ðþ57
�49Þ

5.100 3:788ðþ43
�39Þ 4:2ðþ0:1

�0:1Þ
5.200 3:382ðþ42

�38Þ 3:674ðþ63
�61Þ

5.300 3:087ðþ26
�24Þ 3:311ðþ35

�32Þ
5.400 2:972ðþ29

�29Þ 3:145ðþ45
�37Þ

5.500 2:724ðþ22
�22Þ 2:965ðþ39

�33Þ 3:122ðþ71
�48Þ 3:380ðþ90

�76Þ 3:374ðþ55
�65Þ

5.600 2:603ðþ11
�12Þ 2:795ðþ43

�31Þ
5.700 2:4424ðþ100

�93 Þ 2:590ðþ13
�13Þ

5.800 2:3340ðþ82
�86Þ 2:491ðþ17

�13Þ
5.830 2:286ð þ9

�11Þ 2:456ðþ15
�15Þ 2:535ðþ12

�13Þ 2:647ðþ26
�23Þ 2:842ðþ41

�44Þ
5.900 2:2246ðþ90

�82Þ 2:340ðþ12
�12Þ

6.000 2:1374ðþ56
�58Þ 2:264ðþ12

�11Þ
6.100 2:0578ðþ63

�64Þ 2:1622ðþ98
�91Þ

6.200 1:9778ðþ47
�46Þ 2:0687ðþ84

�94Þ
6.300 1:9127ðþ58

�52Þ 2:0008ðþ88
�85Þ
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TABLE II. Interpolation best-fit parameters, Nf ¼ 8.

Parameter L=a

6 8 12 16

c1;L=a 0.4632(99) 0.4932(59) 0.581(18) 1.01(18)

c2;L=a �0:14ð12Þ �0:167ð44Þ �0:235ð40Þ �1:01ð37Þ
c3;L=a 1.13(59) 0.76(11) 0.245(23) 0.60(19)

c4;L=a �3:2ð1:3Þ �0:98ð11Þ 0 0

c5;L=a 4.7(1.6) 0.441(37) 0 0

c6;L=a �3:43ð92Þ 0 0 0

c7;L=a 0.98(21) 0 0 0

	2=DOF 1.78 1.49 1.33 1.65

NDOF 55 43 7 2

� L=a

6.400 1:8430ðþ93
�55Þ 1:9230ðþ55

�60Þ
6.500 1:7869ðþ50

�44Þ 1:8601ðþ73
�76Þ

6.590 1:7328ðþ36
�31Þ

6.600 1:7232ðþ39
�33Þ 1:7996ðþ44

�46Þ
6.700 1:6665ðþ36

�44Þ 1:7347ðþ57
�63Þ

6.800 1:6253ðþ25
�26Þ 1:6938ðþ53

�56Þ 1:7359ðþ82
�68Þ

6.883 1:5865ðþ24
�21Þ 1:7143ðþ82

�73Þ
6.900 1:5776ðþ33

�31Þ 1:6260ðþ51
�51Þ

7.000 1:5323ðþ34
�38Þ 1:5845ðþ33

�33Þ 1:734ð þ9
�11Þ

7.090 1:585ðþ14
�13Þ

7.100 1:4886ðþ22
�23Þ 1:5882ðþ60

�62Þ
7.115 1:5787ðþ77

�80Þ
7.153 1:5664ðþ58

�65Þ
7.200 1:4559ðþ28

�27Þ
7.300 1:4133ðþ27

�29Þ
7.400 1:3795ðþ23

�27Þ
7.500 1:3436ðþ24

�23Þ 1:3880ðþ31
�32Þ

8.000 1:2000ðþ18
�19Þ 1:2302ðþ35

�35Þ
8.500 1:0863ðþ17

�18Þ 1:1141ðþ24
�24Þ

9.000 0:994 70ðþ98
�95Þ 1:0189ðþ29

�27Þ
12.000 0:658 05ðþ44

�43Þ 0:668 57ðþ77
�84Þ 0:6834ðþ47

�51Þ 0:7054ðþ68
�68Þ

12.800 0:6036ð þ9
�10Þ 0:612 28ðþ98

�99Þ
13.710 0:551 93ðþ67

�60Þ 0:5618ðþ11
�11Þ

14.770 0:503 83ðþ49
�48Þ 0:508 18ðþ73

�84Þ
16.000 0:456 00ðþ46

�46Þ 0:461 17ðþ65
�59Þ

17.450 0:410 39ðþ33
�34Þ 0:414 53ðþ51

�57Þ
19.200 0:365 57ðþ28

�31Þ 0:368 69ðþ34
�38Þ

21.330 0:323 49ðþ20
�21Þ 0:326 80ðþ30

�33Þ
24.000 0:282 902ðþ97

�92Þ 0:284 65ðþ17
�18Þ 0:288 76ðþ88

�78Þ
27.430 0:243 31ðþ20

�19Þ 0:244 90ðþ26
�25Þ

32.000 0:205 40ðþ18
�17Þ 0:206 32ðþ22

�22Þ
38.400 0:168 61ðþ16

�15Þ 0:168 93ðþ23
�26Þ

48.000 0:132 48ð þ9
�10Þ 0:133 007ðþ99

�94Þ 0:133 61ðþ43
�39Þ

64.000 0:097 919ðþ42
�46Þ 0:098 113ðþ76

�86Þ
96.000 0:064 344ðþ31

�34Þ 0:064 433ðþ21
�18Þ

192.000 0:031 717ðþ18
�18Þ 0:031 675ðþ26

�28Þ

TABLE I. (Continued)

