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Renormalization group (RG) evolution of the neutrino mass matrix may take the value of the mixing

angle �13 very close to zero, or make it vanish. On the other hand, starting from �13 ¼ 0 at the high scale it

may be possible to generate a nonzero �13, radiatively. In the most general scenario with nonvanishing CP

violating Dirac and Majorana phases, we explore the evolution in the vicinity of �13 ¼ 0, in terms of its

structure in the complex Ue3 plane. This allows us to explain the apparent singularity in the evolution of

the Dirac CP phase � at �13 ¼ 0. We also introduce a formalism for calculating the RG evolution of

neutrino parameters that uses the Jarlskog invariant and naturally avoids this singular behavior. We find

that the parameters need to be extremely fine-tuned in order to get exactly vanishing �13 during evolution.

For the class of neutrino mass models with �13 ¼ 0 at the high scale, we calculate the extent to which RG

evolution can generate a nonzero �13, when the low energy effective theory is the standard model or its

minimal supersymmetric extension. We find correlated constraints on �13, the lightest neutrino mass m0,

the effective Majorana mass mee measured in the neutrinoless double beta decay, and the supersymmetric

parameter tan�.
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I. INTRODUCTION

In the last decade, neutrino experiments have reached a
stage where the basic structure of the neutrino masses and
mixing is more or less clear. We know that the three
neutrino flavors (��, � 2 fe;�; �g) mix to form three
neutrino mass eigenstates (�i, i 2 f1; 2; 3g), which are
separated by �m2

ij � m2
i �m2

j , where mi;j denote mass

eigenvalues with i, j 2 f1; 2; 3g. The two sets of eigen-
states are connected through �� ¼ ðUPMNSÞ�i�i, where
UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata neutrino

mixing matrix [1,2] in the basis where the charged lepton
mass matrix is assumed to be diagonal. This matrix is
parametrized as

UPMNS ¼
ei�1 0 0
0 ei�2 0
0 0 ei�3

0
@

1
A �U �

ei	1 0 0
0 ei	2 0
0 0 1

0
B@

1
CA;
(1)

where U is the matrix

U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
s12s23 � c12c23s13e

i� �c12s23 � s12c23s13e
i� c23c13

0
B@

1
CA: (2)

Here cij and sij are the cosines and sines, respectively, of
the mixing angle �ij, � is the Dirac CP violating phase, 	i

are the Majorana phases, and �i are the so-called unphys-
ical phases that do not play a role in the phenomenology of
neutrino mixing, but whose values may be predictable
within the context of specific models. The current best-fit
values and 3
 ranges for these parameters are summarized
in Table I. It is not known whether the neutrino mass
ordering is normal (m1 <m2 <m3) or inverted (m3 <
m1 <m2).

An intriguing situation with the neutrino mixing is that
two of the mixing angles, �12 and �23, are definitely large,
while the third angle �13 is small and may even be zero.
Such a situation is indicative of some kind of symmetry

TABLE I. The present best-fit values and 3
 ranges of oscil-
lation parameters [3].

Best fit 3
 range

�m2
21 [10�5 eV2] 7.65 7.05–8.34

j�m2
31j [10�3 eV2] 2.40 2.07–2.75

sin2�12 0.304 0.25–0.37

sin2�23 0.50 0.36– 0.67

sin2�13 0.01 � 0:056
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principle at work. Indeed, there is a whole class of models
with �13 � 0 that are consistent with data [4]. �23 ¼ �=4
and �13 ¼ 0 are allowed by the current data and their origin
has been traced to an exact �� � exchange symmetry in
the neutrino mass matrix [5]. Such symmetries can be
realized by models based on the discrete non-Abelian
symmetry groups like A4 [6], D4 [7], S3 [8], S4 [9].
Special cases of an exact �� � symmetric matrix corre-
sponding to a Le symmetry for normal ordering [10], Le �
L� � L� symmetry for inverted ordering [11], and L� �
L� symmetry for quasidegenerate neutrinos can give �13 ¼
0 [12]. Any deviation from this value would indicate break-
ing of these symmetries. Models with discrete Abelian
symmetries can also make �13 vanish [13]. Models involv-
ing certain texture zeroes in the neutrino Yukawa matrix or
certain scaling relations between Majorana matrix ele-
ments can also predict zero or almost vanishing �13 [14].
SO(10) models with certain structures for Dirac mass
matrices [15], or those with a SO(3) symmetry can predict
�13 & 10�4 with a normal mass ordering [16]. In the
framework of minimal supersymmetric SO(10) models,
the compatibility of the low energy data in the charged
lepton, quarks and neutrino sectors, taking into account the
RG evolution, has been studied in [17].

