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The corrections induced by light quark masses to the current algebra result for the �0 lifetime are

reexamined. We consider next-to-next-to-leading order corrections and we compute all the one-loop and

the two-loop diagrams which contribute to the decay amplitude at this order in the two-flavor chiral

expansion. We show that the result is renormalizable, as Weinberg consistency conditions are satisfied. We

find that chiral logarithms are present at this order unlike the case at next-to-leading order. The result

could be used in conjunction with lattice QCD simulations, the feasibility of which was recently

demonstrated. We discuss the matching between the two-flavor and the three-flavor chiral expansions

in the anomalous sector at order one-loop and derive the relations between the coupling constants. A

modified chiral counting is proposed, in which ms counts as OðpÞ. We have updated the various inputs

needed and used this to make a phenomenological prediction.
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I. INTRODUCTION

The close agreement between the current algebra pre-
diction for the lifetime of the neutral pion and experiment
is one of the two compelling experimental signatures,
together with the Nambu-Goldberger-Treiman relation,
for the spontaneous breaking of chiral symmetry in QCD.
There is an ongoing effort by the PrimEx collaboration [1]
to improve significantly the accuracy of the lifetime mea-
surement, which is now around 8%, down to the 1%–2%
level. This motivates us to study the corrections to the
current algebra prediction.

Starting with the detailed study by Kitazawa [2], this
problem has been addressed several times in the literature
[3–11]. The approach used in Ref. [2] was to extrapolate
from the soft pion limit to the physical pion mass result
using the Pagels-Zepeda [12] sum rule method. This was
reconsidered in Ref. [10], who implemented a more elabo-
rate treatment of �0 � �� �0 mixing and also recently in
Ref. [11]. The latter work shows some disagreement con-
cerning the size of the �0 meson contribution in the sum
rule as compared to earlier results.

In this paper, we reconsider the issue of the corrections
to the current algebra result to the �0 ! 2� amplitude
from the point of view of a strict expansion as a function
of the light quark masses. This is most easily implemented
by using chiral Lagrangian methods (see e.g. [13] for a
review). The same framework also allows one to compute
radiative corrections [14]. We believe that it is somewhat
easier to control the size of the errors in this kind of

approach, which is important for exploiting the forthcom-
ing high experimental accuracy. Another interest in deriv-
ing a quark mass expansion is the ability to perform
comparisons with lattice QCD results where quark masses
can be varied. The feasibility of computing the �0 to two
photon amplitude in lattice QCD has been studied very
recently [15].
A priory, it is expected that one can make use of SUð2Þ

ChPT, i.e. expand as a function of mu, md without making
any assumption concerning ms (except that it is heavier
thanmu, md). In SUð2Þ ChPT it is often the case that chiral
logarithms provide a reasonable order of magnitude for the
size of the chiral corrections. This is the case, for instance,
for the �� scattering amplitude [16,17]. It was observed in
Refs. [3,4] that there was no chiral logarithm in the next-to-
leading order (NLO) correction to the �0 lifetime once the
amplitude is expressed in terms of the physical value of F�.
We have asked ourselves whether chiral logarithms are
present in the NNLO corrections. At this order, the coef-
ficient of the double chiral logarithm depends only on F�.
Depending on its numerical coefficient, such a term could
modify the NLO results. In order to obtain this coefficient
it is, in principle, sufficient to compute a set of one-loop
graphs containing one divergent NLO vertex [18]. For
completeness, we will perform a complete calculation of
the two-loop graphs as well. This is described in Sec. III.
In the framework of two-flavor ChPT, however, one

faces the practical problem that the polynomial terms in
mu, md at NLO involve a number of low-energy couplings
(LEC’s) which are not known. We will show that it is
possible to make estimates for the relevant combinations,
and then make quantitative predictions for the �0 decay,
under the minimal additional assumption that the mass of
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the strange quark is sufficiently small, justifying a chiral
expansion in ms. We will obtain the first two terms in the
ms expansion of the NLO SUð2Þ LEC’s. The result can be
implemented in association with a modified chiral counting
scheme, in which ms is counted as OðpÞ, which respects
the hierarchymu,md � ms. This leads to simpler formulas
than previously obtained. Finally, we will update all the
inputs needed to compute the lifetime.

II. LEADING AND NEXT-TO-LEADING ORDERS
IN THE SUð2Þ EXPANSION

In the odd-intrinsic-parity sector, the Lagrangian of low-
est chiral order has order p4, it is the Wess-Zumino [19]
Lagrangian, LWZ, which form is dictated by the ABJ
anomaly [20]. Writing the �0 ! �ðk1Þ�ðk2Þ decay ampli-
tude in the form

T ¼ e2�ðe�1; k1; e�2; k2ÞT; (1)

a tree level computation of the pion decay amplitude gives
the well known result

TLO ¼ 1

4�2F
; (2)

where F is the pion decay constant in the two-flavor chiral
limit mu ¼ md ¼ 0. At leading order one can set F ¼ F�

in Eq. (2). According to the Weinberg rules [18] for ChPT,
the NLO corrections are generated from:
(a) One-loop diagrams with one vertex taken fromLWZ

and other vertices from theOðp2Þ chiral Lagrangian.
These diagrams were first computed in Refs. [3,4].

(b) Tree diagrams having one vertex fromLWZ and one
vertex from the Oðp4Þ chiral Lagrangian.

