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A phenomenological analysis of the scalar meson f0ð980Þ is performed that relies on the quasi-two-

body decays D and Ds ! f0ð980ÞP, with P ¼ �, K. The two-body branching ratios are deduced from

experimental data on D or Ds ! ���, �KK� and from the f0ð980Þ ! �þ�� and f0ð980Þ ! KþK�

branching fractions. Within a covariant quark model, the scalar form factors for the transitions D and

Ds ! f0ð980Þ are computed. The weak D decay amplitudes, in which these form factors enter, are

obtained in the naive factorization approach assuming a q �q state for the scalar and pseudoscalar mesons.

They allow to extract information on the f0ð980Þ wave function in terms of u �u, d �d, and s�s pairs as well as

on the mixing angle between the strange and nonstrange components. The weak transition form factors are

modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-

front dynamics and dispersion relations. We use the information found on the f0ð980Þ structure to evaluate
the scalar and vector form factors in the transitions D and Ds ! f0ð980Þ, as well as to make predictions

for B and Bs ! f0ð980Þ, for the entire kinematically allowed momentum range of q2.
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I. INTRODUCTION

Scalar mesons have been a recurrent topic over the past
30–40 years. Whereas the existence of the �=f0ð600Þ has
been a long-standing open question since the 1960’s, the
f0ð980Þ and a0ð980Þ were firmly established in �� scat-
tering experiments in the 1970’s [1]. The known 0þþ
mesons fall into two classes: near and about 1 GeV and
in the region 1:3–1:5 GeV. The scalar objects below 1 GeV
form an SUð3Þ flavor nonet [2]. This nonet contains two
isosinglets, an isotriplet, and two strange isodoublets.
Among these lighter scalars, the isosinglet f0ð980Þ and
the isotriplet a0ð980Þ are rather narrow with their widths
� ranging from 40 to 100 MeV [3]. Both scalars strongly
couple to the �KK channel and lie close to its threshold at
987 MeV. This closeness alters the shape of their resonant
structure and the description of the f0 and a0 requires a
coupled-channel scattering analysis. The simple quark
model views these scalar mesons as orbitally (L ¼ 1)
excited �qq states and has been advocated, for example,
by Törnqvist and Roos [4] as well as in Ref. [5]. However,
some studies [6] tend to favor four-quark configurations of
the scalar mesons, as do coupled-channel analyses [7] or
potential models of molecular states strongly coupled to
�� and �KK channels [8].

The emergence of the f0ð980Þ as a pole of the ��
amplitude in the S wave [9] is also well established in
three-body decays of B mesons [10]. Recent �� effective
mass range distributions, obtained from an isobar model fit
of the B ! �þ��K and B ! �KKK Dalitz plots by the
Belle [11–13] and BABAR Collaborations [14–16], display
distinct peaks about 1 GeV. Scalar resonances have also
been observed in the charmed three-body decays D !

���, ��K, �KKK at CLEO [17], FOCUS [18], ARGUS
[19], BABAR [20], E791 [21–23], E687 [24,25].
Remarkably, in Ref. [23] an experimental evidence for a
light and broad scalar resonance in the m�� spectrum of
the D ! ��� decay was found, which may be identified
with the f0ð600Þ and a peak within the f0ð980Þ mass range
is also observed. Although a considerable amount of data
has been accumulated over the years, it has yet not been
possible to elucidate the precise f0ð980Þ quark structure,
i.e. whether one deals with a two-quark or rather a four-
quark composite, and thus far there is no consensus on that
matter. On the other hand, viewing the f0ð980Þ exclusively
as a �qq or �q2q2 state may simply be too naive [26]. In this
context, an interesting proposition to shed light on the
constituent composition of the f0ð980Þ was recently
made by Maiani, Polosa, and Riquer [27]. Their method
consists in comparing the ratio of the decay rates Dþ

s !
�þðKþK�Þ and Dþ

s ! �þðKSKSÞ. This ratio is predicted
to be 1=2 if the f0ð980Þ is an I ¼ 0, �qq state, whereas the
composition f0 ¼ ½sq�½�s �q�, q ¼ u, d, could yield a differ-
ent value owing to possible interference patterns between
I ¼ 0 and I ¼ 1 amplitudes in the tetraquark picture of
these decays. For a general overview on scalar mesons, we
refer to the Particle Data Group review [3] and references
therein.
In the case of B ! f0ð980ÞK decays, one may advance

plausible reasons to limit oneself to the �qq picture of the
f0ð980Þ. Because of the large Bmass, the outgoing mesons
are virtually massless particles, which prompts to expand
the corresponding bound states in terms of Fock states.
Quark configurations like �q2q2 or �q2q2g therefore belong
to higher Fock states. A handwaving argument by Cheng,
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Chua, and Yang [28] suggests that the �qq component of the
energetic f0ð980Þ may be more important, as two rapid �qq
pairs are less likely to form a fast moving f0ð980Þ. In our
models we neglect higher Fock contributions to the
f0ð980Þ bound state.

In the two-quark model of the light scalar octet below
1 GeV, assuming an ideal SUð3Þ mixing angle of the octet
states, the flavor content of the f0ð980Þ is purely strange
(s�s) while that of the � or f0ð600Þ is purely nonstrange
(u �uþ d �d) (see e.g. [28]). In such a picture the � is the
lightest scalar, the f0ð980Þ the heaviest. However, there is
compelling experimental evidence, for instance from
f0ð980Þ ! �� decays [3], that the f0ð980Þ cannot be
made of strange quarks only. We therefore introduce in
this work some mixing between the strange and nonstrange
flavor content. Experimental implications on this mixing
have been the object of several studies (see e.g. [29–32])

In this paper we complete preliminary calculations of
B ! f0ð980Þ and D ! f0ð980Þ pseudoscalar to scalar
(P ! S) transition form factors [33,34]. Transition form
factors are important for an understanding of the hadronic
component of heavy-to-light decay amplitudes and their
precise evaluation is crucial to a reliable determination of
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.
The short-distance physics is calculated in perturbative
QCD, which comprises radiative vertex corrections to local
four-quark operators in the operator product expansion
[35] as well as hard-scattering corrections with the specta-
tor quark that go beyond the leading order [36]. In contrast,
the transition form factors are by nature long-distance
nonperturbative hadronic matrix elements. They provide
one ingredient of the factorizable amplitudes of the non-
leptonic B decays mentioned above. A variety of theoreti-
cal approaches to heavy-to-light transition (pseudoscalar to
pseudoscalar) amplitudes exist, either using light-cone sum
rules [37], light-front [38], or relativistic quark models
[39–42]. Most recently, a comprehensive set of B meson
heavy-to-light transition form factors, calculated with trun-
cated amplitudes based on Dyson-Schwinger equations in
QCD, was reported in Ref. [43]. Whereas the methods of
Refs. [37,38] only provide form factors for a small domain
of timelike momentum transfers q2, those in Refs. [39–43]
give access to the entire range of physical timelike mo-
menta. To our knowledge, P ! S transition form factors
have only been evaluated so far with QCD sum rules
[28,44] at q2 ¼ 0 four-momentum transfer. A functional
extrapolation is required to access all timelike q2 in these
studies.

The present work relies on two explicitly covariant
formalisms: the covariant light-front dynamics (CLFD)
and the dispersion relation (DR) approaches. Both require
two size parameters as well as a mixing angle between the
u �u, d �d and s�s components to specify the f0ð980Þ wave
function. In order to deduce these parameters from experi-
ment, we fit D and Ds ! f0ð980ÞP branching fractions,

whereP can be a pion or a kaon. Initially, decay amplitudes
at tree level in the naive factorization approach are em-
ployed and neither annihilation nor penguin topologies are
considered. Already at tree level, nonleptonic two-body D
decays can be reasonably reproduced within this simple
factorization since penguin amplitudes are strongly CKM
suppressed. However, since the charm mass mc is lighter
than the bottom mass by roughly a factor three, nonpertur-
bative contributions of order �QCD=mc are more important

than in B decay amplitudes. The factorization approach
may then be less reliable. In order to study the discrepancy
between theoretical and experimental branching fractions,
we study the effect of phenomenological annihilation as
well as penguin amplitudes. The decay amplitudes are
proportional to the D and Ds ! f0ð980Þ transition form
factors we are interested in.
The paper is organized as follows. In Sec. II, we present

the CLFD formalism and give a brief review on the DR
approach. The scalar f0ð980Þ bound-state structure is de-
scribed in Sec. III. In Sec. IV, we list all physical con-
straints imposed in our model, namely, experimental
D-branching ratios and wave-function normalizations.
The electroweak decay amplitudes, the D-decay tree top-
ologies and all numerical inputs needed are presented in
Sec. V. In Sec. VI we introduce the P ! S transition form
factors, derived in CLFD and DR approaches. Details
about the initial pseudoscalar wave functions, the pseudo-
scalar decay constant in the constituent quark model and
the calculation of the P ! S transition form factors are
given in Appendices A and B. In Sec. VII, we discuss the
fitting method, give numerical results for the theoretical
branching ratios and then compare DðsÞ ! f0ð980Þ and

BðsÞ ! f0ð980Þ transition form factors obtained in both

relativistic approaches.1 The final Sec. VIII summarizes
our work and some conclusions are drawn.

II. TWO DIFFERENT RELATIVISTIC
FORMALISMS

A. Covariant light-front dynamics

In CLFD [45], the state vector which describes the
physical bound state is defined on the light-front plane
given by ! � r ¼ �, where ! is an unspecified lightlike
four vector (!2 ¼ 0) which defines the position of the
light-front plane and r is a four vector position of the
system. CLFD proposes a formulation in which the evolu-
tion for a given system is expressed in terms of covariant
expressions. Any four vector describing a phenomenon can
be transformed from a system of reference to another by
using a unique standard matrix which depends only on
kinematical parameters and on!. The particle is described

1Here and in the following, the notationDðsÞ refers either to the
D or to the Ds meson and similarly BðsÞ refers to the B or to the
Bs meson.
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by a wave function expressed in terms of Fock components
of the state vector which respects the properties required
under any transformation. The meson of mass M will be
described as a bound state of two constituent quarks with

four momenta k1 and k2. The state vector describing this
meson of four-momentum p, defined on a light-front plane
characterized by !, is given by:

jp; �i! ¼ ð2�Þ3=2
Z

�J�
j1�1j2�2

ðk1; k2; p;!�Þay�1
ðk1Þay�2

ðk2Þj0i�ð4Þðk1 þ k2 � p�!�Þ expði��Þ2ð! � pÞd�

� d3k1

ð2�Þ3=2 ffiffiffiffiffiffiffiffiffi
2"k1

p d3k2

ð2�Þ3=2 ffiffiffiffiffiffiffiffiffi
2"k2

p ; (1)

where "ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i þm2

i

q
and ki is the momentum of the

quark i with mass mi. The parameter � is entirely deter-
mined by the on-mass shell condition for the individual
constituents. In Eq. (1) � is the projection of the total
angular momentum J of the system on the z-axis in the
rest frame and �i is the spin projection of the quark i in the
corresponding rest systems. We emphasize that the bound
state wave function is always an off-energy shell object,
with � � 0 due to the binding energy, and depends on the
light-front orientation. From the delta function ensuring
momentum conservation, one gets:

P ¼ pþ!� ¼ k1 þ k2: (2)

To keep track of this conservation law, a momentum,!�, is
assigned to the spurion but there is no fictitious particle in
the physical state vector, (see Fig. 1). The two-body wave
function �ðk1; k2; p; !�Þ in Eq. (1) can be parametrized in
terms of various sets of variables. In order to make a close
connection to the nonrelativistic case, it is more convenient
to introduce the following pair of variables [45] defined by

k ¼ L�1ðP Þk1 ¼ k1 �
~Pffiffiffiffiffiffiffi
P 2

p
�
k10 � k1 � ~Pffiffiffiffiffiffiffi

P 2
p þ P 0

�
; (3)

n ¼ L�1ðP Þ!
jL�1ðP Þ!j ¼

ffiffiffiffiffiffiffi
P 2

p L�1ðP Þ!
! � p ; (4)

where P ¼ k1 þ k2, and L
�1ðP Þ is the Lorentz boost. The

momentum, k, corresponds, in the center of mass frame
where k1 þ k2 ¼ 0, to the usual relative momentum be-
tween the two particles. Note that this choice of variable
does not assume that one is restricted to this particular
frame. The unit vector n corresponds, in this frame, to the
spatial direction of !.
One introduces the variables x and the vector R1 ¼