Most of the symmetries in these models are obeyed at
the high scale, and are broken at the low scale by, for
example, radiative corrections. If the radiative corrections
are large enough, any trace of the original symmetry may
be wiped out. However in the context of a specific model,
the compatibility between the high scale symmetry and
low scale measurements can still be verified. This needs a
careful study of the renormalization group (RG) evolution
of the neutrino mass matrix and the mixing parameters.
The basic formalism for calculating this evolution has been
established in [18–22]. Specific features of the evolution,
like the stability of mixing angles and masses [23–26],
possible occurrence of fixed points [27–29], evolution of
nearly degenerate Majorana neutrinos [30–38], or the gen-
eration of large mixing angles from small angles at the high
scale [39–44], have been explored. Radiative generation of
Ue3 starting from zero value at high scale has been studied
in [45–48], while its effect on lepton flavor violating
decays are examined in the framework of supersymmetric
grand unified theory in [49]. Threshold effects on masses
and mixings, due to the decoupling of heavy particles
involved in the neutrino mass generation, have also been
estimated [50–52]. These effects can revive [53,54] the
bimaximal mixing scenario [55], which predicts �13 ¼ 0.

Analytical expressions for the RG evolution of these
parameters have been obtained through an expansion in
the small parameter �13 [21]. For a quantity X 2
fmi; �ij; 	ig, the evolution may be written as

_X ¼ AX þOð�13Þ; (3)

where the dot represents the derivative with respect to t �

lnð�=GeVÞ=ð16�2Þ, with� the relevant energy scale. Here
AX is independent of �13, but is a function of mi, �12, �23,
	i, � in general. In the context of quark-lepton comple-
mentarity, approximate but transparent analytical expres-
sions were obtained in [56], where a further expansion in
the small parameter �� / y2�ð1þ tan2�Þ was employed.
Here y� is the Yukawa coupling of the tau lepton and tan�
the ratio of vacuum expectation values of the two Higgses
in minimal supersymmetric standard model (MSSM). Such
an expansion was used to constrain the allowed values of
mixing angles in the context of tribimaximal mixing [57]
and to distinguish between various symmetry-based rela-
tions at the high scale by comparing the low scale �13
values [58].
A subtle but important issue arises in the evolution of the

Dirac phase � at �13 ¼ 0. With the parametrization in [21],
the evolution formally takes the form

_� ¼ D�

�13
þ A� þOð�13Þ; (4)

such that the derivative of � formally diverges at vanishing
�13, indicating an apparent singularity. This is an unphys-
ical singularity: all the elements of the mixing matrix
UPMNS evolve continuously, and the peculiar evolution of
� is related to the fact that � is undefined at �13 ¼ 0. This
argument is in fact used in [21] to assert thatD� identically
vanishes when �13 ¼ 0, which leads to a specific value of
cot� which is a function of fmi;	ig at �13 ¼ 0. This
ensures that the evolution in the complex Ue3 plane is
continuous [21]. Ref. [29] has examined this prescription
in various limits in the parameter space.
While the above prescription for choosing the value of �

at �13 ¼ 0 works practically when one needs to start with
vanishing �13, it is desirable to clarify a few conceptual
issues. First, when �13 ¼ 0, the value of � chosen should
not make a difference to the RG evolution since � is an
unphysical quantity at this point. Second, it is not a priori
clear whether the prescription would work when �13 ¼ 0 is
reached during the process of RG evolution. Indeed, get-
ting the required value of � precisely when �13 ¼ 0 may
seem like fine-tuning. Here we analyze these issues in more
detail, and find an explanation in terms of the evolution of
the complex quantity Ue3 ¼ sin�13e

�i� in the parameter
plane ReðUe3Þ–ImðUe3Þ.
We also evolve an alternative formalism where the

singularity does not arise at all. This is based on the
observation that the set of quantities P J �
fmi; �12; �23; �

2
13; 	i; JCP; J

0
CPg, where JCP ¼

1
2 s12c12s23c23s13c

2
13 sin� is the Jarlskog invariant and

J0CP ¼ 1
2 s12c12s23c23s13c

2
13 cos�, have the same informa-

tion as the set P � � fmi; �12; �23; �13; 	i; �g. We therefore
write the evolution equations in terms of the former set and
explicitly show that the complete evolution may be studied
without any reference to diverging quantities. We confirm
numerically that the evolutions with both the parametriza-
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tions indeed match with each other and with the exact
numerical one.

With the conceptual issue clarified, we numerically
study the extent to which �13 may be generated through
RG running in the class of models with �13 ¼ 0 at the high
scale, where the low energy effective theory is the standard
model (SM) or the MSSM. This evolution turns out to be
extremely sensitive to the mass of the lightest neutrino m0,
the neutrino mass ordering, and the Majorana phases.
Another experimentally observable quantity that depends
on these parameters is the effective Majorana mass mee

which is explored by the neutrinoless double beta decay
experiments. Correlated constraints can therefore be ob-
tained on �13, m0, and mee, the quantities for which only
upper bounds are available currently but which may be
measured in the next generation experiments. For the case
of the MSSM, it will also depend on the value of tan�.