(c) Tree diagrams from the Oðp6Þ Lagrangian in the
anomalous-parity sector, LW

ð6Þ.
The classification of a minimal set of independent terms in
this Lagrangian was initiated in Refs. [21,22]. We will use
here the result of Ref. [23] who further reduced the set to
23 terms in the case of three flavors and to 13 independent
terms in the case of two flavors (this result was also
obtained in Ref. [24]). The list, in the case of two flavors,
is recalled below:

LW
6;Nf¼2 ¼ �����fcW1 h	þ½f���; u�u��i þ cW2 h	�ffþ��; u�u�gi þ cW3 ih	�fþ��fþ��i þ cW4 ih	�f���f���i

þ cW5 ih	þ½fþ��; f����i þ cW6 hfþ��ih	�u�u�i þ cW7 ihfþ��ihfþ��	�i þ cW8 ihfþ��ihfþ��ih	�i
þ cW9 ihfþ��ihh��u�u�i þ cW10ihf�þ�ihf���u�u�i þ cW11hfþ��ihfþ��h

�
�i þ cW12hfþ��ihf�þ�f���i

þ cW13hr�fþ��ihfþ��u�ig: (3)

The relations between the bare and the renormalized cou-
plings may be written as [23]

cWi ¼ cWr
i ð�Þ þ �W

i

ðc�Þd�4

16�2ðd� 4Þ (4)

with logðcÞ ¼ �ðlogð4�Þ � �þ 1Þ=2 as usual in ChPT
(note that the couplings cWr

i have dimension ðmassÞ�2).
The coefficients �W

i vanish for i ¼ 1 . . . 5 and the remain-
ing ones read [23]

�W
6 ¼ 3�; �W

7 ¼ 3�; �W
8 ¼ � 3

2
�;

�W
9 ¼ 6� �W

10 ¼ �18�; �W
11 ¼ 12�;

�W
12 ¼ 0; �W

13 ¼ �12�;

(5)

with

� ¼ 1=ð384�2F2Þ: (6)

The above results for �W
i were obtained by using, in the

ordinary sector at p4, the chiral Lagrangian term propor-
tional to l4 which differs from the form originally used in
Ref. [25]

L ðorigÞ
l4

¼ il4
4
hu�	��i (7)

by a term proportional to the equation of motion

L l4 ¼ LðorigÞ
l4

þ il4
4

�
	̂�

�
r�u

� � i

2
	̂�

��
: (8)

If one uses LðorigÞ
l4

then, in the odd-intrinsic-parity sector,
the coefficients with labels 6, 7, and 8 are modified to ~cWi
[7,26]. The relations between ~cWi and cWi are easily worked
out by performing a field redefinition,

~c W
6 ¼ cW6 � Nc

128�2

l4
F2

~cW7 ¼ cW7 þ Nc

256�2

l4
F2

~cW8 ¼ cW8 � Nc

512�2

l4
F2

:

(9)

In the present work, we use the original LðorigÞ
l4

in our
calculations but we will express the final result in terms
of cWr

i rather than ~cWr
i , making use of the relations (9)

[which will prove slightly more convenient below when we
perform a matching with the SUð3Þ expansion].
Returning to the �0 decay amplitude, the contributions

from the one-loop Feynman diagrams can be shown to be
absorbed into the reexpression of F into F� [3,4], the
physical pion decay constant at order p4, such that the
decay amplitude including the NLO corrections reads
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TLOþNLO ¼ 1

F�

�
1

4�2
þ 16

3
m2

�ð�4cWr
3 � 4cWr

7 þ cWr
11 Þ

þ 64

9
Bðmd �muÞð5cWr

3 þ cWr
7 þ 2cWr

8 Þ
�
;

(10)

where B ¼ �limmu¼md¼0h �uui=F2 and m2
� denotes the

mass squared of the neutral pion which, at this order, is
equal to M2 ¼ Bðmd þmuÞ. Equation (10) shows that the
decay amplitude at NLO receives a contribution propor-
tional to the isospin breaking mass differencemd �mu. As
can be seen from Eqs. (5) the two combinations of chiral
couplings which enter into the expression of TNLO are
finite. The expression of TLOþNLO therefore involves no
chiral logarithm. The chiral corrections to the current
algebra result are purely polynomial in mu, md and are
controlled by four coupling constants from Eq. (3). In order
to estimate quantitatively the effects of the NLO correc-
tions, we will show below that it is useful to express these
couplings as an expansion in powers of the strange quark
mass. Before doing so, let us now investigate the presence
of chiral logarithms, which could possibly be numerically
important, in the NNLO corrections.

III. �0 DECAY TO NNLO IN THE TWO-FLAVOR
EXPANSION

We must calculate now a) the one-loop Feynman dia-
grams with one vertex involving an NLO chiral coupling,
either li or c

W
i and b) the two-loop Feynman diagrams with

one vertex taken from the LO Wess-Zumino Lagrangian
and the other one taken from the Oðp2Þ chiral Lagrangian.
It is convenient the use the following representation for the
chiral field

U ¼ 
þ i
~� � ~�

F
; 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~�2

F2

s
(11)

(since, in this representation, there is no �4� vertex at LO).
At the order considered, all the reducible diagrams are
generated from wave function renormalization. The ex-
pression for the WF renormalization constant Z [corre-
sponding to (11)] was first given by Bürgi [27],