FIG. 1 (color online). Measured values �g2ðLÞ versus � for
Nf ¼ 8. The interpolating curves shown represent the best fit

to the data, using the functional form Eq. (25). The errors are
statistical, derived as discussed in Appendix A.
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full covariance matrices, will be made available in the
AIP’s Electronic Physics Auxiliary Publication Service
[29]. In Fig. 1, data points are shown together with the
interpolating functions for �g2ðLÞ as a function of �, for
each of L=a ¼ 6; 8; 12; 16.

We implement the step-scaling procedure and extrapo-
lation to the continuum as described in Sec. IV. Figure 2
shows a typical continuum extrapolation from our 8-flavor
data. The points shown represent steps from L=a ¼ 6 !
12 and 8 ! 16. Constant extrapolation (a weighted aver-
age of the two points) is used since the lattice-artifact
contributions to �ð2; u; a=LÞ are small compared to the
statistical errors. We have estimated the systematic error in
this procedure and found that it is small compared to the
statistical error; details of this analysis are provided in
Appendix A.

Our results for the continuum running of �g2ðLÞ are
shown in Fig. 3. We take L0 to be the scale at which
�g2ðL0Þ ¼ 1:6, a relatively weak value. The points are
shown for values of L=L0 increasing by factors of 2. The
(statistical) errors are derived as described in Appendix A.
For comparison, the perturbative running of �g2ðLÞ at two
loops and three loops is shown up through �g2ðLÞ 	 10
where perturbation theory is no longer expected to be
accurate. The results show that the coupling evolves ac-
cording to perturbation theory up through �g2ðLÞ 	 4, and
then increases more rapidly, reaching values that clearly
exceed typical estimates of the strength required to trigger
spontaneous chiral symmetry breaking [30]. The dynami-
cal fermion mass is of order of the corresponding 1=L, and
since the coupling is strong here, the theory will confine at
roughly this distance scale. There is no evidence for an
infrared fixed point or even an inflection point in the
behavior of �g2ðLÞ.

B. Nf ¼ 12

The simulation data for �g2ðLÞ as a function of� and L=a
are displayed in Table III. As with Nf ¼ 8, each data point

is the average given by Eq. (20), with the estimated error in
parentheses. The table ranges from � ¼ 4:2–192 and
L=a ¼ 6–20. The lower limit on � insures that the lattice
coupling is weak enough so as not to induce a bulk phase
transition. As in theNf ¼ 8 case, the upper limit is taken to

be large in order to explore agreement with perturbation
theory, but data above � ¼ 10 do not have significant
influence on our analysis. L=a ¼ 20 data are included
here and not in the Nf ¼ 8 case because of concerns about

the magnitude of the lattice artifact corrections, compared
to the continuum running. In the end, artifact corrections
were found to be small compared to our statistical error.
Data become more sparse with increasing L=a, reflecting
the growing computational cost involved. The interpolat-
ing functional form Eq. (25) is again employed, and the
resulting best-fit mean values and errors of the parameters
at each L=a are shown in Table IV. The full covariance
matrix will be made available in the AIP’s Electronic
Physics Auxiliary Publication Service [29]. In Fig. 4,
data points are shown for �g2ðLÞ as a function of �, together
with the interpolating functions for each of L=a ¼
6; 8; 10; 12; 16; 20.
The data and the interpolating curves already suggest the

existence of an infrared fixed point for Nf ¼ 12. For small

�, the general trend is that �g2ðLÞ decreases with increasing
L. This behavior and the fact that for larger �, �g2ðLÞ
increases with increasing L, is reflected in a crossover
behavior in the interpolating curves. We first implement
the step-scaling procedure choosing an initial u ¼ �g2ðLÞ
well below a possible fixed-point value so that a continuum
limit is guaranteed to exist, as discussed in Sec. IVB.
A constant continuum extrapolation (a weighted average

of the available values of �ð2; u; a=LÞ) is again employed

FIG. 2 (color online). Step-scaling function �ð2; u; a=LÞ at
various u, for each of the two steps L=a ¼ 6 ! 12 and 8 !
16 used in the Nf ¼ 8 analysis. Note that �ð2; u; a=LÞ> u in

each case, with the difference increasing as u increases.