The paper is organized as follows. Section II deals with
the apparent singularity in the evolution of �. Section. III
calculates the RG evolution in terms of the parameter set
P J. Section IV determines the upper bounds on the value
of �13 generated through the RG evolution in the SM and
the MSSM. In Sec. V, we summarize our results.

II. APPARENT SINGULARITY IN _� AT �13 ¼ 0AND
RG EVOLUTION IN THE COMPLEX Ue3 PLANE

Analytic studies of the evolution of neutrino parameters
to date have been mostly performed with the parameter set
P � � fmi; �12; �23; �13; 	i; �g. The RG evolution equa-
tions obtained are all continuous and nonsingular, except
the equation for the Dirac CP phase �, which is given by

_� ¼ D�

�13
þ A� þOð�13Þ; (5)

where

D� ¼ Cy2�
2

sin2�12 sin2�23
m3

�m2
31

½m1 sinð2	1 � �Þ

� ð1þ �Þm2 sinð2	2 � �Þ þ �m3 sin��; (6)

A� ¼ 2Cy2�

�
m1m2

�m2
21

s223 sinð2	1 � 2	2Þ þm1m3

�m2
31

� ðc212c223 sinð2�� 2	1Þ þ s212 cos2�23 sin2	1Þ
þm2m3

�m2
32

ðs212c223 sinð2�� 2	2Þ

þ c212 cos2�23 sin2	2Þ
�
: (7)

Here � ¼ �m2
21=�m

2
32 and C is a constant which depends

on the underlying effective theory in the energy regime

considered. Equation (5) clearly suggests that _� diverges
for �13 ! 0. This problem is overcome by requiring that
D� ¼ 0 at �13 ¼ 0, which gives the following condition on
� at �13 ¼ 0 [21]:

cot� ¼ m1 cos2	1 � ð1þ �Þm2 cos2	2 � �m3

m1 sin2	1 � ð1þ �Þm2 sin2	2

: (8)

The above prescription works for the calculation of evolu-
tion when one starts with vanishing �13. However on the
face of it, it seems to imply that the CP phase �, which
does not have any physical meaning at the point �13 ¼ 0,
should attain a particular value depending on the masses
and Majorana phases, as given in Eq. (8). Also, the situ-
ation when �13 ¼ 0 is reached during the course of the RG
evolution has not been studied so far, so it is not clear if the
prescription needs to be introduced by hand in such a case,
or whether the RG evolution equations stay valid while
passing through �13 ¼ 0. Getting the required value of �
precisely when �13 ¼ 0 would seem to need fine-tuning,
unless we are able to figure out the origin of this apparent
coincidence, and show that this value of � is a natural limit
of the RG evolution.
The problem also propagates to the evolution of �13,

since it depends in turn on �:

_� 13 ¼ A13 þOð�13Þ; (9)

A13 ¼ Cy2�
2

sin2�12 sin2�23
m3

�m2
31

½m1 cosð2	1 � �Þ

� ð1þ �Þm2 cosð2	2 � �Þ � �m3 cos��: (10)

The evolution of all the other quantities, viz. �12, �23, mi,
	i is independent of � up to Oð�013Þ [20], so these quan-

tities do not concern us here.
In order to understand the nature of the apparent singu-

larity in �, we explore the RG evolution of the complex
quantity Ue3 ¼ sin�13e

�i�. We start with three represen-
tative values of � at the energy scale �0 ¼ 1012 GeV, with
the other parameters chosen such that �13 & 10�3 at � �
109 GeV. The left panel of Fig. 1 shows the evolution in
the complex Ue3 plane. The right panel shows the corre-

sponding evolution in the �13–~� plane, with ~� � 2�� �.
The following observations may be made from the figures:
(a) Though all the parameter values at the high scale are

very close, and though in all cases �13 decreases to a
very small value before it starts to increase, �13 does
not vanish during the evolution in all the cases.
Indeed, the value of � chosen at the high scale, in
order to make �13 vanish during its evolution, needs
to be extremely fine-tuned. This is because

sin 2�13 ¼ ½ReðUe3Þ�2 þ ½ImðUe3Þ�2; (11)

so that one needs both the real and imaginary com-
ponents of Ue3 to vanish simultaneously, which
needs a coincidence. Note that when all the CP
violating phases � and 	i vanish at the high scale,
ImðUe3Þ ¼ 0 automatically throughout the evolu-
tion. Then starting from a nonzero value at high
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scale, �13 can be made to vanish simply by requiring
ReðUe3Þ ¼ 0 so that no additional fine-tuning is
needed.