Z1=2 ¼ 1� TM

2F2
þ 1

F4

�
� 1

8
T2
M þM4

2

�
�
rZ þ _T2

MQ
Z � _TM

X3
i¼1

liQ
Z
i

�
þ B2ðmd �muÞ2

� ð�8F2ðc7 þ c9Þ þ _TMl7Þ
	

(12)

with

TM ¼ ðM2Þððd=2Þ�1Þ�ð1� d
2Þ

ð4�Þd=2 ; _TM ¼ dTM

dM2
; (13)

(d ¼ 4þ 2w). We have indicated explicitly here the con-
tributions proportional to ðmd �muÞ2 for completeness
because isospin breaking contributions play an important
role for the �0 decay amplitude. We will also need the
expression for the chiral expansion of F� at order p6 (from
[28])

F�

F
¼ 1þ 1

F2
½M2l4 � TM� þM4

F4

�
rF þ _T2

MQ
F

� _TM

X4
i¼1

liQ
F
i

	
þ 8B2ðmd �muÞ2

F2
ðc7 þ c9Þ:

(14)

The numerical parameters QZ and QF which appear above
read

QZ ¼ 1
96ð96� 464wþ 1185w2Þ;

QF ¼ � 1
192ð240� 656wþ 1125w2Þ (15)

and will need the following relations obeyed by the nu-
merical parameters QZ

i and QF
i

QF
1 ¼ �1

2
QZ

1 ; QF
2 ¼ �1

2
QZ

2 ;

QF
3 ¼ QZ

3 ¼ 2; QF
4 ¼ 1

2ð1þ wÞ :
(16)

Finally, the entries rZ and rF in Eqs. (12) and (14) represent
combinations of coupling constants from the Oðp6Þ chiral
Lagrangian. The �0 amplitude involves the combination
rZ þ 2rF which is expressed in terms of a single p6 cou-
pling, called c6 in the classification of Ref. [29]

rZ þ 2rF ¼ �64F2c6: (17)

The two-loop one-particle irreducible diagrams which one
must compute [using the representation (11)] are shown in
Fig. 1. It turns out to be possible to express all of them
analytically in terms of known special functions by com-
bining the methods exposed in Ref. [30] with integration
by parts methods. We give the results corresponding to the
two diagrams (f) and (g), which are the most difficult ones,
in Appendix A.
Collecting all the pieces together, we find that the ex-

pression for the NNLO contribution to the �0 decay am-
plitude into two photons has the following expression,
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F�TNNLO ¼� M4

24�2F4

�
1

16�2
L�

�
2 þ M4

16�2F4
L�

�
3

256�4

þ 32F2

3
ð2cWr

2 þ 4cWr
3 þ 2cWr

6 þ 4cWr
7 � cWr

11 Þ
	

þ 32M2Bðmd �muÞ
48�2F4

L�½�6cWr
2 � 11cWr

3

þ 6cWr
4 � 12cWr

5 � cWr
7 � 2cWr

8 � þM4

F4
�þ

þM2Bðmd �muÞ
F4

�� þB2ðmd �muÞ2
F4

���;

(18)

where L� represents the chiral logarithm

L� ¼ log
m2

�

�2
(19)

and �þ, ��, ��� can be expressed as follows in terms of
renormalized chiral coupling constants,

�þ¼ 1

�2

�
�2

3
dWrþ ð�Þ�8cr6�

1

4
ðlr4Þ2þ

1

512�4

�
�
�983

288
�4

3

ð3Þþ3

ffiffiffi
3

p
Cl2ð�=3Þ

�	

þ16

3
F2½8lr3ðcWr

3 þcWr
7 Þþ lr4ð�4cWr

3 �4cWr
7 þcWr

11 Þ�

��¼64

9
½dWr� ð�ÞþF2lr4ð5cWr

3 þcWr
7 þ2cWr

8 Þ�
���¼dWr��ð�Þ�128F2l7ðcWr

3 þcWr
7 Þ: (20)

Here, the notation dWr refer to combinations of couplings
from the NNLO Lagrangian (i.e. of order p8) in the
anomalous sector.
A few remarks are in order concerning this calculation.

First, concerning nonlocal divergences, i.e. terms of the
form M4 logðM2Þ=ðd� 4Þ, we have verified that those
which are generated from the two-loop diagrams are can-
celed exactly by those generated from the one-loop dia-
grams proportional to li, c

W
i as expected from theWeinberg

consistency conditions. The divergences that are left are
proportional to M4, M2ðmd �muÞ and ðmd �muÞ2. They
are canceled by the contributions, at tree level, from the
chiral Lagrangian of order p8 in the anomalous sector. We
have denoted the three independent combinations ofOðp8Þ
chiral couplings by dWþ , dW� , and dW��. Our calculation
shows that the relation between these and the correspond-
ing renormalized combinations must be as follows,

dWþ ¼ ðc�Þ2ðd�4Þ

F2

�
dWrþ ð�Þ ��2

�
� 17

3

�
��

�
�11lr1

� 7lr2 �
1

2
lr3 �

3

2
lr4 �

53

4608�2
þ 16�2F2ð�4cWr

2

� 2cWr
3 � 4cWr

6 � 2cWr
7 þ cWr

11 Þ
�	

dW� ¼ ðc�Þ2ðd�4Þ

F2
½dWr� ð�Þ ��F2ð�18cWr

2 � 23cWr
3

þ 18cWr
4 � 36cWr

5 � cWr
7 � 2cWr

8 Þ�

dW�� ¼ ðc�Þ2ðd�4Þ

F2

�
dWr��ð�Þ þ�l7

�2

�
: (21)