ðR0;R?;RkÞ where R?, Rk denotes the perpendicular

and parallel components to the direction of the light-front:

x ¼ ! � k1
! � p ; (5)

R1 ¼ k1 � xp:

Since by construction R1 �! ¼ 0, and thus R2
1 ¼ �R2

?,
the light-front coordinates, which one will use in the
present work, are then ðx;R?Þ. These variables can be
expressed in terms of the ones in Eqs. (3) and (4). All
details can be found in Ref. [45].
In terms of the variables ðx;R?Þ, we have for the relative

momentum between two quarks of different masses:

k 2 ¼ fR2
? þ ½ðx� 1Þm1 � xm2�2gfR2

? þ ½ðx� 1Þm1 � xm2�2g
4xð1� xÞ½R2

? þ ð1� xÞm2
1 þ xm2

2�
: (6)

B. Dispersion relation approach

The dispersion relation approach, in the context of the
relativistic quark model, leads to transition amplitudes ex-
pressed as relativistic spectral integrals over spectral den-
sities of the corresponding Feynman diagrams. Here we
closely follow the derivation of Melikhov [42] to calculate
the P ! S transition form factors. These are given by the
double spectral representation over the square of the in-
variant masses of the initial and final quark-antiquark
bound states. The spectral functions involve the wave
functions of the participating mesons and the double dis-

continuities of the corresponding triangle Feynman dia-
gram. Use of the Landau-Cutkosky rules allows us to
calculate these discontinuities and hence the transition
form factors in the spacelike region q2 < 0. An analytical
continuation in q2 gives the form factors in the timelike
region q2 > 0.
As in Sec. II A, the meson of massM is a bound state of

two constituent quarks of mass m1 and m2 and four-
momentum k1 and k2 with

s ¼ ðk1 þ k2Þ2; k21 ¼ m2
1; k

2
2 ¼ m2

2: (7)
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The relativistic bound state corresponds to a pole in the
amplitude at s ¼ M2 and one can define a bound state wave
function c ðsÞ in the vicinity of the pole by

c ðsÞ ¼ GvðsÞ
s�M2

: (8)

The function GvðsÞ in Eq. (8) represents the vertex of the
bound state transition to the constituent quarks. The
constituent-quark rescatterings lead to the normalization
condition [42]

Z 1

ðm1þm2Þ2
G2

vðsÞ�ðs; m1; m2Þ
�ðs�M2Þ2 ds ¼ 1; (9)

where the spectral density �ðs;m1; m2Þ for a pseudoscalar
meson reads

�Pðs;m1; m2Þ ¼ �1=2ðs; m2
1; m

2
2Þ

8�s
½s� ðm1 �m2Þ2�

� �ðs� ðm1 þm2Þ2Þ; (10)

while for a scalar meson one has

�Sðs; m1; m2Þ ¼ �1=2ðs;m2
1; m

2
2Þ

8�s
½s� ðm1 þm2Þ2�

� �ðs� ðm1 þm2Þ2Þ: (11)

In Eqs. (10) and (11), �ðs;m2
1; m

2
2Þ is defined as

�ðs; m2
1; m

2
2Þ � ðsþm2

1 �m2
2Þ2 � 4sm2

1; (12)

and �ðzÞ is the step function, �ðzÞ ¼ 1 for z > 0 and �ðzÞ ¼
0 for z < 0.

From Eqs. (10)–(12), it can be inferred withm1 ¼ m2 ¼
m that the threshold behaviors of �Pðs;m1; m2Þ /
ðs� 4m2Þ1=2 and of �Sðs; m1; m2Þ / ðs� 4m2Þ3=2 corre-
spond to those of an S and of a P wave, respectively.
Taking into account the intrinsic negative parity of the
�qq state, it implies the correct behavior under parity trans-

formation of the bound state described by the �qq state and
its associated vertex [see Eq. (18)].

III. STRUCTURE OF THE BOUND STATE FOR A
SCALAR PARTICLE

Assuming that the f0ð980Þ scalar meson is made of
components u �u, d �d, and s�s, one can decompose the total
wave function as follows:

�f0 ¼
1ffiffiffi
2

p ðu �uþ d �dÞ sin�mix þ s�s cos�mix; (13)

or

�f0 ¼ �
fðnÞ
0

sin�mix þ�
fðsÞ
0

cos�mix

¼ NSð�ðnÞ sin�mix þ�ðsÞ cos�mixÞ; (14)

where �mix is the mixing angle between the nonstrange,
�

fðnÞ
0

, and strange, �
fðsÞ
0

, flavor content of the wave func-

tion.2 In what follows, unless otherwise stated, mn will
denote the up or down quark mass (mn ¼ mu ¼ md), ms

that of the strange quark and NS is the normalization
constant of the full wave function.

A. The scalar particle on the light front

The explicit covariance of this approach allows to write
the general structure of the two-body bound state. For a
scalar particle (see Fig. 1) composed of a quark-antiquark
pair of equal mass mq and four-momenta k2 and k1, we

have (q ¼ n or s)

�ðqÞ ¼ 1ffiffiffi
2

p �uðk2ÞAðqÞðx;R2
?Þvðk1Þ; (15)

where vðk1Þ and �uðk2Þ are the usual antiparticle and parti-

cle Dirac spinors, and AðqÞðx;R2
?Þ is the scalar component

of the wave function. Note that the color factor is not
included in the wave function Eq. (15). Since the quark

masses mq, in each component AðqÞðx;R2
?Þ, are identical,

the corresponding reduced mass is mq=2 and we chose the

following Gaussian expression:

AðqÞðx;R2
?Þ ¼ expð�16	qk

2
q=m

2
qÞ; (16)

where 	q is a size parameter to be determined from ex-

perimental data and theoretical assumptions while the
momentum squared, k2

q, given in Eq. (6) now reduces to

FIG. 1 (color online). Representation of the two-body wave
function on the light front.

2Consequently this implies a strange component for the wave
function of the �, �� ¼ ðu �uþ d �dÞ cos�mix=

ffiffiffi
2

p � s�s sin�mix.
However such a strangeness content does not seem to have an
experimental support (see for instance Ref. [32]). This certainly
points to a more involved structure of the � or f0ð600Þ than that
of a simple q �q state.
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k 2
q ¼

R2
? þm2

qð2x� 1Þ2
4xð1� xÞ : (17)

B. The scalar particle in the dispersion approach

The soft constituent-quark structure of the scalar meson
is given in this approach by the vertex

�Qað�k2ÞiQaðk1Þffiffiffiffiffiffiffi
NC

p GvðsÞ; (18)

whereQað�k2Þ andQaðk1Þ are the constituent spinor states
of color a normalized by the color factor NC ¼ 3. For a
scalar meson made of a quark-antiquark pair of equal mass

mq, the wave function �ðqÞðsÞ of Eq. (14) can be parame-

trized as

�ðqÞðsÞ ¼ �ffiffiffi
2

p s1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m2

q

q wqðkqÞ; (19)

where kq is the modulus of the quark momentum in the

center of mass momentum such that

4k2
q ¼ s� 4m2

q: (20)

The functional form (19) is so chosen as will be seen later,
so as to simplify the normalization condition in Eq. (9).
The function wðkÞ is defined to have the same functional
expression as in CLFD:

wqðkÞ ¼ expð�16	qk
2
q=m

2
qÞ; (21)

and here again the size parameter 	q is to be determined

from experimental and theoretical considerations.

IV. PHYSICAL CONSTRAINTS FOR A NEUTRAL
SCALAR

As described in detail previously, the �qq bound states are
described in both formalisms by vertex functions which are
related to Gaussian wave functions. These have to be
normalized and their phenomenological size parameters
determined. A standard approach chosen in the quark

model is to calculate the decay constant with the appro-
priate loop diagram and fix the size parameter that enters
the calculation so as to reproduce the experimental value of
that constant (see Appendix A). In this work, this is done
for the pseudoscalar D- and B-meson wave functions.
However, the lack of knowledge of the experimental
f0ð980Þ decay constant makes it difficult to proceed simi-
larly for the scalar meson. Furthermore, the mixing angle
�mix is not known a priori. We therefore resort to a differ-
ent parametrization prescription by making use ofD decay
branching ratios which contain the f0ð980Þ in the final
state. In this section, we discuss the constraints on the
scalar wave functions given by the normalization and the
experimental data set chosen to determine the mixing angle
�mix as well as the various size parameters in both
formalisms.

A. Normalization in CLFD

According to the spirit of the constituent quark model,
the state vector is decomposed into Fock components, and
only the two-body component is retained. Since the state
vector is normalized as

hp0; �0jp; �i ¼ 2p0�
ð3Þðp� p0Þ��0�; (22)

it gives for a zero total angular momentum state the follow-
ing normalization condition [45]:

1 ¼
Z
ðx;~�;R?Þ

Dðx; ~�;R?Þ
X
�1�2

�ðqÞ
�1�2

�ðqÞ?
�1�2

; (23)

where Dðx; ~�;R?Þ, is the invariant phase space element
given by:

Dðx; ~�;R?Þ ¼ 1

ð2�Þ3
d2R?dx
2xð1� xÞ : (24)

Using the condition of normalization for the Dirac spinors,P
�u

�
aðkÞ �u�bðkÞ ¼ ðk6 þmÞab and

P
�v

�
aðkÞ �v�

bðkÞ ¼ðk6 �mÞab, we sum over all spin and color states and get
for a q �q component:

X
color

X
�1;�2

�ðqÞ
�1;�2

�ðqÞy
�1;�2

¼ 1

2

X
color

X
�1;�2

�u�2ðk2ÞAðqÞv�1ðk1Þ �v�1ðk1ÞAðqÞu�2ðk2Þ;

¼ 1

2

X
a;b;c;d

X
�1;�2

u�2

d ðk2Þ �u�2
a ðk2ÞðAðqÞÞabv�1

b ðk1Þ �v�1
c ðk1ÞðAðqÞÞcd;

¼ 1

2

X
a;b;c;d

ðk6 2 þmÞdaðAðqÞÞabðk6 1 �mÞbcðAðqÞÞcd;

¼ 1

2
Tr½ðk6 2 þmÞðk6 1 �mÞðAðqÞÞ2�; (25)

where AðqÞ is given by Eq. (16). The result is similar for both the n �n and s�s components. There is no mixing term between
the two components. With the scalar wave function written in Eq. (14), the normalization condition is therefore
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1 ¼ N2
S

Z
ðx;~�;R?Þ

�
k2
n

4m2
n

ðAðnÞðx;R2
?ÞÞ2sin2�mix

þ k2
s

4m2
s

ðAðsÞðx;R2
?ÞÞ2cos2�mix

�
Dðx; ~�;R?Þ; (26)

with kq given by Eq. (17).