(b) With the definition ~� � 2�� �, we have Ue3 �
s13e

i ~�. Thus, ~� is the phase of Ue3 which can be
read off easily from the ReðUe3Þ–ImðUe3Þ plot. The
values of � chosen at �0 ¼ 1012 GeV are such that
~� is in the third quadrant, so ReðUe3Þ< 0 and
ImðUe3Þ< 0 at this scale. At the end of the evolu-

tion, at � ¼ 104 GeV, ~� returns to the third quad-

rant. During its evolution, ~� may change its
quadrant zero, one or multiple times. The value of
�13 need not vanish completely during the RG evo-
lution, as is represented by the scenarios A and C.
Scenario B is the one where ReðUe3Þ and ImðUe3Þ
vanish at the same point, and therefore �13 passes
through zero during its evolution.

(c) In scenario A, since ReðUe3Þ stays negative, ~�
simply moves from the third quadrant to the second,
and then returns to the third in a continuous manner.

In scenario C on the other hand, ~� has to pass
through the fourth, first, and second quadrant in
sequence to finally return to the third quadrant.
However its evolution is continuous, the apparent
jump at the lowest �13 values in the right panel of
Fig. 1 is just the identification of 0� and 360�.

(d) In scenario B, ~� starts in the third quadrant and
moves continuously to the fourth quadrant.
However it propagates to the second quadrant di-
rectly through the origin, thus bypassing the first
quadrant entirely. Its value at the origin can be well
defined through the limit

cot ~�0 � lim
ReðUe3Þ;ImðUe3Þ!0

ReðUe3Þ
ImðUe3Þ

¼ lim
ReðUe3Þ;ImðUe3Þ!0

d
dt ReðUe3Þ
d
dt ImðUe3Þ

; (12)

where we have used l’Hôpital’s rule to compute the
limit since both the numerator and denominator in
this ratio tend to zero at the limiting point.

Since

Re ðUe3Þ ¼ sin�13 cos�; ImðUe3Þ ¼ � sin�13 sin�;

(13)

we have

cot ~�0 ¼ �A13 cos��D� sin�

A13 sin�þD� cos�
; (14)

and using Eqs. (6) and (10), one obtains

cot ~�0 ¼ �m1 cos2	1 � ð1þ �Þm2 cos2	2 � �m3

m1 sin2	1 � ð1þ �Þm2 sin2	2

:

(15)

Since � ¼ 2�� ~�, this is equivalent to

cot�0 ¼ m1 cos2	1 � ð1þ �Þm2 cos2	2 � �m3

m1 sin2	1 � ð1þ �Þm2 sin2	2

; (16)

which corresponds exactly to the value of cot� in Eq. (8),
which had been prescribed in [20]. We have thus shown
that the prescription follows directly from the procedure of
taking the limit of � as ReðUe3Þ and ImðUe3Þ go to zero
simultaneously.
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FIG. 1 (color online). The left panel shows the evolution in the ReðUe3Þ–ImðUe3Þ parameter plane, whereas the right panel shows
the corresponding evolution in the �13– ~� plane. The values of the parameters chosen at �0 ¼ 1012 GeV are: tan� ¼ 50, m0 ¼
0:0585 eV2, �m2

21 ¼ 4:22� 10�5 eV2, �m2
32 ¼ 3:91� 10�3 eV2, �12 ¼ 32:84�, �23 ¼ 43:71�, and �13 ¼ 0:014 rad. The Majorana

phases are taken to be	1 ¼ 58:9� and	2 ¼ 159:15�. The Dirac CP phase is 124.0� for case A (violet, dash-dotted line), 128.447� for
case B (red, solid line), and 133.0� for case C (green, dashed line).
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We now have the answers to the issues we started out to
address. There indeed is a fine-tuning that gives �0 a
specific value when passing through �13 ¼ 0 during evo-
lution. However this fine-tuning of parameters is simply
that which is required to ensure the vanishing of �13 during
evolution. Once these conditions are satisfied, the limiting
value of � at �13 ¼ 0 is automatically �0. On the other
hand, if one starts the evolution at �13 ¼ 0, one need not
have any specific value of � (which is an undefined quan-
tity at this point), since even an infinitesimally nonzero �13
would ensure the limiting value of �, as can be seen from
Eqs. (12)–(16).

The net evolution of �13 and � as functions of the energy
scale has been shown in the top panels of Fig. 2. The
evolution of � clearly has a discontinuity at �13 ¼ 0 in
scenario B, where its value changes by �. Though the
origin of this discontinuity is well understood, it is desir-
able to have a clear evolution of parameters that reflect the
continuous nature of the evolution of elements of the
neutrino mixing matrix UPMNS. This can clearly be

achieved by using the parameters ReðUe3Þ and ImðUe3Þ.
However, we prefer to use the Jarlskog invariant

JCP � 1

2
sin�12 cos�12 sin�23 cos�23 sin�13cos

2�13 sin�;

(17)

which appears in the probability expressions relevant for
the neutrino oscillation experiments, and is therefore more
directly measurable than the real and imaginary parts of
Ue3. Since JCP has information only about sin�, we need
its partner