Equation (18) shows that chiral logarithms are indeed
present at NNLO. The coefficient of the dominant one, as
can be shown quite generally, depends only on F. The
coefficient of the subdominant chiral logarithm has one
part depending only on F and another one depending on
the NLO chiral couplings cWr

i . From a numerical point of
view, the contribution from the dominant chiral logarithm
turns out to be very small, of the order of a few per mille.
This lack of enhancement could indicate a fast conver-
gence of the chiral perturbation series. In this respect, the
detailed formula (18) could be used in association with
results from lattice QCD simulations, in which the quark
massesmu,md are larger than the physical ones and can be

(a) (b)

(c) (d) (e)

(f) (g)

FIG. 1. Two-loop Feynman graphs (one-particle irreducible)
contributions to the �0 ! 2� amplitude.
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varied. This would allow one to determine the relevant
combinations of chiral couplings. In the following section
we discuss an alternative, more approximate method, to
estimate these combinations.

IV. CHIRAL EXPANSION IN ms

From now on, we assume that the mass of the strange
quark is sufficiently small, such that the chiral expansion in
ms is meaningful. One can then calculate the �0 lifetime
using the three-flavor chiral expansion. Instead of doing so
directly, as it remains true that mu, md � ms, it is instruc-
tive to start from the SUð2Þ expression, Eq. (18) and
perform a chiral expansion of the couplings cWi as a func-
tion ofms. A priory, one expects expressions of the follow-
ing form to arise

cWr
i ¼ �i

ms

þ
�
�i þ

X
a

�iaC
Wr
a þ �i log

B0ms

�2

�
þOðmsÞ;

(22)

where CWr
a , a ¼ 1 . . . 24 are the coupling constants of the

NLO Lagrangian in the anomalous sector in the SUð3Þ
expansion [23] and B0 ¼ limms¼0B. Analogous expansions

were established in Ref. [31] for the SUð2Þ couplings B, F
and lri . This problem was reconsidered recently in Ref. [32]
in which the NNLO terms in that expansion have been
derived. Also in Ref. [33] the ms expansions of the SUð2Þ
LEC’s in the electromagnetic sector were studied. In order
to generate such expansions one can work in the SUð2Þ
chiral limit mu ¼ md ¼ 0, compute sets of correlations
functions having SUð2Þ flavor structure in both the SUð2Þ
and the SUð3Þ chiral expansions and equate the expres-
sions. The authors of Ref. [32] have shown how to perform
this matching at the level of the generating functionals. In
the SUð3Þ generating functional, one must use external
sources s, p, v�, a� which correspond to those used in

the SUð2Þ functional embedded into 3� 3 matrices. Since
there is no source for strangeness, the classical SUð3Þ
chiral field involves the three pions �a and the � field
but no kaons

Ucl ¼ exp
i�a�a

F0

exp
i��8

F0

(23)

(F0 being the pion decay constant in the three-flavor chiral
limit). Using the equation of motion one can express the
field �cl in terms of an SUð2Þ chiral building-block [32,33]

�clffiffiffi
3

p
F0

¼ ih	�i
�
� 1

16msB

�
þOðp4Þ: (24)

The terms proportional to �cl thus generate contributions
proportional to 1=ðmsBÞ. These can be also seen as result-
ing from � meson propagators in tree diagrams. Besides,
Eq. (24) shows that �cl counts as Oðp2Þ in the SUð2Þ
counting. Inserting Ucl from Eq. (23) in the SUð3Þ Wess-
Zumino action and expanding to first order in �cl we

obtain,

L � ¼ � iNc

48�2

�clffiffiffi
3

p
F0

�����

�
1

2
hfþ��u�u�i

� 3

8
ihfþ��fþ��i þ 3

4
ihfþ��ihfþ��i

� 1

8
ihf���f���i

�
: (25)

This allows one to deduce the leading terms, which behave
as 1=ms, in the expansion of the couplings cWr

i . Next, the
terms proportional to ðmsÞ0 are generated from three
sources.
(1) From the SUð3Þ Lagrangian LW

6 , by inserting Ucl

(with �cl set to zero), which gives contributions
proportional to LEC’s CWr

i .
(2) From one-loop irreducible graphs with one vertex

taken from the Wess-Zumino action and having one
kaon or one eta running in the loop.

(3) From corrections to the � pole contributions stem-
ming from tadpoles or from vertices proportional to
the Oðp4Þ couplings Li.

The results are presented in Eqs. (26) below and (B1) in
Appendix B.
Let us now examine the applications of this exercise to

the problem of the �0 lifetime. As seen in sec. II the NLO
corrections involve two independent pieces, one propor-
tional to m2

� and one to Bðmd �muÞ, and they are con-
trolled by two combinations of the four couplings cWr

3 , cWr
7 ,

cWr
8 and cWr

11 . For these, we take into account the first two

terms in the ms expansion which read

cWr
3 ¼ �3

2c0 þ CWr
7 þ 3CWr

8 þOðmsÞ
cWr
7 ¼ 3

2c0 � 3CWr
8 þ 1

4C
Wr
22 þOðmsÞ

cWr
8 ¼ 3

4c0 þ 1
2C

Wr
7 þ 3CWr

8 � 1
8C

Wr
22 þOðmsÞ

cWr
11 ¼ CWr

22 þOðmsÞ;

(26)

where

c0 ¼ 1

32�2

�
� 1

16Bms

þ 2

F2
0

�
3Lr

7 þ Lr
8

� 1

512�2

�
LK þ 2

3
L�

��	
(27)

and

LK ¼ log
msB0

�2
; L� ¼ LK þ log

4

3
: (28)