FIG. 3 (color online). Continuum running for Nf ¼ 8. Purple
points are derived by step-scaling using the constant continuum
extrapolation of Fig. 2. The error bars shown are purely statis-
tical, and are derived as described in Appendix A. Two-loop and
three-loop perturbation theory curves are shown for comparison.
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TABLE III. Measurements of �g2ð�;L=aÞ, Nf ¼ 12.

� L=a

6 8 10 12 16 20

4.200 14:84ðþ26
�26Þ 11:31ðþ56

�53Þ 13:0ðþ1:7
�1:6Þ 12:5ðþ1:1

�1:1Þ
4.210 13:63ðþ27

�25Þ 11:12ðþ93
�87Þ

4.220 12:44ðþ21
�23Þ 11:1ðþ0:8

�0:8Þ
4.230 11:6ðþ0:2

�0:2Þ 8:9ðþ1:6
�1:7Þ

4.240 11:10ðþ17
�17Þ 7:7ðþ1:5

�1:3Þ
4.250 10:48ðþ24

�25Þ 9:14ðþ37
�35Þ 9:32ðþ80

�76Þ
4.270 9:47ðþ13

�11Þ 8:75ðþ42
�41Þ

4.300 8:3ðþ0:1
�0:1Þ 7:42ðþ30

�29Þ 7:97ðþ37
�33Þ 7:49ðþ41

�43Þ 8:38ðþ99
�96Þ 6:62ðþ49

�48Þ
4.350 6:91ðþ14

�13Þ 6:84ðþ39
�38Þ 6:84ðþ27

�27Þ 7:39ðþ39
�38Þ

4.400 6:140ðþ87
�77Þ 6:08ðþ30

�29Þ 6:14ðþ36
�38Þ 5:95ðþ53

�48Þ
4.450 5:474ðþ57

�60Þ 5:37ðþ23
�24Þ 6:00ðþ23

�27Þ
4.500 5:151ðþ86

�86Þ 5:05ðþ12
�12Þ 5:26ðþ13

�15Þ 4:97ðþ22
�16Þ

4.600 4:248ðþ47
�41Þ 4:46ðþ15

�13Þ 4:42ðþ14
�13Þ 4:22ðþ17

�15Þ 4:01ðþ23
�19Þ

4.700 3:822ðþ53
�49Þ 3:746ðþ53

�48Þ 3:669ðþ120
�74 Þ 3:81ðþ29

�27Þ 5:00ðþ53
�48Þ

4.800 3:458ðþ33
�30Þ 3:549ðþ96

�96Þ 3:58ðþ12
�11Þ

4.900 3:061ðþ43
�37Þ 3:281ðþ85

�77Þ 3:196ðþ57
�51Þ

5.000 2:884ðþ25
�22Þ 2:912ðþ40

�28Þ 3:005ðþ85
�66Þ 3:023ðþ84

�71Þ 3:28ðþ26
�25Þ

5.100 2:733ðþ43
�30Þ 2:852ðþ77

�77Þ 2:811ðþ24
�23Þ

5.200 2:549ðþ13
�13Þ 2:573ðþ28

�22Þ
5.300 2:466ðþ30

�25Þ 2:438ðþ43
�26Þ 2:528ðþ27

�28Þ
5.400 2:325ðþ25

�18Þ 2:337ðþ16
�17Þ

5.500 2:1985ðþ120
�97 Þ 2:2346ðþ77

�85Þ 2:273ðþ12
�12Þ 2:271ðþ27

�28Þ 2:360ðþ31
�29Þ 2:311ðþ54

�62Þ
5.600 2:0979ðþ45

�44Þ 2:148ðþ13
�15Þ

5.700 2:0139ðþ48
�55Þ 2:066ðþ11

�10Þ 2:1143ðþ65
�77Þ

5.800 1:9461ðþ71
�59Þ 2:016ðþ31

�24Þ
5.900 1:8636ðþ35

�36Þ 1:8970ðþ87
�86Þ 1:935ðþ12

�13Þ
6.000 1:8039ðþ48

�44Þ 1:8218ðþ40
�34Þ 1:879ðþ11

�11Þ 1:873ðþ17
�16Þ 1:912ðþ18

�18Þ 1:922ðþ22
�20Þ

6.100 1:7532ðþ27
�26Þ 1:7862ðþ62

�61Þ 1:813ðþ11
�11Þ

6.200 1:6909ðþ48
�44Þ 1:7400ðþ85

�80Þ
6.300 1:6405ðþ20

�19Þ 1:6698ðþ63
�61Þ 1:6901ðþ69

�80Þ
6.400 1:5827ðþ24

�20Þ 1:6299ðþ52
�58Þ

6.500 1:5459ðþ24
�24Þ 1:5702ðþ52

�51Þ 1:5967ðþ89
�83Þ 1:600ðþ17

�16Þ 1:614ðþ13
�13Þ

6.600 1:5031ðþ16
�15Þ 1:5274ðþ27

�25Þ
6.800 1:4253ðþ13

�14Þ 1:4509ðþ30
�31Þ

7.000 1:3471ðþ27
�24Þ 1:407ðþ25

�23Þ 1:3985ðþ52
�48Þ 1:435ðþ19

�18Þ
7.200 1:2932ðþ12

�12Þ 1:3106ðþ23
�23Þ

7.400 1:2354ðþ11
�11Þ 1:2538ðþ23

�22Þ
7.500 1:2163ðþ84

�81Þ 1:2440ðþ86
�85Þ 1:2465ðþ70

�65Þ
7.600 1:18292ðþ120

�95 Þ 1:2000ðþ18
�17Þ

7.800 1:13538ðþ80
�85Þ 1:1516ðþ18

�19Þ
8.000 1:0880ðþ16

�14Þ 1:1027ðþ64
�58Þ 1:1197ðþ33

�30Þ 1:1332ðþ120