J0CP � 1

2
sin�12 cos�12 sin�23 cos�23 sin�13cos

2�13 cos�

(18)

to keep track of the quadrant in which � lies. The evolu-
tions of ðJCP; J0CPÞ are very similar to those of (ReðUe3Þ,
ImðUe3Þ), as can be seen from the bottom panels of Fig. 2.
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FIG. 2 (color online). The evolution of �13, �, ReðUe3Þ, ImðUe3Þ, JCP, and J0CP as functions of the energy scale�, in the scenarios A
(violet, dash-dotted line), B (red, solid line), and C (green, dashed line).
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III. RG EVOLUTION EQUATIONS IN TERMS OF
THE PARAMETER SET P J

We now calculate the RG evolution of the Jarlskog
invariant JCP and its partner J0CP as defined in (18), and

get to a set of evolution equations that are nonsingular
everywhere, even at �13 ¼ 0. The RG evolution equation
for JCP and J0CP are obtained as

_J CP ¼ AJ þOð�13Þ; (19)

_J 0
CP ¼ A0

J þOð�13Þ; (20)

with

AJ ¼ Cy2�s
2
12c

2
12s

2
23c

2
23

m3

�m2
31

½m1 sin2	1

� ð1þ �Þm2 sin2	2�; (21)

A0
J ¼ Cy2�s

2
12c

2
12s

2
23c

2
23

m3

�m2
31

½m1 cos2	1

� ð1þ �Þm2 cos2	2 � �m3�: (22)

We also choose to write the RG evolution for �213 instead
of �13, as is traditionally done. This quantity turns out to
have a nonsingular behavior at �13 ¼ 0. Moreover, since
�13 	 0 by convention, the complete information about �13
lies within �213. Also, the possible ‘‘sign problem’’1 of �13
is avoided. In terms of the new parameters JCP and J0CP, the

RG evolution equations for �213 becomes

d

dt
�213 ¼ Asq

13 þOð�213Þ; (23)

Asq
13 ¼ 8Cy2�

m3

�m2
31

fJCP½m1 sin2	1 � ð1þ �Þm2 sin2	2�

þ J0CP½m1 cos2	1 � ð1þ �Þm2 cos2	2 � �m3�g:
(24)

Thus the evolution equations in basis P J are all nonsin-
gular and continuous at every point. In particular, even
when � shows a discontinuity, JCP as well as J0CP change in

a continuous manner.
In Fig. 3, we show the RG evolution of �13 (left panel)

and JCP (right panel), as obtained from the analytic ex-
pressions in P � basis as well as in the P J basis, along with
the exact numerical solution, for some chosen values of
parameters. It shows that the approximate running equa-
tions agree with each other to an accuracy of Oð�13Þ.

IV. BOUNDS ON �13 AT LOW SCALE

We now consider all the theories that predict �13 ¼ 0 at
the high scale and try to see the nature of running of the
masses and mixing parameters with the energy scale. For
high scale we consider �0 ¼ 1012 GeV and implement the
symmetry �13 ¼ 0 at this scale, which we also take to be
the mass of the lightest heavy particle responsible for the
seesaw mechanism. We choose this value of �0 since it is
consistent with the current neutrino mass squared differ-
ences and seesaw mechanism with Dirac mass of the
heaviest neutrino around 1–100 GeV [59]. This scale is
also desirable for successful leptogenesis [60]. However,
our results are only logarithmically sensitive to this choice
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FIG. 3 (color online). Comparison of the RG evolution of �13 and JCP from the analytic expressions in P � basis (green, dashed line)
and P J basis (blue, dotted line) with the exact numeric one (red, solid line). The parameters chosen at the high scale �0 ¼ 1012 GeV
are: tan� ¼ 50, m0 ¼ 0:05 eV2, �m2

21 ¼ 0:00008 eV2, �m2
32 ¼ 0:0026 eV2, �12 ¼ 34:5�, �23 ¼ 42:5�, and �13 ¼ 0:5�. The phases

are taken to be � ¼ 40�, 	1 ¼ 25�, and 	2 ¼ 105�.

1Usually the convention used in defining the elements of
UPMNS is to take the angles �ij to lie in the first quadrant. Ue3

can then take both positive or negative values depending on the
choice of the CP phase �. In the formulation of Eq. (10) the sign
of A13 can be such that �13 can assume negative values during the
course of evolution and in such situations one will have to talk
about the evolution of j�13j. Our formulation in terms of �213, as
shown in Eq. (23), naturally avoids this problem.
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and hence our conclusions will be robust against variations
of �0. Also, this would allow us to compare our bounds
with those obtained in [58] for specific models like tribi-
maximal mixing at the high scale. The values of the other
parameters at high energy are chosen such that their low
scale values are compatible with experiments. For the
absolute mass scale of neutrinos, we take the cosmological
bound of m0 & 0:5 eV [61] at the laboratory energy.