At this point, one observes that by using the ms expansion,
we have expressed four SUð2Þ couplings in terms of three
SUð3Þ ones. This might look as a modest improvement.
Fortunately, the combinations relevant for the �0 lifetime
at NLO actually involve only two couplings CWr

7 , CWr
8

while CWr
22 drops out.
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Let us now consider the terms proportional to m4
� and

m2
�ðmd �muÞ. One can see from Eq. (18) that they involve

four more LEC’s, cWr
2 , cWr

4 , cWr
5 , cWr

6 . It makes sense here

to retain only the part of these LEC’s which are dominant
in the ms expansion, i.e. the 1=ms part,

cWr
2 ’ ~c0; cWr

4 ’ � 1

2
~c0; cWr

5 ’ 0;

cWr
6 ’ �~c0; ~c0 ¼ � 1

512�2Bms

(29)

and we perform a similar approximation in Eq. (26). We
will also retain the part involving the LEC CW

8 as it will

appear that the size of this coupling is comparable to that of
the 1=ms terms. Inserting the ms expansions (26) and (29),
in the SUð2Þ chiral expansion of the �0 decay amplitude
(18) we obtain the following expression

TðLOþNLOÞþ ¼ 1

F�

�
1

4�2
� 64

3
m2

�C
Wr
7 þ 1

16�2

md �mu

ms

�
�
1� 3

2

m2
�

16�2F2
�

L�

	
þ 32Bðmd �muÞ

�
�
4

3
CWr
7 þ 4CWr

8

�
1� 3

m2
�

16�2F2
�

L�

�

� 1

16�2F2
�

�
3Lr

7 þ Lr
8 �

1

512�2

�
�
LK þ 2

3
L�

��	
� 1

24�2

�
m2

�

16�2F2
�

L�

�
2
�
:

(30)

A modified SUð3Þ chiral counting
Some comments are in order concerning Eq. (30). In

particular, one expects it to be related to the formula that
one can compute starting from SUð3Þ ChPT. Such a com-
putation was performed, e.g. in Ref. [7]. In SUð3Þ ChPT
mu, md and ms are counted on the same footing,

mu; md �ms �Oðp2Þ ½standard SUð3Þ�: (31)

In the physical situation, however, mu, md � ms. For
processes which involve only pions this can be accounted
for by adopting the following modified counting,

mu; md �Oðp2Þ; ms �OðpÞ
½modified SUð3Þ�: (32)

The formula (30) for the �0 lifetime can be argued to be a
consistent expansion in this modified counting. One notes
first that all the corrections must be proportional to mu, md

since the starting point is exact in the SUð2Þ chiral limit.
The formula (30) includes the leading corrections of order
p (which must be proportional to mu=ms, md=ms) as well
as the subleading corrections of order p2 (which must be
proportional to mu, md). It also includes the corrections of

order p3 which are logarithmically enhanced (which must
be proportional to mums, mdms multiplied by logðmu þ
mdÞ as well as the corrections of order p4 which are double
logarithmically enhanced. Obviously, by retaining loga-
rithmically enhanced terms at a given order instead of the
full set of terms, one introduces a chiral scale dependence
into the amplitude. Clearly, one should use a value of the
scale of the order of the kaon or the eta mass for this
approximation to make sense. Finally, we have verified
that, starting from the expression for the amplitude in
standard SUð3Þ at NLO obtained in Ref. [7], and expanding
in powers ofmu=ms,md=ms one recovers exactly the terms
of order p, p2 and p3 logðp2Þ in the modified SUð3Þ
expansion (32). In practice, the expression (30) is some-
what simpler than the standard SUð3Þ NLO expression and
contains the double logarithm term. The latter turns out to
be numerically small so that the two expressions are es-
sentially equivalent in practice. In order to derive a nu-
merical prediction from Eq. (30) one needs inputs for: F�,
ðmd �muÞ=ms, Bðmd �muÞ and CW

7 , C
W
8 . We will give an

update on the determination of these quantities in Sec. V
In addition to the chiral corrections induced by the quark

masses, one should also take electromagnetic corrections
into account. These have been considered in Ref. [7],
where the correction terms of order e2 and of order
e2ðmu þmdÞ=ms have been computed. Here, it is consis-
tent to retain only the term of order e2, its expression in
terms of Urech’s chiral couplings [14] is recalled,

Te2 ¼
e2

4�2F�

�
� 4

3
ðKr

1 þ Kr
2Þ þ 2Kr

3 � Kr
4

� 10

9
ðKr

5 þ Kr
6Þ þ

C

32�2F4
�

ð5þ 4L� þ LKÞ
�
: (33)

This term is defined such that the �0 ! 2� amplitude is
expressed in terms of F�0 which is the neutral pion decay
constant in pure QCD andm2

� which is the physical neutral
pion mass (i.e. including EM corrections).

V. PHENOMENOLOGICAL UPDATES

Let us now update the various inputs needed to calculate
the numerical prediction for the �0 lifetime in ChPT.