�92 Þ 1:1312ðþ89

�94Þ 1:1415ðþ80
�67Þ

12.000 0:623 54ðþ61
�63Þ 0:628 33ðþ94

�80Þ 0:631 09ðþ87
�91Þ

12.800 0:574 79ðþ45
�48Þ 0:5798ð þ9

�10Þ 0:582 66ðþ91
�79Þ

13.710 0:528 79ðþ53
�49Þ 0:531 98ðþ62

�70Þ 0:536 20ðþ75
�82Þ

14.770 0:482 76ðþ38
�34Þ 0:486 56ðþ64

�61Þ 0:488 39ðþ52
�57Þ

16.000 0:439 17ðþ31
�30Þ 0:441 66ðþ53

�49Þ 0:443 83ðþ84
�84Þ 0:4482ðþ19

�17Þ 0:4479ðþ26
�25Þ

17.450 0:396 59ðþ32
�31Þ 0:399 40ðþ35

�35Þ 0:400 84ðþ60
�62Þ

19.200 0:354 98ðþ23
�25Þ 0:356 77ðþ32

�31Þ 0:358 44ðþ45
�38Þ

21.330 0:315 19ðþ18
�18Þ 0:317 32ðþ27

�29Þ 0:318 37ðþ49
�49Þ

24.000 0:276 29ðþ14
�14Þ 0:277 79ðþ23

�23Þ 0:278 97ðþ45
�40Þ 0:278 52ðþ21

�24Þ
27.430 0:238 39ðþ16

�14Þ 0:239 37ðþ14
�15Þ 0:240 30ðþ30

�26Þ 0:239 87ðþ24
�23Þ

32.000 0:201 57ðþ13
�13Þ 0:202 22ðþ18

�18Þ 0:203 23ðþ29
�25Þ 0:202 57ðþ22

�22Þ
38.400 0:166 03ðþ14

�14Þ 0:166 43ðþ20
�18Þ 0:167 10ðþ26

�25Þ 0:167 40ðþ18
�16Þ

48.000 0:131 27ðþ13
�13Þ 0:131 24ðþ14

�15Þ 0:131 78ðþ19
�22Þ 0:131 46ðþ14

�14Þ
64.000 0:097 222ðþ42

�46Þ 0:097 401ðþ100
�82 Þ 0:097 317ðþ68

�64Þ 0:097 257ðþ84
�84Þ

96.000 0:063 998ðþ58
�53Þ 0:064 060ðþ28

�28Þ 0:063 967ðþ85
�81Þ 0:064 089ðþ46

�51Þ
192.000 0:031 638ðþ24

�22Þ 0:031 645ðþ25
�24Þ 0:031 677ðþ18

�18Þ 0:031 673ðþ11
�12Þ 0:031 675ðþ34

�32Þ
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for each u. Now, since we have data at L ¼ 20, the ex-
trapolation is a weighted average of three points corre-
sponding to the steps 6 ! 12, 8 ! 16, and 10 ! 20.

Examples of such a continuum extrapolation are shown
in Fig. 5. The systematic error is again estimated to be
small compared to the statistical error.
Our results for the continuum running of �g2ðLÞ from

below a possible infrared fixed point are shown in Fig. 6.
L0 is again taken to be the scale at which �g2ðL0Þ ¼ 1:6, a
relatively weak value. The points are shown for values of
L=L0 increasing by factors of 2. The (statistical) errors are
derived as described in Appendix A. For reference, the
two-loop and three-loop perturbative curves for �g2ðLÞ are
also shown in Fig. 6. From the figure, we conclude that the
infrared behavior is indeed governed by a fixed point
whose value lies within the statistical error band.
Because of the underlying use of an interpolating function,
the error bars of adjacent points in Fig. 6 are highly
correlated. As the running coupling approaches the infra-
red fixed point, this correlation approaches 100%, so that
the error bars asymptotically approach a stable value as the

FIG. 5 (color online). Step-scaling function �ð2; u; a=LÞ at
various u, for each of the three steps L=a ¼ 6 ! 12, 8 ! 16,
10 ! 20 used in the Nf ¼ 12 analysis. Note that �ð2; u; a=LÞ !
u as the starting coupling u approaches the fixed point value.