B. Normalization in the dispersion relation approach

In the DR approach, for the scalar meson, the wave
function [see in Eqs. (8), (14), and (19)] is normalized
according to Eq. (9). Taking into account the quark-content
assumption of the f0ð980Þ introduced in Eq. (14) and

making use of the form for �ðnÞðsÞ or �ðsÞðsÞ given by
Eq. (19), the normalization condition for �f0 reads

1 ¼ N2
S

Z 1

0
k2½w2

nðkÞsin2�mix þ w2
sðkÞcos2�mix�dk; (27)

since the cross contributions vanish because of the or-
thogonality of the flavor states. In Eq. (27) wnðkÞ is the

nonstrange Gaussian component of �ðnÞðsÞ whereas wsðkÞ

is the strange one of �ðsÞðsÞ, which implies two different
size parameters 	n and 	s. The form (21) for!qðkÞ leads to
the normalization

NS ¼ 2

�1=4

��
m2

n

32	n

�
3=2

sin2�mix

þ
�
m2

s

32	s

�
3=2

cos2�mix

��ð1=2Þ
: (28)

C. D meson branching ratios

The wave function for scalar meson f0ð980Þ—denoted
hereafter for simplicity f0—is constrained by the experi-
mental branching ratios for the channels Dþ ! f0�

þ,
D0 ! f0 �K

0, Dþ ! f0K
þ, Dþ

s ! f0�
þ, Dþ

s ! f0K
þ,

and D0 ! f0�
0. The experimental ratios are provided by

different collaborations, E791 [21–23], ARGUS [19],
CLEO [17,46,47], BABAR [20], FOCUS [18], and E687
[24,25]:

E791: BðDþ ! f0�
þÞ �Bðf0 ! �þ��Þ ¼ ð1:9� 0:5Þ � 10�4; (29)

ARGUS: BðD0 ! f0 �K
0Þ �Bðf0 ! �þ��Þ ¼ ð3:2� 0:9Þ � 10�3;

CLEO: BðD0 ! f0 �K
0Þ �Bðf0 ! �þ��Þ ¼ ð2:5þ0:8

�0:5Þ � 10�3;

BABAR: BðD0 ! f0 �K
0Þ �Bðf0 ! KþK�Þ ¼ ð1:2� 0:9Þ � 10�3;

(30)

FOCUS: BðDþ ! f0K
þÞ �Bðf0 ! KþK�Þ ¼ ð3:84� 0:92Þ � 10�5;

FOCUS: BðDþ ! f0K
þÞ �Bðf0 ! �þ��Þ ¼ ð6:12� 3:65Þ � 10�5;

(31)

E687: BðDþ
s ! f0�

þÞ �Bðf0 ! KþK�Þ ¼ ð4:9� 2:3Þ � 10�3;

E791: BðDþ
s ! f0�

þÞ �Bðf0 ! �þ��Þ ¼ ð5:7� 1:7Þ � 10�3;

FOCUS: BðDþ
s ! f0�

þÞ �Bðf0 ! �þ��Þ ¼ ð9:5� 2:7Þ � 10�3;

FOCUS: BðDþ
s ! f0�

þÞ �Bðf0 ! KþK�Þ ¼ ð7:0� 1:9Þ � 10�3;

(32)

FOCUS : BðDþ
s ! f0K

þÞ �Bðf0 ! KþK�Þ ¼ ð2:8� 1:3Þ � 10�4; (33)

CLEO : BðD0 ! f0�
0Þ ’ BðD0 ! �þ���0Þ �F ðD0 ! f0�

0Þ ¼ ð1:1� 0:4Þ � 10�2 � ð1:0� 0:8Þ � 10�4; (34)

In Eq. (34)F ðD0 ! f0�
0Þ represents the fit fraction of the

ðD0 ! f0�
0Þ decay [46].3 The f0ð980Þwidth is dominated

by the f0 decay into �� and K �K. Combining their
partial wave analysis [48] of 
c0 ! �þ��KþK� with
their study [49] of 
c0 ! f0f0 ! �þ���þ�� the BES
Collaboration [48] has determined the following ratio be-

tween the partial widths of the f0

R ¼ �ðf0 ! ��Þ
�ðf0 ! ��Þ þ �ðf0 ! K �KÞ ¼ 0:75þ0:11

�0:13: (35)

Applying isospin relations, one finds the following branch-
ing fractions

B ðf0 ! �þ��Þ ¼ 2R

3
¼ 0:50þ0:07

�0:09; (36)

3The value used for BðD0 ! �þ���0Þ is taken from
Ref. [47] in order to be consistent with that of Ref. [46]. The
more recent and precise value from Ref. [3] does not modify our
conclusions.

EL-BENNICH, LEITNER, DEDONDER, AND LOISEAU PHYSICAL REVIEW D 79, 076004 (2009)

076004-6



B ðf0 ! KþK�Þ ¼ 1� R

2
¼ 0:125þ0:055

�0:065: (37)

The two-body branching ratios BðD ! f0PÞ entering
Eqs. (29)–(34) are then deduced from the branching frac-
tions Bðf0 ! �þ��Þ and Bðf0 ! KþK�Þ given in
Eqs. (36) and (37). It is worth emphasizing that the results
are strongly dependent on these branching fractions. Note
that their experimental uncertainties are large.

V. ELECTROWEAK AMPLITUDE

In any phenomenological treatment of the weak decays
of hadrons, the starting point is the weak effective
Hamiltonian, which is obtained by integrating out the
heavy fields from the standard model Lagrangian and reads

H 4C¼1
eff ¼ GFffiffiffi

2
p X

i

VCKMCið�ÞOið�Þ þ H:c:; (38)

whereGF is the Fermi constant, VCKM contains products of
the CKM matrix element, Cið�Þ are the Wilson coeffi-
cients, Oið�Þ are the operators entering the operator prod-
uct expansion, and � represents the renormalization scale.
In the present case, since we only take into account tree
operators, the matrix elements of the Hamiltonian (38)
read,

hM1M2jH4C¼1
eff jDi

¼ GFffiffiffi
2

p X
q

�
VcqV

�
uq

X2
i¼1

Cið�ÞhM1M2jOq
i jDið�Þ

�
þ H:c:;

(39)

where q ¼ d or s according to the transition c ! d or c !
s. The scale � is chosen to be of order mc for D decays.
The amplitudes hM1M2jOq

i jDið�Þ are hadronic matrix el-
ements, M1 and M2 denote a pseudoscalar and a scalar
meson in the final state. In Eq. (39) the notation
hM1M2jOq

i jDið�Þ reflects the fact that the hadronic matrix
elements also depend on the renormalization scale�. They
describe the transition amplitude between initial and final
states at scales lower than � and give rise to the main
uncertainties in the calculation, as they involve the non-
perturbative regime of QCD. The operator product expan-
sion divides the calculation of the amplitude
AðD ! M1M2Þ / Cið�ÞhM1M2jOijDið�Þ into two distinct
physical regimes. One regime deals with hard or short-
distance physics, represented by the Wilson coefficients
Cið�Þ and calculated perturbatively, the other concerns soft
or long-distance physics. The operators Oið�Þ can be
understood as local operators which govern a given decay,
reproducing the weak interaction of quarks in a pointlike
approximation. TheWilson coefficients Cið�Þ [35] contain
the physical contributions from scales higher than�. Since
QCD has the property of asymptotic freedom, they can be
calculated in perturbation theory and include contributions
from all heavy particles with m>�, such as the top and
beauty quarks, the W� bosons, and the charged Higgs
boson. The dependence of the hadronic matrix elements
and of the Cið�Þ on � must cancel in the final decay
amplitude which is a physical observable and thus scale
independent.
Working at tree level within the factorization formalism

one obtains the following decay amplitudes:

A ðD ! f0PÞ ¼

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

GF

2 VcdV
�
udðm2

Dþ �m2
f0
Þa1f�F Dþ!fðnÞ

0

0 ðm2
�þÞ sin�mix for Dþ ! f0�

þ;
GF

2 VcdV
�
usðm2

Dþ �m2
f0
Þa1fKFDþ!fðnÞ

0

0 ðm2
KþÞ sin�mix for Dþ ! f0K

þ;
GF

2 VcsV
�
udðm2

D0 �m2
f0
Þa2fKF D0!fðnÞ

0

0 ðm2
K0Þ sin�mix for D0 ! f0 �K

0;

GFffiffi
2

p VcsV
�
udðm2

Dþ
s
�m2

f0
Þa1f�F Dþ

s !fðsÞ
0

0 ðm2
�þÞ cos�mix for Dþ

s ! f0�
þ;

GFffiffi
2

p VcsV
�
usðm2

Dþ
s
�m2

f0
Þa1fKF Dþ

s !fðsÞ
0

0 ðm2
KþÞ cos�mix for Dþ

s ! f0K
þ;

GF

2
ffiffi
2

p VcdV
�
udðm2

D0 �m2
f0
Þa2f�F D0!fðnÞ

0

0 ðm2
�0Þ sin�mix for D0 ! f0�

0;

(40)

where aiðmcÞ is written as ai for simplicity. In Eq. (40), f�
and fK are the pion and kaon decay constants and

a1ðmcÞ ¼ C1ðmcÞ þ C2ðmcÞ
NC

;

a2ðmcÞ ¼ C2ðmcÞ þ C1ðmcÞ
NC

;

(41)

where NC ¼ 3. The flavor content u or s of the D and f0
has been written explicitly in the scalar transition form
factors F D!f0

0 ðm2
PÞ. With these factorized decay ampli-

tudes, we can compute the decay rates using the following
expression [3],

�ðD ! f0PÞ ¼ 1

8�

jpj
m2

D

jAðD ! f0PÞj2; (42)

where jpj is the modulus of the c.m. momentum of the
decay particles defined as

jpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

D � ðmP þmf0Þ2�½m2
D � ðmP �mf0Þ2�

q
2mD

: (43)

SCALAR MESON f0ð980Þ IN HEAVY-MESON DECAYS PHYSICAL REVIEW D 79, 076004 (2009)

076004-7



Finally, one defines the branching ratio B as the ratio
between the decay rate �ðD ! f0PÞ and the total decay
width �D:

B ¼ �ðD ! f0PÞ
�D

: (44)

A. Numerical inputs

1. Values of CKM matrix elements
and Wilson coefficients

In the present numerical calculations, the CKM matrix
elements, expressed in terms of theWolfenstein parameters
A and � [50,51] rely on the latest values extracted from
charmless semileptonic D decays [3]:

� ¼ 0:2257; A ¼ 0:814: (45)

The Wilson coefficients, at the mass scale � ¼ mc, are
C1ðmcÞ ¼ 1:3777 and C2ðmcÞ ¼ �0:6941 (see Ref. [35])
from which we infer

a1ðmcÞ ¼ 1:1463; a2ðmcÞ ¼ �0:2349: (46)

2. Quark masses

We use the subsequent standard constituent quark
masses to calculate the transition form factors within the
quark model approximation.

mu ¼ md ¼ 0:350 GeV; mc ¼ 1:620 GeV;

ms ¼ 0:510 GeV; mb ¼ 4:920 GeV:
(47)

For meson masses, the following values [3] are used:

mB� ¼ 5:279 GeV; mBs
¼ 5:369 GeV;

mD� ¼ 1:869 GeV; mDs
¼ 1:968 GeV;

mD0 ¼ 1:864 GeV; mK� ¼ 0:493 GeV;

mK0 ¼ 0:497 GeV; mf0 ¼ 0:980 GeV;

m�� ¼ 0:139 GeV; m�0 ¼ 0:135 GeV:

(48)

The pseudoscalar decay constants fP are defined as usual
by

hPðp1Þj �q1���5q2j0i ¼ �ifPp
�
1 ; (49)

p�
1 being the momentum of the pseudoscalar meson and

the numerical values we used are

f� ¼ 132 MeV; fK ¼ 160 MeV;

fD ¼ 222 MeV; fDs
¼ 274 MeV;

fB ¼ 180 MeV; fBs
¼ 259 MeV:

(50)

The Fermi constant is GF ¼ 1:166 391� 10�5 GeV�2 [3]
and the world average D life-time values:

�D0 ¼ 0:410� 0:001 ps;

�D� ¼ 1:040� 0:007 ps;

�D�
s
¼ 0:490� 0:001 ps:

(51)

yield the total D decay widths �D ¼ 1=�D.