A. The pion decay constant

An obviously essential input here is F�, the value of the
pion decay constant. Marciano and Sirlin [34] have eval-
uated the radiative corrections in the process �þ !
�þ�ð�Þ decay rate such that it is expressed in terms of
F�þ the charged pion decay constant in pure QCD. In pure
QCD the difference between F�0 and F�þ is quadratic in
the quark mass difference md �mu and can be expressed
as follows in ChPT,
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F�þ

F�0









QCD
�1 ¼ B2ðmd �muÞ2

F4
�

�
�16cr9ð�Þ

� l7
16�2

�
1þ log

m2
�

�2

�	
’ 0:710�4: (34)

A rough numerical evaluation has been made by using
leading order 1=ms estimates

l7 ’ F2
�

8Bms

; cr9 ’ � 3

2

�
F2
�

Bms

�
2
: (35)

Equation (34) shows that the difference between F�þ and
F�0 is negligibly small for our purposes, and wewill ignore
it. In the expression of Ref. [34] for the radiative correc-
tions, one constant term, called C1, was left undetermined.
Matching with the ChPT expansion of the �þ decay rate at
Oðp4Þ one can express C1 in terms of chiral logarithms and
a set of chiral couplings [35]. The latter can then be
estimated using chiral sum rules and resonance saturation
[36]. Using these results and the updated value of Vud from
Ref. [37]

Vud ¼ 0:974 18ð26Þ; (36)

we find

F� ¼ 92:22� 0:07 MeV: (37)

B. Bðmd �muÞ, ðmd �muÞ=ms, 3L7 þ Lr
8

Because of the Kaplan-Manohar invariance [38] it is not
possible to determine independently the quark mass ratios
and the couplings L7, L8 in ChPT using low-energy data.
One may use an input from lattice QCD, e.g. on the quark
mass ratio r ¼ 2ms=ðmu þmdÞ. Using the results obtained
in Ref. [39] as well as those from other recent QCD
simulations which are collected in table XVI of that refer-
ence and averaging, one can deduce

r 	 2ms

mu þmd

¼ 28:0� 1:5: (38)

Using this input for r, we may treat terms linear in the
quark masses in NLO ChPT expressions as follows,

ðmu þmdÞB0 ’ m2
�; msB0 ¼ r

2
m2

�: (39)

The value of the LEC combination 3L7 þ Lr
8, can be

deduced using r and standard Oðp4Þ ChPT formulas for
the pseudoscalar meson masses [31]

3L7 þ Lr
8ð�Þ ¼ ð0:10� 0:06Þ10�3 ð� ¼ M�Þ: (40)

Concerning the quark mass difference md �mu, we will
use the recent determination made in Ref. [40]. It is based
on the � ! 3� decay amplitude which is an isospin break-

ing observable with very small sensitivity to electromag-
netic effects [41,42]. The amplitude has been computed at
order p6 in ChPT by the authors of Ref. [40] and they
deduce the following result,1

R 	 ms � m̂

md �mu

¼ 42:2 (41)

(with m̂ ¼ ðmu þmdÞ=2). No figure for the uncertainty is
given. We have estimated it by noting that the main source
of uncertainty in this result comes from the unknown
values of the coupling constants Cr

i from the Oðp6Þ
Lagrangian. For these couplings, it was shown that simple
resonance models are sometimes misleading [44] because
of their strong scale dependence. We have estimated the
order of magnitude of the uncertainty by taking the differ-
ence between the value of R obtained from a p6 calculation
and the value obtained from a p4 calculation and dividing
by two, which gives

�R ’ 5: (42)

Using (38), (41), and (42), we obtain2

md �mu

ms
¼ ð2:29� 0:23Þ10�2;

Bðmd �muÞ ¼ ð0:32� 0:03ÞM2
�0 :

(43)

C. CW
7

This constant obeys a sum rule in terms of the form
factor associated with the photon-photon matrix element of
the pseudoscalar current [2]. A simple resonance saturation
approximation in this sum rule gives a relation betweenCW

7

and the�ð1300Þmass and its couplings to the pseudoscalar
current (dm) and to two photons (g�0) [7]

CW
7 ’ g�0dm

M2
�0

: (44)

Recent experimental data by the Belle collaboration has
confirmed the extreme smallness of the coupling of the

1An alternative evaluation of R can be made based on the
Kþ � K0 mass difference. As one can see from Table 6 of
Ref. [40] this method tends to give values of R smaller than Eq.
(41). The calculation of the Kþ � K0 mass difference in ChPT,
however, has uncertainties related to the couplings Ci and also
from estimates of the electromagnetic contributions, beyond the
Dashen low-energy theorem, which have some model depen-
dence. One could also use isospin violation in Kl3 form factors.
For an updated discussion of these effects, see [43].

2In Ref. [45] a determination of the quantity B0ðmd �muÞ
from � ! 3�0 was proposed, based on using both the decay rate
and the slope parameter �, obtaining B0ðmd �muÞ ¼ ð0:25�
0:02ÞM2

�0 . This appears somewhat smaller than the result in Eq.
(43) but one should keep in mind that the ratio B0=B, while
expected to be close to 1, is not accurately known.
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�ð1300Þ meson to two photons [46]

��0!2� < 72 eV: (45)

The validity of the resonance saturation approximation in
this case might be questioned since, in the sum rule, CW

7 ,
could pick up more important contributions from energies
higher than the mass of the �ð1300Þ resonance. There has
been several attempts at estimating this high-energy con-
tribution to CW

7 in the literature: Using a quark-hadron
duality picture, Kitazawa [2] argue that this contribution
arises from a triangle diagram and should thus be propor-
tional to the constituent quark mass (this result was applied
to � decay in Ref. [47]). In QCD, one expects the con-
stituent quark mass to be momentum dependent (see e.g.
[48]) and to decrease at high momenta, which is not taken
into account in this evaluation. A calculation of the triangle
diagram in the NJL model was performed in Ref. [49]. As
this model implements a momentum cutoff, however, it
rather concerns the low-energy rather than the high-energy
contribution to CW