We consider the scenarios where the effective theory
below �0 is the SM or the MSSM. We then estimate the
maximum value that �13 can gain through radiative cor-
rections. This can be obtained from

�13 �
��������
Z t

t0

A13dtþOð�13Þ
��������; (25)

� jCj��

2
sin2�12 sin2�23

m3

j�m2
31j

jm1 cosð2	1 � �Þ

� ð1þ �Þm2 cosð2	2 � �Þ
� �m3 cos�j þOð���13;�

2
�Þ; (26)

where t0 � lnð�0=GeVÞ=ð16�2Þ, C ¼ �3=2 for SM and
C ¼ 1 for MSSM. Note that we can use the parameter set
P � here since apart from the starting point, where � is
unphysical and hence is irrelevant completely, the evolu-
tion in terms of this set is also continuous everywhere.
Moreover it is convenient to talk about Dirac and Majorana
phases while putting bounds on quantities. In Eq. (26), ��

is defined as

�SM
� � � 1

32�2

�
g2m�

MW

�
2
ln

�
�0

�

�
(27)

in the SM, where g2 is the SUð2ÞL gauge coupling; whereas
m� and MW are the � lepton and W boson masses, respec-
tively. In the MSSM,

�MSSM
� � � 1

32�2

�
g2m�

MW

�
2ð1þ tan2�Þ ln

�
�0

�

�
: (28)

Numerically, one has �SM
� � �1:4� 10�5 and �MSSM

� �
�1:4� 10�5ð1þ tan2�Þ, where tan� can take values up
to 
50, and so one can treat these quantities as small
parameters. We explicitly indicate the neglected powers
of these parameters in Eq. (26).

In order to get the maximum �13 value possible, for any
value of the lowest neutrino massm0, all the coefficients of
the massesmi in Eq. (26) should have the same sign (which
we choose to be positive) and the maximum possible
magnitude. This can be achieved with the choice

2	1 � �0 ¼ 0; j2	2 � �0j ¼ �; (29)

which gives us

�max
13 � jCj��

2
sin2�12 sin2�23

m3

j�m2
31j

½m1 þ ð1þ �Þm2

þ j�m3 cos�0j�;
(30)

� jCj��

2
sin2�12 sin2�23

m3

j�m2
31j

½m1 þ ð1þ �Þm2

þ j�jm3�: (31)

The right-hand side of Eq. (31) corresponds to choosing the
phases shown in Table II for Eq. (26). As seen, these phases
depend only on whether the neutrino mass ordering is
normal or inverted, and not on the low energy effective
theory (SM or MSSM). However, the value itself will
indeed depend on the effective theory considered. Note
that in this procedure of bounding �13, the actual value of
�0 did not need to be used, a considerable simplification
achieved at the expense of a small overestimation.
To estimate �max

13 that can be generated at the low scale,

we take the optimal values of the other quantities in their
current 3
 allowed ranges [62]. We are allowed to do this
since the corrections to �13 due to the evolutions of the
other quantities will formally be Oð�2

�Þ [56]. The quantity
that may run quite a bit is �12, however the running is
extremely small in the SM and �12 always increases in the
MSSM, so we use the maximum allowed value of sin2�12
in Eq. (31) for our estimation. The values of m1, m2, and
m3 depend on �m2

21, �m
2
32, m0 as well as the chosen mass

ordering. The running of masses and the mass squared
differences are governed by the Yukawa couplings of up-
type quarks and the Uð1ÞY and SUð2ÞL gauge couplings.
For SM, these evolutions depend also on the Higgs boson
self-coupling, and Yukawa couplings of down-type quarks
and charged leptons. But �13, as given in Eq. (31), will be
independent of these quantities to the leading order in ��

and thus considering �m2
21, �m

2
32 in the current 3
 range

is expected to give the correct estimate to this order. This
assumption can be seen to be valid a posteriori from the
comparison between analytic and numerical results that
follow.

TABLE II. Phase choices in SM and MSSM that give the
maximum radiative correction for �13.

� 	1 	2

Normal ordering � �=2 0

Inverted ordering 0 0 �=2
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A. �13 at the low scale in the SM

We first consider the case when the effective low energy
theory below �0 is the SM. Running of the masses and
mixing parameters is considered from �0 ¼ 1012 GeV to
the current experimental scale (
MZ). The scatter points
in Fig. 4 are obtained by keeping �13 ¼ 0 and varying the
other two mixing angles randomly in the range 0 to �=2,
whereas the phases are varied between 0 to 2�. The masses
at the high scale are varied within 0–1.0 eV, so that the
lightest neutrino mass m0 at the low scale varies between 0
and 0.5 eV. Thus each point represents a different high
energy theory with �13 ¼ 0 at the high scale. The upper
bound can be analytically estimated through Eq. (31),
which depends on the neutrino mass ordering through the
phase choices made in Table II and the value of �SM

� is
given in Eq. (27).