VI. WEAK DECAY FORM FACTORS FOR P ! S
TRANSITIONS

A. Standard form factor notation

The decays of b and c quarks are given by the weak
current J

�
bðcÞ (even though only the �q���5qbðcÞ term is

relevant in our case),

J
�
bðcÞ ¼ �q��ð1� �5ÞqbðcÞ; (52)

where q is a light u, d or s quark. As usual, one can define
the physical amplitude for a semileptonic decay X ! Yl	l

by the expression

M ¼ GFVijffiffiffi
2

p hSjJ�jPiJlep� ; (53)

where Jlep� is the leptonic current. In Eq. (53), hSjJ�jPi is
the hadronic matrix element including the weak current as
defined previously. Introducing the total four-momentum
K ¼ P1 þ P2 and the four-momentum transfer q ¼
P1 � P2, where P1 is the four-momentum of the pseudo-
scalar meson and P2 that of the scalar meson in the final
state, the hadronic matrix element can be decomposed as:

hSðP2ÞjJ�jPðP1Þi ¼ K�fþðq2Þ þ q�f�ðq2Þ; (54)

where fþðq2Þ and f�ðq2Þ are the transition form factors
and P1 and P2 are, respectively, the four-momentum re-
lated to the initial and final particle states of the hadronic
current. Introducing then the scalar F 0ðq2Þ and vector
F 1ðq2Þ form factors, the amplitude can be expressed as

hSðP2ÞjJ�jPðP1Þi ¼ F 1ðq2Þ
�
K� � K � q

q2
q�

�

þF 0ðq2Þ
�
K � q
q2

q�
�
; (55)

since K � q ¼ M2
1 �M2

2, and M1 and M2 being the masses
of the initial and final meson. It is straightforward to derive
the relationship between the two sets of form factors. One
obtains

F 1ðq2Þ ¼ fþðq2Þ; (56)

F 0ðq2Þ ¼ fþðq2Þ þ q2

K � q f�ðq
2Þ: (57)

Note that at q2 ¼ 0, F 1ð0Þ ¼ F 0ð0Þ ¼ fþð0Þ.
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B. CLFD formalism

In the covariant light-front dynamics formalism, the
exact transition amplitude does not depend on the light-
front orientation but in any approximate computation the
dependence is explicit. However one can parametrize this
dependence since the formalism is covariant. Hence, the
approximate amplitude expressed in CLFD is given by the
following hadronic matrix,

hSðP2ÞjJ�jPðP1ÞiCLFD ¼ K�fþðq2Þ þ q�f�ðq2Þ
þ!�Bðq2Þ; (58)

where Bðq2Þ is a nonphysical form factor which has to be
zero in any exact calculation. The last term represents the
explicit dependence of the amplitude on the light-front
orientation ! with !2 ¼ 0. In order to extract the physical
form factor f�ðq2Þ, without any dependence on !, from
the amplitude hSðP2ÞjJ�jPðP1ÞiCLFD, we will proceed as
follow. First, we calculate the scalar productsX;Y, and Z
which are defined by

X ¼ K� � hSðP2ÞjJ�jPðP1ÞiCLFD
¼ K2fþðq2Þ þ K � qf�ðq2Þ þ K �!Bðq2Þ; (59)

Y ¼ q� � hSðP2ÞjJ�jPðP1ÞiCLFD
¼ K � qfþðq2Þ þ q2f�ðq2Þ þ q �!Bðq2Þ; (60)

and finally,

! � P1Z ¼ !� � hP2jJ�jP1iCLFD
¼ K �!fþðq2Þ þ q �!f�ðq2Þ: (61)

We define a variable y as the ratio between the scalar
product of ! � P2 and ! � P1,

y ¼ ! � P2

! � P1

¼ M2
2 þ P1 � P2

M2
1 þ P1 � P2

; with

P1 � P2 ¼ 1

2
ðM2

1 þM2
2 � q2Þ:

(62)

Since P1 ¼ ðK þ qÞ=2 and P2 ¼ ðK � qÞ=2, we may also
write

y ¼ ! � P2

! � P1

¼ ! � ðK � qÞ
! � ðK þ qÞ ¼

4M2
2 þ K2 � q2

4M2
1 þ K2 � q2

; (63)

with ! � K ¼ ð1þ yÞ!P1 and ! � q ¼ ð1� yÞ!P1. For
q2 > 0, it is convenient to restrict ourselves to the plane
defined by ! � q ¼ 0. This condition is allowed in the
system of reference where P1 þ P2 ¼ 0 with P10 � P20 �
0. From the scalar productsX, Y and Z we can isolate the

form factors f�ðq2Þ from Bðq2Þ. Then, one gets the ex-
pressions for the form factors f�ðq2Þ:

f�ðq2Þ ¼ ���ðy; q2;X;Y;ZÞ; (64)

where � is identical for both form factors f�ðq2Þ and can
be written as

� ¼ 1

4½ðM2
1ðy� 1Þ þ q2Þy� ðy� 1ÞM2

2�
¼ 1

½ðy� 1ÞK þ ðyþ 1Þq�2 ; (65)

where the functions ��ðy; q2;X;Y;ZÞ are:
��ðy; q2;X;Y;ZÞ ¼ ðy2 � 1ÞX þ ðyþ 1Þ2Y

þ ½ð1� 3yÞM2
1 � ðy� 3ÞM2

2

þ ðy� 1Þq2�Z;

�þðy; q2;X;Y;ZÞ ¼ ðy� 1Þ2X þ ðy2 � 1ÞY
þ ½ðy� 1ÞM2

1 � ðy� 1ÞM2
2

þ ðyþ 1Þq2�Z;

(66)

or in terms of the variables K and q,

��ðy; q2;X;Y;ZÞ ¼ ðy2 � 1ÞX þ ðyþ 1Þ2Y
þ ½ð1� yÞK2 � ð1þ yÞK � q�Z;

�þðy; q2;X;Y;ZÞ ¼ ðy� 1Þ2X þ ðy2 � 1ÞY
þ ½ðy� 1ÞK � qþ q2ðyþ 1Þ�Z:

(67)

The second step is to express the amplitude
hSðP2ÞjJ�jPðP1ÞiCLFD without using the form factors
f�ðq2Þ. The leading contribution to the transition ampli-
tude hSðP2ÞjJ�jPðP1ÞiCLFD is given by the diagram shown
in Fig. 2. By using the CLFD rules, one can derive the
matrix elements from the diagram (Fig. 2) and one has,

hSðP2ÞjJ�jPðP1ÞiCLFDg ¼
Z
ðx;~�;R?Þ

Dðx; ~�;R?ÞTr
�
� 1ffiffiffi

2
p ASðx0;R02

?Þðm1 þ k6 1Þi���5ðm2 þ k6 2Þ 1ffiffiffi
2

p Aðqq0Þ
P ðx;R2

?Þðm3 � k6 3Þ
�

� 1

1� x0
; (68)

FIG. 2 (color online). The triangle diagram (leading contribu-
tion) and momentum flow in the weak-hadronic P ! S transition
amplitude of the CLFD approach. In the present case: m2 >m1.
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where Aðqq0Þ
P ðx;R2

?Þ and ASðx0;R02
?Þ are the pseudoscalar

and scalar wave functions defined in Eq. (A2) and (16),
respectively. Note that x and x0 are the fraction of the
momentum carried by a quark q3 (the spectator quark) as
given by

x ¼ ! � k3
! � P1

; and x0 ¼ ! � k3
! � P2

; then y ¼ x

x0
; (69)

and one also has R0
? ¼ R? � x0q. Now, one can replace

the hadronic matrix element hSðP2ÞjJ�jPðP1ÞiCLFD, which
appears in the scalar productsX, Y, Z [Eqs. (59)–(61)], by
the hadronic matrix elements hSðP2ÞjJ�jPðP1ÞiCLFDg calcu-
lated by applying the CLFD diagrammatic rules and given
in Eq. (68). Hence, by using Eq. (64) we are able to
compute the form factors f�ðq2Þ as a function of q2 and
this over the whole available four momentum range 0<
q2 < q2max.

C. Dispersion relation approach

The pseudoscalar to scalar transition amplitude is calcu-
lated from the triangular Feynman diagram shown in
Fig. 3, where also the kinematical variables are displayed.
For the evaluation of the spacelike transition form factor
(q2 < 0) the internal constituent quarks are put on-mass
shell. Moreover the external momenta are considered off-
shell with

~P 2
1 ¼ s1; ~P2

2 ¼ s2; ð ~P1 � ~P2Þ2 ¼ q2: (70)

To derive the transition amplitude (54) we need the con-
stituent quark matrix element of the weak axial current
which we write

hQa
1ðk1Þj �q1ð0Þð�i���5Þq2ð0ÞjQa

2ðk2Þi
¼ �if21ðq2Þ �Qa

1ðk1Þ���5Q2ðk2Þ: (71)

The function f21ðq2Þ is the constituent quark transition
form factor. Since no formal derivation of the quark model
from QCD exists, it is unknown. In the following we make
the assumption f21 ’ 1 and drop the factor altogether
owing to the fact that constituent quarks behave very
much like bare Dirac particles [52].
In the DR approach the transition form factors f�ðq2Þ of

Eq. (54) are expressed through the double spectral repre-
sentations:

f�ðq2Þ ¼
Z ds2Gv2

ðs2Þ
�ðs2 �M2

2Þ

�
Z ds1Gv1

ðs1Þ
�ðs1 �M2

1Þ
��ðs1; s2; q2;m1; m2; m3Þ:

(72)

The functions��ðs1; s2; q2;m1; m2; m3Þ in the above equa-
tion are the double spectral densities of the triangle
Feynman of Fig. 3 in the P2

1- and P2
2- channels. They can

be obtained [42] from the following equation

ð ~P1 þ ~P2Þ��þðs1; s2; q2;m1; m2; m3Þ þ ð ~P1 � ~P2Þ���ðs1; s2; q2;m1; m2; m3Þ
¼ 1

8�

Z
d4k1d

4k2d
4k3�ðk21 �m2

1Þ�ðk22 �m2
2Þ�ðk23 �m2

3Þ�ð ~P1 � k2 � k3Þ�ð ~P2 � k3 � k1Þ
� Tr½�ðk6 1 þm1Þ���5ðk6 2 þm2Þi�5ðm3 � k6 3Þi�; (73)

wherem2 >m1. Explicit expressions for��ðs1; s2; q2;m1; m2; m3Þ are given in Appendix B. An analytical continuation in
q2 allows us to write the transition form factors for q2 < ðm2 �m1Þ2 as

f�ðq2Þ ¼
Z 1

ðm1þm3Þ2
ds2Gv2

ðs2Þ
�ðs2 �M2

2Þ
Z sþ

1
ðs2;q2Þ

s�1 ðs2;q2Þ
ds1Gv1

ðs1Þ
16�ðs1 �M2

1Þ
B�ðs1; s2; q2Þ
�3=2ðs1; s2; q2Þ

þ 2�ðq2Þ
Z 1

s0
2
ðq2Þ

ds2Gv2
ðs2Þ

�ðs2 �M2
2Þ

�
Z s�1 ðs2;q2Þ

sR
1
ðs2;q2Þ

ds1

16�ðs1 � sR1 Þ3=2
�
Gv1

ðs1ÞB�ðs1; s2; q2Þ
ðs1 � sL1 Þ3=2ðs1 �M2

1Þ
� Gv1

ðsR1 ÞB�ðsR1 ; s2; q2Þ
ðsR1 � sL1 Þ3=2ðsR1 �M2

1Þ
�
: (74)

The functions sL1 ðs2; q2Þ ¼ ð ffiffiffiffiffi
s2

p � ffiffiffiffiffi
q2

p Þ2 and sR1 ðs2; q2Þ ¼ ð ffiffiffiffiffi
s2

p þ ffiffiffiffiffi
q2

p Þ2 are the roots of �ðs1; s2; q2Þ ¼ ðs1 þ s2 � q2Þ2 �
4s2s1. The expressions for B�ðs1; s2; q2Þ are given in Appendix B along with the integration limits s�1 ðs2; q2Þ, sþ1 ðs2; q2Þ
and s02ðq2Þ.