7 . An alternative idea was proposed in
Ref. [50] based on a minimal resonance saturation model-
ing of the three-point function VVP and enforcing a correct
asymptotic matching to the OPE expansion of this three-
point function. The result, unfortunately, cannot be shown
to remain stable under inclusion of more resonances. None
of the estimates, finally, appear to be quantitatively very
compelling. It seems however quite safe to assume that the
coupling CW

7 should be suppressed, say by 1 order of
magnitude, as compared to the coupling CW

8 . Indeed, in

an analogous sum rule representation,CW
8 picks up a strong

contribution from the �0 resonance. We will therefore take

jCW
7 j< 0:1jCW

8 j: (46)

D. CW
8

Having assumed the validity of SUð3Þ ChPT, together
with the result (46) of the above discussion on CW

7 , one can
determine CW

8 from the experimental information on the

� ! 2� decay width. According to the PDG3 [53]

��!2� ¼ 0:510� 0:026 keV; (47)

while the corresponding amplitude computed in ChPT,
including LO and NLO contributions, reads

T� ¼ e2ffiffiffi
3

p
F�

�
F�

4�2F�

ð1þ x�Þ � 64

3
m2

�C
W
7

þ 256

3
ðr� 1Þm2

�

�
1

6
CW
7 þ CW

8

�
þOðm2

sÞ
	
; (48)

where x� encodes isospin breaking effects

x� ¼ ffiffiffi
3

p ð��1 þ e2ð�� � �1ÞÞ ’ �0:023; (49)

using notations and results from Refs. [7,31]. We need an
input for F� in Eq. (48). Up to corrections quadratic in ms,

F� is linearly related to F� and FK [31],

F� ¼ 4FK � F�

3
þ m2

�

96�2F�

�
2ðrþ 1Þ log2ð2rþ 1Þ

3ðrþ 1Þ
� log

2rþ 1

3

	
þOðm2

sÞ: (50)

The review in Ref. [54] quotes the following result for FK

from averaging over recent experiments on �l2 and Kl2

decays

FKVus

F�Vud
¼ 0:27599ð59Þ: (51)

Assuming exact Cabibbo-Kobayashi-Maskawa quark-
mixing matrix (CKM) unitarity we can deduce FK and
then F�

FK ¼ 109:84� 0:63; F� ¼ 118:4� 8:0 ðMeVÞ:
(52)

The error on F� is dominated by the Oðm2
sÞ contributions

in Eq. (50). We have estimated that it should be smaller
than the OðmsÞ contribution by a factor of 3. Finally, using
these results in conjunction with Eqs. (47) and (48) we
determine the coupling CW

8

CW
8 ¼ ð0:58� 0:20Þ10�3 ðGeV�2Þ: (53)

We have estimated that the uncertainty stemming from
unknown Oðm2

sÞ chiral corrections in the � decay ampli-
tude to be of order 30% compared to theOðmsÞ corrections.

E. Numerical result

The numerical results for the current algebra amplitude
and the corrections according to the modified chiral SUð3Þ
counting, using the updated inputs presented above, are
collected in Table I. One remarks that the Oðp2Þ contribu-
tion is larger than theOðpÞ one. This is induced by the size

TABLE I. Current algebra contribution to the �0 ! 2� decay
width (in eV) and corrections of various chiral orders using the
modified SUð3Þ counting.
CA OðpÞ Oðp2Þ Oðe2Þ Oðp3 logpÞ Oðp4log2pÞ
7.76 0.09 0.29 �0:05 0.005 �0:004

3The PDG now rejects the Primakoff experiment [51] which
gave a smaller result. A rediscussion of that experiment has
recently appeared [52].
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of the LEC CW
8 . Expressed as a sum rule, CW

8 is dominated

by the �0 contribution, which can be written [7]

CW
8 ’ g�0 ~dm

M

 2

�0
; (54)

where M


�0 is the mass of the �0 in the chiral limit. In the

large Nc limit one has,

g�0 ¼
ffiffiffi
6

p
128�2F0

; ~dm ¼ F0

2
ffiffiffi
6

p ; CW
8 ’ 1

256�2M

 2

�0
:

(55)

The enhancement of CW
8 can then be understood, qualita-

tively, as a large Nc effect. In practice, the value of C
W
8 that

one can estimate using the resonance saturation formula
(54) agrees reasonably well with the one deduced from a
ChPT expansion of the � ! 2� amplitude4 [Eq. (53)]. The
enhancement of the Oðp2Þ contribution is therefore a well
understood effect and does not signal a breakdown of the
expansion. Table I shows that the logarithmically enhanced
contributions of order p3 logðpÞ and p4log2ðpÞ are quite
small in practice and tend to cancel each other. Finally, the
prediction for the �0 decay width reads,

��0!2� ¼ ð8:09� 0:11Þ eV: (56)

The two main sources for the uncertainty are:md �mu (�
0:05) and CW

8 (� 0:098). We have added the errors in

quadrature. Compared to Ref. [7] the main modification
in the input is the value of the � ! 2� width in the PDG.
The branching fraction for the 2� decay mode is ð98:798�
0:032Þ% [53] (the most sizable other decay being the
Dalitz mode �0 ! �eþe�, for review see e.g. [55]). Our
result, Eq. (56), then corresponds to the following value for
the �0 lifetime