FIG. 6 (color online). Continuum running for Nf ¼ 12.
Results shown for running from below the infrared fixed point
(purple triangles) are based on �g2ðL0Þ � 1:6. Also shown is
continuum backwards running from above the fixed point (light
blue squares), based on �g2ðL0Þ � 9:0. Error bars are again purely
statistical, although strongly correlated due to the underlying
interpolating functions. Two-loop and three-loop perturbation
theory curves are shown for comparison.

TABLE IV. Interpolation best-fit parameters, Nf ¼ 12.

Parameter L=a

6 8 10 12 16 20

c1;L=a 0.380(11) 0.4092(66) 0.4269(97) 0.413(10) 0.467(20) 0.463(32)

c2;L=a �0:08ð13Þ �0:192ð46Þ �0:224ð70Þ �0:167ð84Þ �0:154ð46Þ �0:111ð70Þ
c3;L=a 0.56(54) 0.73(11) 0.75(17) 0.82(22) 0.164(28) 0.129(38)

c4;L=a �1:2ð1:1Þ �0:837ð98Þ �0:81ð17Þ �1:02ð23Þ 0 0

c5;L=a 1.6(1.1) 0.342(31) 0.319(54) 0.417(80) 0 0

c6;L=a �1:10ð57Þ 0 0 0 0 0

c7;L=a 0.32(12) 0 0 0 0 0

	2=DOF 1.60 1.42 1.30 1.59 1.61 1.10

NDOF 54 55 36 17 7 2

FIG. 4 (color online). Measured values �g2ðLÞ versus �, Nf ¼
12. The interpolating curves shown represent the best fit to the
data, using the functional form of Eq. (25).

LATTICE STUDY OF CONFORMAL BEHAVIOR IN SU . . . PHYSICAL REVIEW D 79, 076010 (2009)

076010-11



number of steps is taken to infinity. The range of possible
values of the fixed point from our simulations is consistent
with the three-loop perturbative value in the SF scheme. It
is well below estimates [30] of the strength required to
trigger spontaneous chiral symmetry breaking and
confinement.

The infrared fixed point also governs the L ! 1 behav-
ior starting from values of �g2ðLÞ above the fixed point. As
discussed in Sec. IVB, the continuum limit is then no
longer guaranteed to exist and the step-scaling procedure
cannot be naively applied. Instead, one can restrict the
discussion to finite but small values of a=L, small enough
to minimize lattice artifacts but large enough so that for
�g2ðLÞ near but above the fixed point, g20ða=LÞ remains

small enough not to trigger a bulk phase transition. Since
we use a constant extrapolation, this procedure can be
taken to define, within our errors, a �g2ðLÞ at a small but
finite a=L. The step-scaling procedure then leads to the
continuum running from above to the fixed point, also
shown in Fig. 6. The statistical-error band is derived as in
the approach from below.

Finally we note that the exponent � governing the
approach to the infrared fixed point in the SF scheme can
also be extracted from the simulation data. Taking the log
of Eq. (6), we see that the quantity log½ �g2? � �g2ðLÞ� should
have a linear dependence on L with slope �� near the
fixed point. Computing this quantity from our data, running
from either above or below the fixed point, we find � ¼
0:13� 0:03, somewhat smaller than the three-loop SF
perturbative estimate of 0.286.

C. Comparison with other lattice work

1. Schrödinger functional studies

Lattice simulations for the SU(3) Schrödinger functional
running coupling have been performed for Nf ¼ 16 [31],

for the quenched theory [32], and forNf ¼ 2 [4]. ForNf ¼
16 [31], the perturbative infrared fixed point is very weak.
In this case, the simulations were done for values of the
lattice coupling in the weak-coupling (chirally symmetric
and deconfined) phase but leading to values of �g2ðLÞ well
above the perturbative fixed point. Evidence was presented
that �g2ðLÞ decreases with increasing L, consistent with the
approach to the fixed point from above as expected with a
continuum infrared fixed point. A continuum extrapolation
via the step-scaling procedure was, however, not
implemented.

For both the quenched theory [33] and Nf ¼ 2 [4], the

step-scaling procedure was implemented and a continuum
running coupling was extracted. In each case, starting with
a �g2ðLÞ well into the perturbative regime, the coupling
grows through large, nonperturbative values. And in each
case, the growth is more rapid than forNf ¼ 8, as shown in

Fig. 3. For the quenched theory, �g2ðLÞ was argued to grow
exponentially at large L, consistent with the leading order
prediction from the strong-coupling expansion [33].