FIG. 3. Same as in Fig. 2 but for the DR approach.
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We note that although the diagrams for D ! f0ð980Þ
and� ! f0ð980Þ are very similar in the calculation of their
spin trace, the main difference is that no kinematical factor
is involved at the triangle apex where the interaction vertex
��ð1� �5Þ in the case of the heavy meson decays stems
from the weak interaction. In the � ! f0ð980Þ form factor
all constituent masses are identical, while in the present
case there are two mass scales, namely, the charm and a
light or strange quark. It can be seen, in Appendix B, that
the expressions for the functions B�ðs1; s2; q2Þ which enter
the spectral densities vanish identically for m1 ¼ m2 ¼
m3. Indeed, in Ref. [53], which relies on the method
developed in Refs. [54,55], the transition amplitude for
� ! f0ð980Þ calculated on the light front was shown to
vanish as t ’ q2? ! 0. This is in contradiction with experi-
mental findings in ��p ! �0�0n reactions. We can make
the parallel for the behavior of our transition amplitude in
the limit q2? ! 0 and confirm the vanishing of our form
factor for t ¼ q2 ! 0 if all internal quark masses are equal.
Thus, had we calculated the transition to f0ð980Þ from a
pion, we would obtain f�ðq2Þ ¼ 0 for q2 ! 0. We ascribe
this discrepancy to our simplified �qq picture of the f0ð980Þ
whereas other contributions, likely from pion and kaon
clouds, may modify the form factors, in particular, at low
momentum transfer. For m2 � m1 ¼ m3, however, we de-
duce from the expressions of our dispersive representation
that the integrands in Eq. (74) do not vanish for q2 ! 0, nor
do the integrals as confirmed by our numerical
calculations.

As mentioned before, the form factor in the region 0<
q2 < ðm2 �m1Þ2 can be obtained by analytic continuation
of the expression in Eq. (72) for q2 < 0. In this spacelike
region, the function �ðs1; s2; q2;m1; m2; m3Þ in Eq. (B6)
has no square-root cuts related to the zeros of

�1=2ðs1; s2; q2Þ (they lie on the unphysical sheet) and both
form factors are given by just the first term in Eq. (74).
Note that the vertex functions GvðsÞ are not singular
for s > ðm2 þm3Þ2 and s > ðm1 þm3Þ2 and that
B�ðs1; s2; q2Þ are polynomials. Thus, the analytic proper-
ties of the form factors are determined by the sole behavior

of the function �1=2ðs1; s2; q2Þ for positive q2. One may
study the structure of the singularities of the integrand in
the complex s1 plane for a fixed real value of s2 > ðm1 þ
m3Þ2, which implies external s2 integration and internal s1
integration (interchanging the integration order leads to an
equivalent integration contour). At q2 > 0, the square-root
cut endpoint sR1 moves onto the physical sheet through the

interval from s�1 to sþ1 to the left of s�1 . This occurs for a
value of s2 > s02ðq2Þ, where s02ðq2Þ is obtained as the solu-

tion to the equation sR1 ðs2; q2Þ ¼ s�1 ðs2; q2Þ and given in

Appendix B. The integration contour of s1 in the complex
plane must be deformed so it encompasses the points sR1
and sþ1 . It therefore contains two integration segments, one

being the normal part from s�1 to sþ1 and the other the

anomalous part from sR1 to s�1 . The double spectral density

for this anomalous part, on the other hand, is obtained from

the discontinuity of the function �1=2ðs1; s2; q2Þ which can

be written as �1=2ðs1; s2; q2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 � sL1 Þðs1 � sR1 Þ

q
, bear-

ing in mind that the branch point sL1 lies on the unphysical
sheet. Hence, one has to calculate the discontinuity of

1=ðs1 � sR1 Þ1=2 which is just twice the function itself [56].
This explains the integration limits and the factor two in
front of the second integral in Eq. (74). The subtraction
term in the third line of Eq. (74) stems from the function
1=�ðs1; s2; q2Þ that enters the complete expression for
��ðs1; s2; q2;m1; m2; m3Þ in Eq. (B1) and which is singular
in the lower integration limit sR1 . It was shown in Ref. [57]
that an accurate application of the Cauchy theorem yields
this subtraction term.

VII. NUMERICAL RESULTS

A. The fit procedure

As we have discussed in the preceding sections our final
aim is to predict form factors for BðsÞ ! f0 transitions. To
achieve this goal, we first have to acquire a good knowl-
edge of the f0 wave function. This will be done through the
evaluation of theoretical branching ratios [Eq. (44)] for
DðsÞ ! f0 transitions, which implies the calculation of

form factors that rely on the f0 wave function, as can be
seen in Eqs. (68) for CLFD and (74) for DR. Since on the
one hand meson masses and decay constants are measured,
and on the other hand constituent quark masses as well as
Wilson coefficients are known from theoretical consider-
ations and given in Sec. V, the evaluation of the branching
ratios depends only on the f0 wave function parameters:
two size parameters 	n, 	s and the mixing angle �mix. The
overall normalization NS in Eq. (14) is fixed by means of
Eq. (26) for CLFD and Eq. (28) for DR. Once the f0 wave
function parameters are given, the form factors

F
DðsÞ!f0
0 ðq2Þ and hence the branching ratios can be deter-

mined. These parameters will thus be constrained, via a
least-square 
2 fit,4 by the experimental branching ratios
given in Eqs. (29)–(34). Note that there are two equivalent
solutions for �mix, as the mixing angle enters quadratically
into the decay rate formula Eq. (42). As an additional
physical constraint, we choose to impose the relation

	s ¼ ms

mu

	n; (75)

between the strange and nonstrange components of the
f0ð980Þ wave function. This forces the strange component
to be wider in momentum space, the size parameter 	s

being divided by m2
s in the Gaussian wave functions given

in Eq. (16) or Eq. (21), assuming that j�ssi is more tightly
bound and compact in configuration space. This effectively

4The routine MINUIT [58] has been used to minimize the 
2

in this work.
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reduced parametrization proves to be decisively more sta-
ble, while not spoiling the fit.

We will see that this first simple approach, a two
parameter fit attempting to reproduce all data listed in
Eqs. (29)–(34), to which we will refer to as fit 1, provides,
partly because of the large experimental errors, a fair
agreement with the data though not entirely satisfactory.
Indeed, so far we a priori miss relevant physics in these
decays such as corrections to simple tree-order topologies.
We must include higher-order and power suppressed con-
tributions in the appropriate channels. We here consider
penguin and annihilation topologies which we now discuss
in turn.

In the decays discussed in Sec. IVC, penguin topologies
only contribute to the Dþ ! f0�

þ, Dþ
s ! f0K

þ and
D0 ! f0�

0 amplitudes. The magnitude of the CKM ma-
trix elements [3] implies that for charmed penguins the
penguin contributions can be and are usually discarded
since VcdV

�
ud ’ VcsV

�
us is 3 orders of magnitude larger

than VcbV
�
ub. Nonetheless, in order to try to even more

constrain the scalar mixing angle, we have inserted phe-
nomenological penguin amplitudes where they are
operative.

We have parametrized these contributions by a universal
amplitude so that we have only modified the linear combi-
nation of Wilson coefficients, ai:

ai ) ai þ Xpð�p; �pÞ with Xpð�p; �pÞ ¼ �p expði�pÞ;
(76)

which leads for the amplitude AðDþ ! f0�
þÞ to the

substitution

AðDþ ! f0�
þÞ ) AðDþ ! f0�

þÞ
þGF

2
VcdV

�
udðm2

Dþ �m2
f0
Þ

� f�F
Dy

u!fu0
0 ðm2

�þÞ sin�mixXpð�p; �pÞ;
(77)

and similarly for the other two channels with the same
Xpð�p; �pÞ ¼ �p expði�pÞ.

As has been argued in Refs. [29,59], weak annihilation
amplitudes are not negligible for the decays D ! PP, SP
and are comparable to the tree amplitudes. This occurs
because these annihilation amplitudes, denoted in the lit-
erature by W exchange or W annihilation topologies, can
receive contributions from long-distance final-state inter-
actions. At the hadronic level, the quark rescattering is
manifest in s channel resonances and the W-exchange
topologies receive contributions from, for example, the
0� resonance Kð1830Þ [59]. Thus, we introduce a phe-
nomenological annihilation term, Xað�a; �aÞ, in the D0 !
f0ð980Þ �K0 decay channel such that

AðD0 ! f0ð980Þ �K0Þ ) AðD0 ! f0ð980Þ �K0Þ
þGFXað�a; �aÞ sin�mix

2
; (78)

with Xað�a; �aÞ ¼ �a expði�aÞ. The modulus �a and phase
�a are free parameters, the natural scale of �a is in prin-
ciple given by the decay constants f0D, f

0
K, and ff0 . We

stress that neither the contribution from penguin nor from
annihilation amplitudes will allow to resolve the ambiguity
on the mixing angle �mix.
In the following we introduce the effective transition

form factors which, in the nonstrange sector, read

F
P!f0
0;1 ðq2Þ ¼ F P!f0

0;1 ðq2Þ sin�mixffiffiffi
2

p (79)

and in the strange one

FP!f0
0;1 ðq2Þ ¼ F P!f0

0;1 ðq2Þ cos�mix: (80)

In principle, the six parameters should be fit to the
branching ratios listed in Eqs. (29)–(34). It turns out, as
expected from the arguments given above, that in both
approaches, CLFD and DR, the contributions of the pen-
guin amplitudes are vanishingly small and do not lead to
any improvement of the fit while the mixing angle maxi-
mally changes by 1�. In fact, the phase of the penguin
amplitude is nearly zero and the modulus is very small. We
conclude that we may just ignore its contribution. We will
therefore refer from now on to fit 2 as a four parameter fit
which includes solely the annihilation amplitudes as cor-
rection to the tree level.
Before discussing in details the results of our calcula-

tions, we wish to point out the large experimental errors
that appear in the constraining data. There are furthermore
inconsistencies in these data as can be seen for instance in
the FOCUS experiment [18], for the Dþ

s ! f0�
þ channel.

Here, we observe a discrepancy in the decay magnitude
between the channels where the f0ð980Þ decays into a two-
pion or two-kaon pair as well as in their errors. Partly, this
may be ascribed to the use of the different branching
fractions Bðf0 ! �þ��Þ and Bðf0 ! KþK�Þ.
Considering the theoretical ratio R1 ¼ AðDþ !

f0�
þÞ=AðDþ ! f0K

þÞ and the corresponding one for
the Dþ

s meson, R2 ¼ AðDþ
s ! f0�

þÞ=AðDþ
s !

f0K
þÞ, one observes that they are equivalent when work-

ing at the tree level approximation for the decay amplitude

if one assumes that FD!f0
0 ðq2Þ has roughly the same value

for q2 ¼ m2
� and m2

K and similarly for F Ds!f0
0 ðq2Þ. Using

Eq. (40) for the decay amplitudes of these channels, the
ratios R1 and R2 are proportional to the same CKM matrix
elements, V�

ud and V�
us, and to the pion and kaon decay

constants; they are of the order of 4.
Experimentally, though, this order of magnitude is

strongly violated when data from FOCUS (BRðDþ !
f0K

þÞ ¼ ð3:07� 1:65Þ � 10�4), from E687 (BRðDþ
s !

f0�
þÞ ¼ ð3:92� 2:63Þ � 10�2), as well as from FOCUS
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(BRðDþ
s ! f0�

þÞ ¼ ð5:60� 3:08Þ � 10�2) are used.
These data appear to be incompatible with the other data.
Hence, we shall study two cases in the four parameter
minimization space, one with 12 data, referred to as fit
2a, the other with 9 consistent data referred to as fit 2b.

B. The f0 wave function

Table I, which corresponds to fit 1 (with 2 parameters
and 12 branching ratios), shows that the factorization
model at the tree level order allows for a fair representation
of the data with reasonably well defined parameters 	n and
�mix given in Table II. An obvious discrepancy occurs for
the D0 ! f0 �K

0 channel, the apparent agreement with the
BABAR data [20] being only due to the very large experi-
mental error.