��0 ¼ ð8:04� 0:11Þ10�17 s: (57)

VI. SUMMARY

In this paper, we have reconsidered the chiral expansion
of the �0 ! 2� amplitude. At first, we have focused on the
two-flavor expansion. We have considered the expansion
beyond the known NLO (which we have expressed in terms
of the coupling constants introduced in Ref. [23]). We have
computed all the loop graphs which contribute at NNLO.
As expected, we found that the divergences are renorma-
lizable by Lagrangian terms of chiral order p8 in the
anomalous sector. We found that chiral logarithms are
present at this order. For physical values of the quark

masses mu, md these NNLO corrections turn out to be
negligible. Even the terms enhanced by logarithms are
numerically very small in practice. Our final expression
[Eq. (18)] could be useful in association with lattice QCD
simulations in which unphysical quark masses can be used.
This would provide a direct evaluation of the SUð2Þ cou-
plings. As an interesting application, one could deduce
(using also experimental data such as from PrimEx) a
precision determination of F� uncorrelated with the value
of Vud. Such simulations have not yet been performed for
correlation functions in the anomalous sector, but this
would be of obvious interest.
In order to perform a more detailed phenomenological

analysis at present, it is possible to enlarge the chiral
expansion from SUð2Þ to SUð3Þ. This allows one to derive
some information on the SUð2Þ coupling constants. We
have derived the expansion of the SUð2Þ couplings cWr

i as a
function of ms up to OðmsÞ and inserted this result into the
SUð2Þ expansion formula. The leading, 1=ms terms in this
expansion, reflect the influence of�0 � �mixing. We then
implemented a modified chiral counting in which ms is
counted as OðpÞ rather than Oðp2Þ. This counting accom-
modates the fact that mu, md are significantly smaller than
ms. The formulas obtained in this way are somewhat
simpler and easier to interpret than those obtained in the
usual chiral counting but the numerical results are essen-
tially identical.
We have updated the inputs to be used in the chiral

formula. A key input is the value of F�, the pion decay
constant in pure QCD. Another important input is the value
of the � ! 2� decay width, which we use to determine the
value of the SUð3Þ LEC CW

8 . In the chiral approach, this

LEC encodes the effect of �� �0 mixing. Our result
agrees well with that of approaches which account for ��
�0 mixing explicitly, using large Nc arguments in addition
to chiral counting [2,9,10]. The overall uncertainty is
dominated by the unknown terms of order p3, i.e. propor-
tional to mums, mdms in the chiral expansion. As a final
remark, we note that F� is determined from the weak
decay of the �þ assuming the validity of the standard
model. Some recently proposed Higgsless variants can
accommodate deviations from the standard V � A cou-
pling of quarks to the W as large as a few percent [56].
Precision measurements of the �0 lifetime can provide
constraints on such models.
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APPENDIX A

We give here the result of our computation of diagrams
1(f) and 1(g) in Fig. 1:

F�TðfÞ ¼ M4

�2F4

�
� 11

4

�
�2 þ�

�
L� � 31

1056�2

�
þ 1

2
L2
�

� 31

1056�2
L� þ 1

6144�2

	
� 467

98 304�4

�
; (A1)

F�TðgÞ ¼ M4

�2F4

�
7

3

�
�2 þ�

�
L� � 59

1792�2

�
þ 1

2
L2
�

� 59

1792�2
L� þ 1

6144�2

	
þ 1

512�4

�
�
3

ffiffiffi
3

p
Cl2

�
�

3

�
� 4

3

ð3Þ � 1135

576

	�
; (A2)

with

� ¼ 1

16�2ðd� 4Þ : (A3)

APPENDIX B

We collect below the expansions of the SUð2Þ couplings
cWr
i as a function of ms up to OðmsÞ. The notations LK, L�

and c0 having been introduced in Eqs. (27) and (28) these
expansions read

cWr
1 ¼ CWr

2 � 1

2
CWr
3 þ 1

4

1

ð32�2Þ2F2
0

�
LK þ 1þ 1

3
L�

�

cWr
2 ¼ c0 þCWr

4 � 1

2
CWr
5 þ 3

2
CWr
6

cWr
3 ¼�3

2
c0 þCWr

7 þ 3CWr
8

cWr
4 ¼�1

2
c0 þCWr

9 þ 3CWr
10

cWr
5 ¼ CWr

11 þ 1

8

1

ð32�2Þ2F2
0

�
LK þ 1þ 2

3
L�

�

cWr
6 ¼�c0 þCWr

5 � 3

2
CWr
6 � 1

2
CWr
14 � 1

2
CWr
15

cWr
7 ¼ 3

2
c0 � 3CWr

8 þ 1

4
CWr
22

cWr
8 ¼ 3

4
c0 þ 1

2
CWr
7 þ 3CWr

8 � 1

8
CWr
22

cWr
9 ¼�CWr

13 þCWr
14 þCWr

15 � 3

2

1

ð32�2Þ2F2
0

ðLK þ 1Þ

cWr
10 ¼ CWr

19 �CWr
20 �CWr

21 �CWr
22 þ 3

2

1

ð32�2Þ2F2
0

ðLK þ 1Þ

cWr
11 ¼ CWr

22 cWr
12 ¼ 0

cWr
13 ¼�2CWr

22 þ 1

ð32�2Þ2F2
0

ðLK þ 1Þ: (B1)
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