From Fig. 4 it is seen that the maximum value gained
radiatively by �13 is rather small, being & 3� 10�3 in the
range 0 � m0 � 0:5 eV for both the mass orderings.
Hence if future experiments measure �13 greater than this
limit, all the theories with �13 ¼ 0 at the high scale and SM
as the low energy effective theory will be ruled out com-
pletely.2 If the upper limit for m0 is brought down by
KATRIN [63] to m0 & 0:2 eV, even lower �13 values
will be excluded for this class of theories. Note that for

m0 of this order, the effective electron neutrino mass
measured by KATRIN will essentially be the same as m0.

B. �13 at the low scale from MSSM

When MSSM is the low energy effective theory, the
evolution of the neutrino parameters is proportional to (1þ
tan2�), as is seen from Eq. (28), where tan� may take
values up to
50. Thus, considerably larger running of �13
may be expected at large tan�. The variation of �13 as a
function of m0 is shown in Fig. 5. From the figure it can be
concluded that with the current limit of m0, the radiative
correction to �13 ¼ 0 at the high scale can be large enough
to reach the present upper bound of �13 at laboratory
energy. However, for a given m0 & 0:1 eV, the maximum
�13 these theories can generate is significantly lower for the
whole tan� range. For example, if m0 happens to be
0.08 eV, the maximum �13 for tan� ¼ 50 is �13 
 0:12,
i.e. sin22�13 
 0:056. Such a �13 regime will be probed by
the next generation neutrino oscillation experiments like
Double CHOOZ [64], Daya Bay [65], T2K [66]. Since the
tritium beta decay experiment KATRIN [63] plans to probe
m0 
 0:2 eV only, it may not be enough to rule out theories
with larger tan�.
However, the neutrinoless double beta decay (0���)

experiments will measure the effective Majorana mass of
the electron neutrino

mee ¼ jc212c213m1e
2ið	1��Þ þ s212c

2
13m2e

2ið	2��Þ þ s213m3j:
(32)

 0
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FIG. 4 (color online). Scatter points show the low energy �13 as a function of the lightest neutrino mass m0 at the low scale, for both
normal (left panel) and inverted (right panel) mass ordering. Each point represents a different high energy theory with �13 ¼ 0
obtained by varying the other parameters at the high scale randomly. The solid (black) line gives the maximum attainable �13 for a
given m0, calculated using the analytic bound in Eq. (31), the current 3
 limits of the masses and mixings at the low scale, and the
phase values as given in Table II.

2Note however that if we consider multi-Higgs doublet SM
with additional discrete symmetries to ensure �13 ¼ 0 at high
scale, then for m0 > 0:2 eV, the value of sin2�13 can be as large
as 10�2 [48].
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The value of mee will allow us to estimate the m0 range,
albeit with a large uncertainty owing to the complete lack
of knowledge of the phases �, 	1, and 	2 currently. The
present upper bound on the average neutrino mass ismee <
1:1 eV [67], whereas the proposed next generation experi-
ments like COBRA [68], CUORE [69], EXO [70],
GERDA [71], Super-NEMO [72], MOON [73] plan to
probe mee in the range as low as 0:01 eV � mee �
0:1 eV. Therefore, combined measurement of �13 and
mee may enable us to put some bound on the theories
with large tan�.

The expression for mee in (32) can be expanded in terms
of the parameter �� � �m2

21=m
2
0, which is small in the

range mee > 0:01 eV, and the small parameter �13, to get

mee ¼ m0 cos2�12

�
1� ��

2

s212
cos2�12

� �213

�

� �213

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ �m2
32

q
þOð�2�; ���213; �

3
13Þ (33)

for normal mass ordering, where the phases are chosen as
given in Table II. For inverted mass ordering,

mee ¼ cos2�12ð1� Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ j�m2
32j

q
þOð�2�; ���213; �313Þ; (34)

where

 ¼ ��
2

c212
cos2�12ð1þ�Þ þ �213

�
1� 1

cos2�12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�
:

(35)

The quantity � � j�m2
32j=m2

0 is bounded from below,

while for inverted mass ordering �� is a small parameter
(
Oð10�1Þ) in the rangemee > 0:02 eV, so that  is small
in this range. The analytic expressions in Eqs. (33) and (34)
are valid for mee > 0:01 eV and mee > 0:02 eV, respec-
tively. In this domain of validity, we invert the relations
(33) and (34) to obtain m0 in terms of mee, and then use
Eq. (31) for an analytic estimation of �max

13 . For the mee

values outside the range of validity, one has to estimate
numerically the minimum allowed mee for a given m0 and
then use Eq. (31) to determine �max

13 . These estimations are

shown in Fig. 6 for various tan� values. The scattered
points are the low scale predictions calculated numerically,
which show the correlated constraints in the parameter
space of �13 and mee. It may be noted that the analytic
bounds on �13 obtained here as a function of mee are
generous overestimations, mainly due to the error in the
estimation of m0 for a given mee.
Note that bounds on �13 at the low scale generated by

RG evolution have been studied earlier in the context of
specific neutrino mixing scenarios at the high scale, like
the quark-lepton complementarity or tribimaximal mixing
[58], or correlated generation of�m2