2. Other multifermion studies

Lattice simulations of SU(3) gauge theories with mul-
tiple fermions in the fundamental representation began
more than 20 years ago. Brown et al. [34] examined the
Nf ¼ 8 case with staggered fermions, providing evidence

that the theory confines, but remaining inconclusive due to
finite volume effects. Damgaard et al. [35] examined the
staggered Nf ¼ 16 case, noting that even with the very

weak infrared fixed point present in this theory, a bulk
chiral transition sets in at sufficiently strong lattice cou-
pling. In a 2001 Columbia Ph.D. thesis [6], Sui studied
QCD for Nf ¼ 2 and Nf ¼ 4 staggered fermions, observ-

ing stronger finite-lattice-size effects in the latter case. The
work of Iwasaki et al. [7] is perhaps most directly relevant
to the results reported here and in Ref. [1]. Through a focus
on the strong lattice-coupling phase using Wilson fermi-
ons, they concluded that 6 � Nc

f � 7, in disagreement

with our results.
Interest in multifermion studies has grown considerably

in the past few months. Deuzeman et al. [36] have exam-
ined chiral symmetry breaking for the Nf ¼ 8 case using

staggered fermions, concluding that the lower end of the
conformal window is indeed above Nf ¼ 8. Jin and

Mawhinney [37] have come to the same conclusion
through a study of the chiral condensate and the heavy
quark potential. Fodor et al. [38] have begun a multifer-
mion simulation using staggered fermions, while Bilgici
et al. have developed a new approach to running coupling
measurement with an eye towards eventual multifermion
measurements [8].

VI. SUMMARYAND DISCUSSION

We have concluded from lattice simulations of the
Schrödinger functional running coupling that for an
SU(3) gauge theory with Nf Dirac fermions in the funda-

mental representation, the value Nf ¼ 8 lies outside the

conformal window, leading to confinement and chiral sym-
metry breaking, while Nf ¼ 12 lies within the conformal

window, governed by an infrared fixed point. We have
bounded the fixed point value as shown in Fig. 6 and
estimated the exponent � describing the approach to the
fixed point Eq. (6). This is, as far as we know, the first
nonpertubative evidence for the existence of infrared con-
formal behavior in a nonsupersymmetric gauge theory.
These results confirm and refine the analysis of Ref. [1].
The Nf ¼ 8 and Nf ¼ 12 results imply that the lower

end of the conformal window, Nc
f, lies in the range 8<

Nc
f < 12. This conclusion, in disagreement with Ref. [7], is

reached employing the Schrödinger functional (SF) run-
ning coupling, �g2ðLÞ, defined at the box boundary L with a
set of special boundary conditions. This coupling is a
gauge invariant quantity, valid for any coupling strength
and running in accordance with perturbation theory at short
distances.
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For Nf ¼ 8, we have simulated �g2ðLÞ up through values
that exceed typical estimates of the coupling strength
required to trigger dynamical chiral symmetry breaking
[30], with no evidence for an infrared fixed point or even an
inflection point. For Nf ¼ 12, our observed infrared fixed

point is rather weak, agreeing within the estimated errors
with the three-loop fixed point in the SF scheme, and well
below typical estimates of the coupling strength required to
trigger dynamical chiral symmetry breaking [30].

Whether perturbation theory can be used reliably to
reproduce the behavior in the vicinity of the Nf ¼ 12 fixed

point remains to be seen. The three-loop value of the fixed
point is substantially different from the two-loop value. On

the other hand, in theMS scheme where the four-loop beta
function has been computed, the four-loop fixed point is
shifted by only a small amount from the three-loop value.
The relative weakness of this fixed point, together with the
fact that Nc

f cannot be much smaller, raises the question of

whether the theory remains perturbative throughout the
conformal window as suggested by Gardi and Grunberg
[12]. If this is the case, the behavior in the neighborhood of
Nc

f would be rather different from the supersymmetric

SUðNÞ gauge theory [15]. In particular, it is not clear
whether there would be a useful, effective low energy
description of the infrared behavior.

It is important to confirm our results by employing other
definitions of the running coupling, for example, based on
the Wilson loop and static potential [8], and by examining
scheme-independent quantities. Most notably, spontane-
ously chiral symmetry breaking as a function of Nf must

be studied through a zero-temperature lattice simulation of
the chiral condensate [37]. Simulations of �g2ðLÞ for other
values of Nf, in particular Nf ¼ 10, are crucial to deter-

mine more accurately the lower end of the conformal
window and to study the phase transition as a function of
Nf. All of these analyses should be extended to other gauge

groups and other representation assignments for the fermi-
ons [39–49].