The stability of our fit is illustrated in Fig. 4 for both
approaches. The 
2=d:o:f: function is, in both cases
(CLFD and DR), smooth and has well defined minima
as a function of the mixing angle �mix. We find a mixing

TABLE I. Fit 1 (12 branching ratios and 2 parameters): comparison of experimental with theoretical branching ratios. The fit
parameters are found in Table II and a best fit yields 
2=d:o:f: ¼ 33:25=ð12� 2Þ ¼ 3:33 with DR and 
2=d:o:f: ¼ 30:63=ð12� 2Þ ¼
3:06 with CLFD.

Channel BR Exp. BR Th. (DR) 
2 BR Th. (CLFD) 
2

Dþ ! f0�
þ

(E791 [22]) ð3:80� 1:17Þ � 10�4 2:7� 10�4 0.88 2:90� 10�4 0.58

D0 ! f0 �K
0

(ARGUS [19]) ð6:40� 2:07Þ � 10�3 8:32� 10�5 9.30 1:86� 10�4 9.00

(CLEO [17]) ð5:00� 1:52Þ � 10�3 8:32� 10�5 10.37 1:86� 10�4 9.94

(BABAR [20]) ð9:60� 8:55Þ � 10�3 8:32� 10�5 1.24 1:86� 10�4 1.21

Dþ ! f0K
þ

(FOCUS [18]) ð3:07� 1:65Þ � 10�4 1:43� 10�5 3.16 3:26� 10�5 2.77

(FOCUS [18]) ð1:22� 0:75Þ � 10�4 1:43� 10�5 2.04 3:26� 10�5 1.41

Dþ
s ! f0�

þ
(E687 [24,25]) ð3:92� 2:63Þ � 10�2 1:43� 10�2 0.89 1:42� 10�2 0.89

(E791 [21]) ð1:14� 0:38Þ � 10�2 1:43� 10�2 0.56 1:42� 10�2 0.56

(FOCUS [18]) ð1:90� 0:61Þ � 10�2 1:43� 10�2 0.58 1:42� 10�2 0.57

(FOCUS [18,29]) ð5:60� 3:08Þ � 10�2 1:43� 10�2 1.82 1:42� 10�2 1.82

Dþ
s ! f0K

þ
(FOCUS [18]) ð2:24� 1:49Þ � 10�3 0:77� 10�3 0.96 2:13� 10�3 0.01

D0 ! f0�
0

(CLEO [46,47]) ð1:10� 0:97Þ � 10�6 2:20� 10�6 1.31 2:41� 10�6 1.84

TABLE II. The scalar-meson parameters, 	n and �mix, obtained in the CLFD and DR approaches with fit 1 (see Table I). Note that 	s

and NS are given by Eq. (75) and by Eqs. (26) or (28), respectively.

	n �mix 	s NS

CLFD ð3:20� 0:40Þ � 10�3 32:0� � 4:8� ð4:64� 0:58Þ � 10�3 2.00

DR 0:014� 0:012 41:3� � 5:5� 0:021� 0:017 3.41
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FIG. 4 (color online). The variation of 
2=d:o:f: as a function
of the mixing angle �mix. It corresponds to the fit 1 where 12
branching ratios are fitted with 2 parameters. The full and dashed
lines correspond to the DR and CLFD results, respectively.
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TABLE IV. Same as in Table II but annihilation included (fit 2a, see Table III).

	n �mix �a 	s NS

CLFD ð3:19� 0:32Þ � 10�3 31:2� � 3:7� 0:23� 0:05 ð4:62� 0:46Þ � 10�3 2.00

DR 0:014� 0:012 40:9� � 7:4� 0:35� 0:42 0:021� 0:017 3.42

TABLE III. Fit 2a (12 branching ratios and 4 parameters): comparison of experimental with theoretical branching ratios. The fit
parameters are found in Table IVand a best fit yields 
2=d:o:f: ¼ 12:73=ð12� 4Þ ¼ 1:59 with DR and 
2=d:o:f: ¼ 10:95=ð12� 4Þ ¼
1:37 with CLFD.

Channel BR Exp. BR Th. (DR) 
2 BR Th. (CLFD) 
2

Dþ ! f0�
þ

(E791 [22]) ð3:80� 1:17Þ � 10�4 2:64� 10�4 0.97 2:73� 10�4 0.80

D0 ! f0 �K
0

(ARGUS [19]) ð6:40� 2:07Þ � 10�3 5:58� 10�3 0.16 5:57� 10�3 0.15

(CLEO [17]) ð5:00� 1:52Þ � 10�3 5:58� 10�3 0.15 5:57� 10�3 0.14

(BABAR [20]) ð9:60� 8:55Þ � 10�3 5:58� 10�3 0.22 5:57� 10�3 0.22

Dþ ! f0K
þ

(FOCUS [18]) ð3:07� 1:65Þ � 10�4 1:40� 10�5 3.16 3:09� 10�5 2.81

(FOCUS [18]) ð1:22� 0:75Þ � 10�4 1:40� 10�5 2.05 3:09� 10�5 1.46

Dþ
s ! f0�

þ
(E687 [24,25]) ð3:92� 2:63Þ � 10�2 1:44� 10�2 0.88 1:43� 10�2 0.89

(E791 [21]) ð1:14� 0:38Þ � 10�2 1:44� 10�2 0.61 1:43� 10�2 0.58

(FOCUS [18]) ð1:90� 0:61Þ � 10�2 1:44� 10�2 0.54 1:43� 10�2 0.56

(FOCUS [18,29]) ð5:60� 3:08Þ � 10�2 1:44� 10�2 1.81 1:43� 10�2 1.81

Dþ
s ! f0K

þ
(FOCUS [18]) ð2:24� 1:49Þ � 10�3 7:78� 10�4 0.95 2:14� 10�3 0.01

D0 ! f0�
0

(CLEO [46,47]) ð1:10� 0:97Þ � 10�6 2:16� 10�6 1.20 2:28� 10�6 1.49

TABLE V. Fit 2b (9 branching ratios and 4 parameters): comparison of experimental with theoretical branching ratios. The fit
parameters are found in Table VI and a best fit yields 
2=d:o:f: ¼ 6:82=ð9� 4Þ ¼ 1:36 with DR and 
2=d:o:f: ¼ 5:37=ð9� 4Þ ¼ 1:07
with CLFD.

Channel BR Exp. BR Th. (DR) 
2 BR Th. (CLFD) 
2

Dþ ! f0�
þ

(E791 [22]) ð3:80� 1:17Þ � 10�4 2:63� 10�4 0.99 2:68� 10�4 0.91

D0 ! f0 �K
0

(ARGUS [19]) ð6:40� 2:07Þ � 10�3 5:57� 10�3 0.15 5:57� 10�3 0.16

(CLEO [17]) ð5:00� 1:52Þ � 10�3 5:57� 10�3 0.14 5:57� 10�3 0.14

(BABAR [20]) ð9:60� 8:55Þ � 10�3 5:57� 10�3 0.22 5:57� 10�3 0.22

Dþ ! f0K
þ

(FOCUS [18]) ð1:22� 0:75Þ � 10�4 1:42� 10�5 2.04 3:03� 10�5 1.48

Dþ
s ! f0�

þ
(E791 [21]) ð1:14� 0:38Þ � 10�2 1:37� 10�2 0.37 1:35� 10�2 0.32

(FOCUS [18]) ð1:90� 0:61Þ � 10�2 1:37� 10�2 0.71 1:35� 10�2 0.76

Dþ
s ! f0K

þ
(FOCUS [18]) ð2:24� 1:49Þ � 10�3 0:75� 10�3 0.98 2:05� 10�3 0.01

D0 ! f0�
0

(CLEO [46,47]) ð1:10� 0:97Þ � 10�6 2:15� 10�6 1.18 2:22� 10�6 1.35
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angle �mix ¼ 32� � 4:8� with the CLFD model and
�mix ¼ 41:3� � 5:5� for the DR model and the symmetric
angles with respect to 90�. These value are in fair agree-
ment with the ones estimated from Dþ

s ! f0ð980Þ�þ and
Dþ

s ! ��þ decays [3], which cover the rather wide range
20� & � & 40� and 140� & � & 160�.

The addition of an annihilation amplitude in that channel
D0 ! f0ð980Þ �K0 does considerably improve the quality of
the agreement with the complete set of data (fit 2a), as seen
in Table III. The results for the parameters 	n and �mix

(Table IV) are extremely stable as compared to those of fit
1 (Table II).

Finally, retaining only the nine consistent data as ex-
plained above, we obtain (fit 2b) a further improvement of
the 
2=d:o:f: illustrated in Table V. The wave-function
parameters (Table VI) for the CLFD model are stable as
compared to those in Tables II and IV, whereas for the DR
model, the range parameter increases by about 20% while
the mixing angle remains stable. As for fit 1, the stability of
fit 2b is illustrated in Fig. 5 in both approaches. The

2=d:o:f: function is, in both the CLFD and DR models,
smooth and has well-defined minima as a function of the
mixing angle �mix.

The prediction for �mix differs by about 10� in the two
approaches. This can be explained as follows; in both
approaches we employ equal Gaussian parametrizations
of the vertex functions introduced in Eqs. (16) and (21),
yet the dynamics that enters the loop diagram associated
with the meson normalization differs somewhat in each
case. In particular, in the DR approach the condition in

Eq. (9) implies a vertex renormalization due to soft rescat-
tering of the constituent quark in the vicinity of the meson
pole massM2. These modifications in the calculation of the
normalization already cause differing normalization values
in the case of the heavy pseudoscalars. As seen in Table IX
in Appendix A, although the values of 	 are very close in
both models, the normalizations are quite different. This
feature of the normalization is even more apparent for the
f0ð980Þ but, in addition, the size parameters 	 are an order
of magnitude apart which results in different weights and
ranges of the bound state vertex functions. These unequal
weights enter the form factor calculations where they are
compensated by the different normalizations NS in both
models. However, another degree of freedom comes into
play here, namely, the f0ð980Þ mixing angle whose value
can also compensate the Gaussian weights and thus com-
petes with the normalization. Since for small momentum
transfers, q2 ¼ m2

� and m2
K, the effective form factors of

CLFD and DR [see Eqs. (79) and (80)] must be very close
in order to fit the data, the product of NS, the Gaussian
weights and the sine or cosine of the mixing angle in the
decay amplitudes Eq. (40) must agree up to small varia-
tions inherent to a fit with two different models. The
normalization NS being not equal in CLFD and DR, this
results in the observed variation of about 10� in the mixing
angle.
All fits of the branching ratios only constrain the f0ð980Þ

wave function at very small relative momenta k2, of the
quark pair as given in Eq. (20). Though the introduction of
the annihilation amplitude considerably improves the fit,
its consequences on the scalar-meson parameters are rather
limited.

C. P ! S transition form factors

With the parametrization of the scalar-meson wave
function in Table VI, resulting from fit 2b, we compute

the pseudoscalar to scalar transition form factors D !
f0ð980ÞðnÞ, Ds ! f0ð980ÞðsÞ and can now predict B !
f0ð980ÞðnÞ and Bs ! f0ð980ÞðsÞ. Indeed, with the values
of Table IX in Appendix A, we can compute, employing
Eqs. (56), (57), (64), and (74), the PS ! S transition form

factors D ! f0ð980ÞðnÞ, Ds ! f0ð980ÞðsÞ, B ! f0ð980ÞðnÞ,
and Bs ! f0ð980ÞðsÞ for any kinematically allowed mo-
mentum transfer q2. In the CLFD formalism this is done
for q2 > 0 whereas in DR these form factors are evaluated
for spacelike and timelike values of q2. Since we compare
the two models, we only consider the positive range of q2.
The momentum-transfer dependence of the effective

TABLE VI. Same as in Table IV but for fit 2b (see Table V).

	n �mix �a 	s NS

CLFD ð3:09� 0:36Þ � 10�3 31:5� � 5:0� 0:23� 0:25 ð4:49� 0:52Þ � 10�3 1.93

DR 0:017� 0:010 41:6� � 7:1� 0:34� 0:41 0:024� 0:014 3.84
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FIG. 5 (color online). Same as in Fig. 4 but for the fit 2b where
9 branching ratios are fitted with 4 parameters.
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F0ðq2Þ and F1ðq2Þ form factors is plotted in Figs. 6 and 7
for the D and Ds transition form factors in both models. It
is worthwhile to mention that, in the DR formalism, the
anomalous contribution to the form factors, namely, the
second term in Eq. (74), only sets in for momenta of q2 *
0:6 GeV2 in DðsÞ ! f0ð980Þ transitions. Therefore, in the

momentum range of interest here, this contribution is
negligibly small and only the Landau part of the integrals
is of interest. To make these effective form factors readily
available, we assemble in Tables VII and VIII a list of their
values for a few specific values of q2, namely q2 ¼ m2

�,m
2
K

and m2
�.