21 and �13 [45,46]. The
bounds obtained in this section, which are applicable not
only for all the models with �13 ¼ 0 at the high scale, but to
all the models with �13 ¼ 0 anytime during their RG
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FIG. 5 (color online). Maximum �13 obtained at the low scale as a function of the lightest neutrino mass m0 at the low scale for
tan� ¼ 10, 20, 30, and 50 in the normal (left panel) and inverted (right panel) mass ordering. The plots show that simultaneous
measurement of �13 and m0 will help in ruling out of a class of high energy theories with �13 ¼ 0. However there is a strong
dependence on the upper limit of tan�.
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evolution, subsumes the earlier analyses with specific
models.

V. SUMMARY

If the neutrino mixing angle �13 is extremely small, it
could point towards some flavor symmetry in the lepton
sector. There is indeed a large class of theories of neutrino
mass that predict extremely small or even vanishing �13.
However, such predictions are normally valid at the high
scale where the masses of the heavy particle responsible
for neutrino mass generation lie. Below this scale, radiative
corrections give rise to RG evolution of the neutrino mix-
ing parameters, which in principle can wipe out signatures
of such symmetries. In this paper, we explore the RG
evolution of all such theories collectively.

The RG evolution with the traditional parameter set
P � ¼ fmi; �ij; 	i; �g involves an apparent singularity in

the evolution of the Dirac phase � when �13 ¼ 0. This
singularity is unphysical, since all the elements of the
neutrino mixing matrix UPMNS are continuous at �13 ¼ 0,
and in fact the value of � there should be immaterial. A
practical solution to this situation has already been pro-
posed, which involves prescribing a specific value of cot�
when one starts the RG evolution of a model with �13 ¼ 0.
However, if �13 vanishes during the evolution, getting the
required value of � exactly at that point looks like fine
tuning. This issue is relevant to the class of models under
consideration, since �13 is already very close to zero at the
high scale.

We explore the apparent singularity in � by analyzing
the evolution of the complex quantity Ue3, which stays
continuous throughout the RG evolution. We find that a
fine-tuning is indeed required, but that is to ensure that �13
exactly vanishes. In general, if the CP violating Dirac and
Majorana phases take nontrivial values, one does not pass
through �13 ¼ 0 even when one starts with �13 very close
to zero. One needs rather finely tuned values for the start-
ing values of the neutrino mixing parameters, unless one
introduces a symmetry like CP conservation, which makes
the Dirac and Majorana phases vanish everywhere. Since
the latter assumption is used commonly in literature, one
tends to miss the fact that getting �13 ¼ 0 during RG
evolution is possible only in a small region of the parame-
ter space.
However, if the parameters happen to be tuned such that

�13 vanishes exactly, we show that the limiting value of �
as �13 ! 0 is indeed the one given by the prescription
mentioned above. Moreover, we show that if one is starting
from �13 ¼ 0, one need not give any specific value to �,
which is an undefined quantity at that point. An infinitesi-
mally nonzero �13 automatically ensures the correct values
of �. We also propose an alternate parametrization using
the parameter set P J ¼ fmi; �12; �23; �

2
13; 	i; JCP; J

0
CPg,

where all the parameters are well defined everywhere and
any seemingly nonsingular behavior is avoided.
For models with exactly vanishing �13 at the high scale,

we study the generation of nonzero �13 through radiative
corrections. We consider two scenarios, one when the low
energy effective theory is the SM, and the other where it is
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FIG. 6 (color online). Scatter points show the value of �13 generated at the low scale as a function of mee, for normal (left panel) and
inverted (right panel) ordering. Each point represents a different high energy theory with �13 ¼ 0. Different symbols (colors)
correspond to different ranges of tan�, viz. squares (red) for 1:0 � tan� � 20:0, diamonds (blue) for 20:0 � tan� � 30:0, and circles
(gray) for 30:0 � tan� � 50:0. The lines show analytic estimates of �max

13 : solid (red) line for tan� ¼ 20:0, dashed (blue) line for

tan� ¼ 30:0 and dot-dashed (gray) line for tan� ¼ 50:0.
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the MSSM. The radiatively generated �13 values are corre-
lated with the absolute neutrino mass scale m0. This scale
will be probed by the future experiments on tritium beta
decay, and indirectly by the neutrinoless double beta decay
experiments. If the value of m0 is indeed restricted to the
value 
0:2 eV which KATRIN will probe, the maximum
value of �13 generated can only be & 3� 10�3 in the SM
scenario. With the MSSM, the running can be much higher
for large tan�, such that the current bound of �13 < 0:22
may be reached. In this scenario, we correlate the bound on
�13 with the effective neutrino Majorana mass mee to be
measured in the next generation neutrinoless double beta
decay experiments. The whole class of models considered
in this paper can then be ruled out from future measure-
ments of �13, mee, and tan�.
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