The phenomenological relevance of these studies re-
mains to be seen. One possibility is that a theory with
infrared conformal symmetry could describe some new
sector, coupled to the standard model through gauge-
singlet operators [50]. Another possibility, much discussed
in the literature, is that a theory with Nf outside but near

the conformal window ( & Nc
f) could describe electroweak

breaking and provide the basis for walking technicolor
[51–53]. In this class of theories, as Nf ! Nc

f from below,

a hierarchy emerges between the electroweak scale and the
larger mass scale where the gauge coupling becomes
strong. This could be signaled by the appearance of a
plateau of finite extent in �g2ðLÞ, and by the development
of a hierarchy between the chiral condensate and the
electroweak scale. It is also important to explore the par-
ticle spectrum in this limit and to compute the electroweak

precision parameters, in particular, the S parameter [54].
These studies are currently underway [9].
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APPENDIX A: STATISTICAL AND SYSTEMATIC
ERROR IN STEP-SCALING ANALYSIS

1. Numerical-simulation error

The hybrid molecular dynamics (HMD) method in-
volves the solution of classical equations of motion, requir-
ing a numerical integration at a finite step size ��. This
introduces systematic numerical errors ofOðð��Þ2Þ into all
observables, including the running coupling. Removal of
this finite step-size error from a given measurement of
�g2ð�; LÞ can be accomplished by simulating at multiple
values of �� and performing a quadratic extrapolation to
zero. At relatively weak values of the bare coupling, the
step-size error is observed to reduce the measured values of
�g2. Furthermore, the magnitude of the shift increases with
the box size L=a. Although statistically significant, the
effect on step-scaling results is negligible for L=a ¼ 8
and below, but becomes significant at larger box sizes. At
stronger values of the bare coupling, no systematic shift
due to step-size error can be resolved within our statistical
error. Wherever the effect or step-size error is observed to
be significant, only extrapolated values of �g2 are used in
our analysis, effectively removing this source of systematic
error.
Although our goal is to generate a set of statistically

independent gauge configurations, in practice configura-
tions which are separated by only a small number of
updates (by a small MD time) can be correlated with
each other. The existence of these ‘‘autocorrelations’’ can
lead to underestimation of statistical errors if classical
estimators are used. Even with appropriate statistical meth-
ods, the time series must extend to several times the
autocorrelation time of the observable in order to obtain
an unbiased measurement. Statistical estimates of the in-
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tegrated autocorrelation time show a clear trend towards
longer autocorrelations as either the box size L=a or the
strength of the lattice coupling g20 is increased, with the

longest estimated time on the order of 1000 trajectories.
In addition, autocorrelation times in certain time series

are, in effect, enhanced by the observed phenomenon of
‘‘excursions.’’ This has been noted in prior studies of the
SF running coupling [22,55]. The coupling is seen to jump
to a new equilibrium value, which can remain stable for up
to several thousand trajectories. This can be interpreted as a
tunneling of the system from near the original minimum of
the action, determined by the imposed background field,
into other metastable minima. In the presence of these
excursions, autocorrelations in the observable are intro-
duced on the scales of the average duration and period of
the tunneling events.

Although the excursions themselves have a physical
interpretation, the correlations that they induce in the
data are artifacts of the procedure used to generate gauge
configurations, and the associated time scales are depen-
dent on the choice of such a procedure. For example, an
update algorithm based on the selection of completely
random gauge configurations would have no autocorrela-
tions by design, but could still show evidence of tunneling
into secondary minima in the form of non-Gaussianity in a
histogram of measured coupling strengths.

The excursions are empirically seen to occur always to
an equilibrium at stronger coupling �g2ðLÞ, and become
more frequent as the bare coupling strength is increased
from weak to stronger values. In particular we observe
tunneling events in the running average of the time series
for 5:8 � � � 4:7, at both eight and 12 flavors, with these
events becoming impossible to isolate from statistical fluc-

tuations at stronger coupling. Some representative plots
showing this effect are shown in Fig. 7. The contrast
between the two time series is sharp, with tunneling events
clearly evident only in the stronger-coupling time series.
We therefore choose the target number of trajectories for

a particular measurement of �g2ð�; LÞ as follows: 20 000
trajectories for � � 8:0; 40 000 for 5:0 � �> 8:0; and
80 000 for �< 5:0. These values exceed all above esti-
mates of the autocorrelation time, and allow sampling of
multiple excursions where such events are observed.
Estimation of statistical error, with full propagation of

errors including continuum-extrapolation error through all
step-scaling steps, is performed using the bootstrap
method. The raw data are first reduced to uncorrelated
blocks. Two thousand bootstrap replications of the data
set are generated, and quantities of interest are computed as
statistics on the bootstrap data. Two-sided errors are shown
in all cases, representing 1 confidence intervals on the
mean, computed using the bias-corrected and accelerated
confidence interval estimation method [56]. Measured val-
ues for �g2ðLÞ with estimated two-sided error bars are
included in Tables I and III. Although we quote a single
value for each (�, L=a) in the data tables, we emphasize
that our analysis is carried through on the complete sets of
bootstrap replicated data from which these mean values are
derived.