As can be read from Table VII and Fig. 6 and 7, both
models are in fair agreement for the range of timelike

momenta 0< q2 & 0:1 GeV2 in the transitions D !

f0ð980ÞðnÞ and Ds ! f0ð980ÞðsÞ. This is expected as in the
fit we fix the model parameters via the effective form factor
F0ðq2Þ for q2 ¼ m2

� and m2
K barring any other changes in

the decay amplitudes of Eq. (40).
For the B to scalar transitions,5 the kinematically al-

lowed range is much larger than extending the momentum
transfer squared up to 15 GeV2. Hence, once again, we
do not consider contributions of the anomalous term in
Eq. (74) in the DR formalism. The effective form factors
F0ðq2Þ and F1ðq2Þ are plotted in Figs. 8 and 9. Table VIII
gives a few values at q2 ¼ m2

�, m
2
K, m

2
� and m2

D. In Fig. 8,

for the B ! f0 transition, one observes similar results to
those obtained for the D to scalar transitions, whereas for
the Bs ! f0, the difference between the DR and CLFD
predictions is considerable as can be seen in Fig. 9.
The magnitude of the slopes for F0ðq2Þ and F1ðq2Þ point

at different dynamical features for larger q2 despite the use
of similar vertex functions in both CLFD and DR. This is
true, in particular, for large q2 ’ m2

b values in B ! f0ð980Þ
transitions where one expects perturbative QCD effects to
be relevant. It is likely that the Gaussian vertex form of the
Bethe-Salpeter amplitudes which describe both the heavy
pseudoscalar and the light(er) scalar bound states are not
appropriate at large momentum transfers. In the D decays,
the differences are even more pronounced—whereas at the
maximum recoil point q2 ¼ 0 the DR approach values for
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FIG. 7 (color online). Same as in Fig. 6 but for Ds ! f0ð980Þ
transitions [see Eq. (80) for the definition of F0ðq2Þ and F1ðq2Þ].

TABLE VII. Effective scalar and vector form factors F0ðq2Þ
and F1ðq2Þ [see Eqs. (79) and (80)] for various typical timelike
momentum transfers, q2, in DðsÞ ! f0ð980Þ transitions in the

CLFD and DR approaches, respectively, (see Figs. 6 and 7).

q2 m2
� m2

K m2
�

CLFD DR CLFD DR CLFD DR

F
D!f0
0 ðq2Þ 0.21 0.22 0.28 0.18 0.38 0.17

FD!f0
1 ðq2Þ 0.21 0.22 0.33 0.22 0.94 0.26

F
Ds!f0
0 ðq2Þ 0.45 0.46 0.67 0.41 1.02 0.32

FDs!f0
1 ðq2Þ 0.45 0.46 0.75 0.48 1.86 0.53

TABLE VIII. Same as in Table VII but for BðsÞ ! f0ð980Þ
transitions (see Figs. 8 and 9).

q2 m2
� m2

K m2
� m2

D

CLFD DR CLFD DR CLFD DR CLFD DR

F
B!f0
0 ðq2Þ 0.12 0.12 0.13 0.12 0.14 0.12 0.23 0.13

F
B!f0
1 ðq2Þ 0.12 0.12 0.14 0.12 0.15 0.13 0.28 0.15

F
Bs!f0
0 ðq2Þ 0.40 0.29 0.41 0.30 0.47 0.30 0.74 0.29

F
Bs!f0
1 ðq2Þ 0.40 0.29 0.43 0.30 0.51 0.31 0.89 0.35
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FIG. 6 (color online). Effective form factors F0ðq2Þ and F1ðq2Þ
[see Eq. (79)] calculated with the parameters of fit 2b for D !
f0ð980Þ transitions. In the DR model, the full and dotted lines
correspond to F1ðq2Þ and F0ðq2Þ respectively, and similarly for
the dashed and dot-dashed lines in the CLFD model.

5Our attention has been drawn by R. Dutta [60] to a work with
S. Gardner where they obtained similar results with the use of the
constituent quark model combining heavy quark effective theory
with chiral symmetry in the light quark sector.
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F1ðq2Þ are slightly larger in magnitude than those from
CLFD, they evolve more slowly and at q2max the CLFD
predictions are considerably larger, as seen in Figs. 8 and 9.
In this case, the momentum transfer range 0 	 q2 	
0:6 GeV2 is lower than the meson massm2

D and the process
should be more dominated by soft physics. Therefore, the
deviations between DR and CLFD cannot be ascribed to
the behavior of the vertex functions and are intrinsic to the
dynamical assumptions in either model. A feature of the
DR model is that the function f�ðq2Þ decreases more
rapidly than fþðq2Þ increases, in particular, for the D !
f0ð980Þ transition form factors. This steeper slope as well
as the factor q2=ðm2

D �m2
f0
Þ which is larger than

q2=ðm2
B �m2

f0
Þ in Eq. (57) also explain the negative slope

of F0ðq2Þ for the D ! f0ð980Þ transitions. However, the
difference with the CLFD form factor prediction is striking
and only in the momentum domain of the pion and kaon
mass can agreement be found. The problem of model

dependence appears at larger momentum transfer, where
various models yield rather different results, whereas at
q2 ¼ 0 Ref. [60] seems to confirm our results.
Regarding the general behavior of the transition form

factors, in DR one observes that they are very sensitive to
the function b� which strongly depend on the quark mass
difference [Eqs. (B4) and (B5)]. In CLFD, the form factors
are controlled by the function �, introduced in Eq. (65),
which forces F0ðq2Þ and F1ðq2Þ to behave as 1=ðþ �q2Þ
and therefore become very large at the kinematical limit
whenever the denominator tends to zero.
It is worthwhile to recall that quark model predictions

have a constituent mass dependence causing a systematic
error in the computation of the form factors. This is in
particularly true for the light sector where it is known that
the dressed-quark mass receives strong momentum-
dependent corrections at infrared momenta, an expression
of dynamical chiral symmetry breaking. The enhancement
of the mass function in the light-quark propagators is
central to the occurrence of a constituent-quark mass scale.
On the other hand, the impact on heavy-quark propagators
of chiral symmetry breaking is much less marked for
c-quarks and even less so for b-quarks. It can be shown
that the heavy propagator SðpÞ ¼ ð6p�mQÞ�1 is justified

for b-quarks and to a certain extent also for c-quarks [61].
Thus, in the approach of identical propagators for light and
heavy quarks, with a light constituent mass of mu;d ¼
0:35 GeV, a certain mass-dependent uncertainty is im-
plicit. We also remind the reader that bothD and Bmesons
are lightly bound and that the bound state condition M2 <
ðm1 þm2Þ2 is only fulfilled in the quark model if the light-
quark mass is chosen to be large. However, since we make
use of the features of confining models, this constraint does
not affect our predictions.
As an example, if we choose for the light-quark mass

mu;d ¼ 0:25 GeV, modifications of the form factors mag-

nitude at larger q2 values are not insignificant. In the DR
approach, for instance, a decrease of the light-quark mass,
which implies a readjustment of the meson parameters to
fit their decay constants, F0ðq2Þ and F1ðq2Þ evolve more
rapidly and overall we observe modifications of the order
of 10% for q2 up to the squared kaon mass. Changes in the
strange quark mass scarcely alter these form factors on the
other hand. This observation is more striking for D !
f0ð980Þ transitions, where the heavy-light quark mass dif-
ferences ðmc �muÞ2 and ðmc �msÞ2 are smaller than
when a b-quark is involved. A proper treatment of dressed
light-quark propagators should remedy this situation.

VIII. EPILOGUE

We have investigated the role of the scalar meson
f0ð980Þ in quasi–two-body decays of DðsÞ and BðsÞ mesons

focussing on the weak transition form factors DðsÞ !
f0ð980ÞðsÞ and BðsÞ ! f0ð980ÞðsÞ, which are of particular

interest to flavor physics. In order to obtain a consistent
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FIG. 9 (color online). Same as in Fig. 7 but for Bs ! f0ð980Þ
transitions [see Eq. (80)].
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parametrization of the f0ð980Þ wave function, we first
applied a simple factorization ansatz to these D decays
where the approach is reasonable. Here, the quasi–two-
body DðsÞ ! f0ð980ÞP branching ratios are deduced from

the experimental ones for DðsÞ ! ���, �KK� and the

knowledge of the f0ð980Þ ! �þ�� and f0ð980Þ !
KþK� branching fractions. Once the scalar-meson pa-
rameters are determined by fitting the matrix element

DðsÞ ! f0ð980ÞðsÞ to experimental data, they are readily

available for other flavor changing matrix elements involv-
ing the b-quark although in that case the approach is on less
firm grounds. The short-distance physics in the factoriza-
tion is known from perturbation theory applied to the
operator product expansion and codified in terms of
Wilson coefficients. The long-distance effects concern
two sets of form factors; namely, the experimentally known
decay constants and the heavy-to-light transition form
factors. The latter are nontrivial objects which involve
quark as well as hadron degrees of freedom. In our ap-
proach, we have modeled these form factors with triangle
diagrams (at the tree level) in the impulse approximation.
The mesonic Bethe-Salpeter amplitudes are described by
Gaussian two-quark vertex functions which introduce size
parameters. In the case of the scalar meson, we also need a
mixing angle between the strange and nonstrange compo-
nents of its wave function for which we assume the sim-
plest possible quark structure. That is to say, we neglect
higher Fock states or possible hadronic dressings which
may enrich the �qq state with other components such as
j �KKi, j��i etc. in order to perform an actual calculation.
As noted previously in Secs. I and II, a consequence of the
mixing is the presence of a strange component in the � or
f0ð600Þ state, strange content which does not seem to be
experimentally observed. A specific discussion of the
structure of this broad state is outside the scope of the
present study and would require, as we just pointed out, to
work beyond the simplest two-quark structure.

In this work, we have examined two different but ex-
plicitly covariant approaches to establish the model depen-
dence of the form factors. In both model calculations, the
impulse approximation is used and quark masses as well as
dynamical assumptions are the identical, though certain
kinematical aspects differ. In particular, in the DR ap-
proach internal quarks are put on-mass shell and the am-
plitudes are expressed as double dispersive integrals of the
triangle diagram’s discontinuity over initial and final mass
variables. In contrast to the DR approach, in the CLFD
calculation the integration is performed over the internal
loop momenta. Moreover, even though the Bethe-Salpeter
amplitudes of theDðsÞ and f0ð980Þ have identical Gaussian
forms, the meson vertex normalization is not identical in
both models.

These differences may be the origin for certain discrep-
ancies we find in our results. In fitting the set of experi-
mental DðsÞ ! f0ð980ÞP branching ratios, we do obtain

similar values for the mixing angle. Overall, the fit quality
is comparable and rather good given the large experimental
errors. However, while at small momentum transfer,
around the light meson masses m2

� and m2
K, we find very

similar transition form factors, for larger values of q2

where no experimental constraints exist the discrepancy
is obvious. In the case of BðsÞ ! f0ð980Þ transitions,

stronger deviations between both models are observed.
For the DðsÞ ! f0ð980Þ transitions, the discrepancy is al-

ready obvious for q2 & m2
K as seen, in particular, in the

different slopes of F0ðq2Þ obtained in DR and CLFD. This
is also a hint that the constituent quark model may be
reliable solely for a certain domain of q2.
Clearly, dynamical aspects of QCD, such as running

quark masses, are important in the computation of these
form factors.
Furthermore, the parametrization of the heavy mesons

depends on the precise knowledge of the pseudoscalar
decay constant. As confinement is only approximately
achieved and dynamical chiral symmetry breaking not
realized in either model calculation, some of the uncer-
tainty defies any quantification. When these formalisms are
applied to calculations which can be compared to observ-
ables such as decay constants, typical deviations from the
experimental values are of the order of 10%–15%. Given
the large errors in the experimental DðsÞ ! ���, �KK�

branching fractions and the still elusive structure of the
scalar f0ð980Þ, assuming a �qq composition, this provides a
lower bound of our theoretical error6 which we estimate to
be of the order of 25%.
Nonetheless, we consider that there is a domain of

validity for these models which overlaps with the typical
momentum transfers q2 that occur in leptonic as well as
nonleptonic weak decays of DðsÞ and BðsÞ mesons. The

present study provides a first calculation of heavy pseudo-
scalar to scalar meson transition form factors at the exact
momentum-transfer values q2 ¼ m2

�, m2
K, m2

� and m2
D

without resorting to any extrapolation. Surely, this work
leaves plenty of room for improvement; obviously a better
understanding of the scalar-meson structure is of foremost
concern, but a more genuine realization of confinement and
dynamical chiral symmetry breaking is also desirable.
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désintégrations hadroniques des mésons B’’ and by the
Department of Energy, Office of Nuclear Physics,
Contract No. DE-AC02-06CH11357.

APPENDIX A: PSEUDOSCALAR MESONS IN THE
QUARK MODEL

1. CLFD

For a pseudoscalar particle composed of an antiquark
and a quark, of mass m1 and m2 respectively, the general
structure of the two-body bound state has the form:

c ðqq0Þ
P ¼ NP�

ðqq0Þ
P ; with

�ðqq0Þ
P ¼ 1ffiffiffi

2
p �uðk2ÞAðqq0Þ

P ðx;R2
?Þ�5vðk1Þ;

(A1)

where vðk1Þ and �uðk2Þ are the usual Dirac spinors, and

Aðqq0Þ
P ðx;R2

?Þ is the scalar component of the wave function

written as

Aðqq0Þ
P ðx;R2

?Þ ¼ Aðqq0Þ
P ðk2Þ ¼ expð�4	k2=m2

12Þ; (A2)

where NP and 	 are parameters to be determined by
comparison with experimental data; the reduced mass is
m12 ¼ m1m2=ðm1 þm2Þ and k2 is given by Eq. (6). For
the pseudoscalar mesons we make use of the experimen-
tally well established values for their decay constant.

In CLFD the normalization condition for a pseudo-
scalar meson of zero total angular momentum reads as
follows:

1 ¼
Z
ðx;~�;R?Þ

Dðx; ~�;R?Þ
X
�1�2

c ðqq0Þ
�1�2

c ðqq0Þ?
�1�2

; (A3)

where, in close analogy with Eqs. (25), one has

X
�1;�2

c ðqq0Þ
�1;�2

c ðqq0Þy
�1;�2

¼ N2
P

2
Tr½ðk6 2 þm2ÞAðqq0Þ

P ðx;R2
?Þ

� �5ðk6 1 �m1ÞAðqq0Þ
P ðx;R2

?Þ�5�; (A4)
so that, finally,

1 ¼ N2
P

Z
ðx;~�;R?Þ

Dðx; ~�;R?Þ

�
��
R2

? þ ðxm2 þ ð1� xÞm1Þ2
xð1� xÞ

�
½Aðqq0Þ

P ðx;R2
?Þ�2

�
;

(A5)

where one recalls that Dðx; ~�;R?Þ is the invariant phase
space element already defined in Eq. (24).

2. Dispersion approach

Similarly, the two-body bound state for pseudoscalar
meson is given here by

hPðk1; k2Þj �QQi ¼
�Qað�k2Þi�5Q

aðk1Þffiffiffiffiffiffiffi
NC

p GvðsÞ; (A6)

where Qaðk1; m1Þ represents the spinor state of the con-
stituent quark of color a and NC ¼ 3 the number of quark
colors. Since for a confining potential the strong interaction
does not produce a pole at s ¼ M2 in the physical region
(in the harmonic oscillator approximation of the quark
model the Gaussian functions are smooth), the vertex
function GvðsÞ can be related, as in Eq. (8), to a wave
function representation of the form

c PðsÞ ¼ GvðsÞ=ðs�M2Þ ¼ NP�PðsÞ; (A7)

where NP is a normalization factor and

�PðsÞ ¼ �ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � ðm2

2 �m2
1Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� ðm2 �m1Þ2

p 1

s3=4
wðkÞ: (A8)

In Eq. (A8), the function wðkÞ is chosen to be

wðkÞ ¼ expð�4	k2=m2
12Þ; (A9)

where m12 is again the reduced mass. As in CLFD, we
determine the normalization, NP, and fit the size parameter
	 so as to reproduce the experimental decay constants. In
the dispersion approach the relativistic normalization
Eq. (9), by the appropriate choice for the wave function,
reduces to the simple integral

1 ¼ N2
P

Z 1

0
w2ðkÞk2dk; with NP ¼ 2

�1=4

�
8	

m2
12

�
3=4

:

(A10)

3. Decay constant of the pseudoscalar mesons

According to the usual definition, the decay amplitude is
�� ¼ h0jJ5�jPi where J5� is the axial current. Since our
formulation is explicitly covariant, we can decompose ��

in terms of all momenta available in our system, i.e. the
incoming meson momentum p� and !�. We have there-
fore:

�� ¼ fPp
� þB!�; (A11)

where fP is the physical decay constant. In an exact
calculation of ��, B should be zero. Since !2 ¼ 0, the

decay constant can easily be obtained according to

fP ¼ � �!
! � p : (A12)

Using the diagrammatic rules of CLFD, we can calculate
�� and including color factors, one gets

SCALAR MESON f0ð980Þ IN HEAVY-MESON DECAYS PHYSICAL REVIEW D 79, 076004 (2009)

076004-19



�� ¼ ffiffiffi
3

p
NP

Z
ðx;~�;R?Þ

Dðx; ~�;R?Þ

� Tr

�
����5ðk6 2 þm2Þ 1ffiffiffi

2
p Aðqq0Þðx;R2

?Þ

� �5ðm1 � k6 1Þ
�
; (A13)

where the notation �O is defined as usual by �O ¼ �0Oy�0.
The decay constant is therefore given by

fP ¼ 2
ffiffiffi
6

p
NP

Z
ðx;~�;R?Þ

Dðx; ~�;R?Þ½m1ð1� xÞ þm2x�

� Aðqq0Þðx;R2
?Þ: (A14)

Similarly, in the dispersion approach, taking into ac-
count soft rescatterings of constituent quarks, one obtains
a series of dispersion graphs that involve the spectral
density �Pðs;m1; m2Þ of the Feynman quark–antiquark
loop graph given in Eq. (10). These graphs yield the
following expression for the pseudoscalar decay constant
[42]

fP ¼ NP

ffiffiffiffiffiffiffi
NC

p Z 1

ðm1þm2Þ2
ds

�

m1 þm2

s
�Pðs;m1; m2Þ�PðsÞ:

(A15)

Then applying the normalization condition with the
decay constants as constraints for modelling, we obtain
the parameters listed in Table IX.

APPENDIX B: DETAILS OF SPECTRAL
DENSITIES

Note that the double spectral densities for the
pseudoscalar to scalar transition form factors
��ðs1; s2; q2;m1; m2; m3Þ in Eqs. (72) and (73) may be
obtained from Melikhov [42] (Sec. IIC) by the substitution
m1 into �m1. This substitution is the consequence of the
different expressions of the operators in the trace entering
in Eq. (73) in the case of pseudoscalar to scalar transition
and in the case of pseudoscalar to pseudoscalar transition
[42]. Nevertheless, for completeness, we give here the
explicit expression. One has

��ðs1; s2; q2;m1; m2; m3Þ ¼ B�ðs1; s2; q2Þ
�ðs1; s2; q2Þ

�ðs1; s2; q2;m1; m2; m3Þ; (B1)

where

Bþðs1; s2; q2Þ ¼ bþðs1; s2; q2Þ½aðs1; m2; m3Þ þ aðs2; m3;�m1Þ � aðq2;�m1; m2Þ� þ aðq2;�m1; m2Þ�ðs1; s2; q2Þ; (B2)

B�ðs1; s2; q2Þ ¼ b�ðs1; s2; q2Þ½aðs1; m2; m3Þ þ aðs2; m3;�m1Þ � aðq2;�m1; m2Þ�
þ ½aðs2; m3;�m1Þ � aðs1; m2; m3Þ��ðs1; s2; q2Þ; (B3)

with7

bþðs1; s2; q2Þ ¼ �q2ðs1 þ s2 � q2 þm2
1 þm2

2 � 2m2
3Þ � ðm2

1 �m2
2Þðs1 � s2Þ; (B4)

b�ðs1; s2; q2Þ ¼ ðm2
1 �m2

2Þð2s1 þ 2s2 � q2Þ þ ðs1 � s2Þðs1 þ s2 � q2 þm2
1 þm2

2 � 2m2
3Þ; (B5)

with aðx; y; zÞ ¼ x� ðy� zÞ2. Furthermore,

�ðs1; s2; q2;m1; m2; m3Þ ¼ �ðb2þðs1; s2; q2Þ � �ðs1; s2; q2Þ�ðq2; m2
1; m

2
2ÞÞ

16�1=2ðs1; s2; q2Þ
: (B6)

The allowed intervals for the integration variables s1 and s2 are obtained by solving the step �-function of Eq. (B6),

s2 > ðm1 þm3Þ2; (B7)

TABLE IX. The pseudoscalar-meson parameters, NP and 	, in
the CLFD and DR approaches. The normalization NP is either
calculated with Eq. (A5) or Eq. (A10). The wave-function range
parameter 	, which enters the theoretical evaluation of the decay
constants in Eq. (A14) and (A15), is fitted to reproduce the
experimental values of the decay constants of Eqs. (50).

D Ds B Bs

CLFD NP 9.976 7.340 5.880 3.833

	 0.046 0.061 0.049 0.059

DR NP 4.395 3.443 3.937 2.646

	 0.043 0.057 0.049 0.057

7In the expression of b�ðs1; s2; q2Þ given by Melikhov [42] [see his Eq. (2.76)] there is a misprint: the relative sign between the two
term should be þ as here in Eq. (B5).
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s�1 ðs2; q2Þ< s1 < sþ1 ðs2; q2Þ; (B8)

with

s�1 ðs2; q2Þ ¼
s2ðm2

1 þm2
2 � q2Þ þ q2ðm2

1 þm2
3Þ � ðm2

1 �m2
2Þðm2

1 �m2
3Þ

2m2
1

� �1=2ðs2; m2
3; m

2
1Þ�1=2ðq2; m2

1; m
2
2Þ

2m2
1

: (B9)

The solution of the equation

sR1 ¼ ð ffiffiffiffiffi
s2

p þ
ffiffiffiffiffi
q2

q
Þ2 ¼ s�1 ðs2; q2Þ; (B10)

which reduces to

s2 þ q2 þm2
1 �m2

2ffiffiffiffiffi
q2

p ffiffiffiffiffi
s2

p þm2
1 �m2

3 ¼ 0; (B11)

so therefore the limit s02ðq2Þ appearing in Eq. (74) is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s02ðq2Þ

q
¼ � q2 þm2

1 �m2
2

2
ffiffiffiffiffi
q2

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q2 þm2

1 �m2
2

2
ffiffiffiffiffi
q2

p
�
2 þm2

3 �m2
1

vuut : (B12)

Note that in Eqs. (B1)–(B5) we have introduced, following
Melikhov, a lightened writing for the functions
B�ðs1; s2; q2Þ and b�ðs1; s2; q2Þ which, we stress, depend
parametrically on the quark massesm1,m2, andm3. This is
obviously the case also for s�1 ðs2; q2Þ and s02ðq2Þ.
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