2. Interpolating-function error

The choice of a particular interpolating functional form
is a potential source of systematic error, particularly if it
yields a poor fit to the data, reflected by a value of 	2 per
degree of freedom (DOF) significantly larger than 1. Using
our interpolating functional form Eq. (25), we find an
excellent fit to the simulation data; at Nf ¼ 8, we find an

overall 	2=DOF ¼ 1:62� 0:30 with 107 degrees of free-
dom, while for the Nf ¼ 12 data the fit yields 	2=DOF ¼
1:47� 0:26 with 171 degrees of freedom. Errors on 	2 are
estimated using the jackknife method. Note that these are
global 	2 values, representing a sum over contributions
from all L=a fits, divided by the total number of degrees of
freedom. The relatively low probability of these values in
the 	2 distribution indicates that our error bars are likely
somewhat underestimated. Possible sources of this effect
are detailed in the previous subsection.
We have further attempted to search for systematic error

due to the interpolating function by trying to fit a variety of
other functional forms. One approach is to attempt to
improve upon the form in Eq. (25) by the addition of extra
terms. We have considered the addition of terms nonana-
lytic in g20, and the addition of terms and constraints which

reproduce one-loop perturbation theory in the limit g20!0.
In each case, the additional terms do not significantly
improve 	2=DOF, and the results of the analysis based
on such fits are indistinguishable from those based on
Eq. (25).

FIG. 7 (color online). Representative time series taken from
our 12-flavor simulations. The estimated mean values with
statistical error for each time series are depicted in the dotted
lines and the points with error bars to the right of the plot. The
time-series plot is a running average over a window of 800
points. Both data sets were gathered on volumes of 163 � 15,
and represent relatively weak coupling (� ¼ 6:5, light blue) and
somewhat stronger coupling (� ¼ 4:7, dark red). The difference
in length between the two time-series reflects our choice of target
numbers of trajectories, as discussed in the text.
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Another possibility is to use an altogether different
functional form, such as the Laurent series expansion of
Ref. [1]. These forms can also be extended with nonana-
lytic terms and perturbative constraints. ForNf ¼ 12, large

systematic shifts are seen in the continuum running curves
based on such fits. This systematic effect is universally
associated with a significantly higher 	2=DOF, indicating
that the interpolating function does not accurately reflect
the underlying measurements.

We stress that since our fit functions are used only for
interpolation, not extrapolation, any two fits to the coupling
measurements which yield comparable and acceptably
small 	2=DOF will give indistinguishable results for the
continuum running.

We conclude that the systematic error associated with
the selection of the final form Eq. (25) is negligible, given
the values of 	2=DOF quoted above.

3. Continuum-extrapolation error

Since each step in the step-scaling procedure involves a
continuum extrapolation of the step-scaling function
�ð2; u; a=LÞ, the choice of functional form in the extrapo-
lation is another potential source of systematic error.

What is the expected behavior of �ð2; u; a=LÞ as a
function of a=L? Staggered fermions with the Wilson
gauge action inherently lead to discretization effects of
Oða2Þ. However, the presence of the Dirichlet boundaries
here leads to operators which contribute OðaÞ lattice arti-
facts, as shown in Eq. (8). We include a counterterm for
these operators, with its value determined by one-loop
perturbation theory. With this counterterm, we expect
that the OðaÞ terms are small, even more so in
�ð2; u; a=LÞ where much of the a=L dependence is
removed.

By comparing our data to perturbative running at fixed,
relatively weak lattice coupling, we find that in fact all
lattice-artifact corrections are negligible compared to our
statistical errors for L=a � 8. Independent of perturbation
theory, we find that the best fit (smallest 	2=DOF) for the
continuum extrapolation atNf ¼ 12 is given by a constant,

a=L-independent extrapolation, yielding ð2; uÞ as a
weighted average of �ð2; u; a=LÞ over the available range
of a=L. Based on this experience, we use constant extrapo-
lation at Nf ¼ 8 as well. Lattice artifacts play a less

important role here because of the stronger continuum
running (which also provides justification for not including
data at L=a ¼ 20). The absence of L=a ¼ 20 data at Nf ¼
8means that there are only two available steps (6 ! 12 and
8 ! 16). Thus the constant a=L extrapolation is the only
constrained fit available. The errors for each �ð2; u; a=LÞ
lead to statistical errors in ð2; uÞ, which is represented by
a statistical-error band for the final continuum-running
curve.
Statistical error in the continuum extrapolation is com-

puted by the bootstrap method; the extrapolation is per-
formed independently on each bootstrap ensemble, leading
to a distribution of values for ð2; uÞ, which can then be
used to estimate a mean value and two-sided confidence
interval. The result of the application of n steps,ð2n; uÞ, is
likewise computed within each bootstrap ensemble to ob-
tain a full distribution.

APPENDIX B: RUNNING COUPLING DATA

Our measurements of the running coupling �g2ðLÞ are
presented in Tables I, II, III, and IV. Two-sided error bars
are estimated using the bias-corrected and accelerated
method as described in Appendix A.
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