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We show how to incorporate chiral-symmetry breaking in the soft-wall version of the anti-de Sitter/

QCD model by using a modified dilaton profile and a quartic term in the bulk scalar potential. This allows

one to separate the dependence on spontaneous and explicit chiral-symmetry breaking. Moreover, our 5D

model automatically incorporates linear trajectories and non chiral-symmetry restoration for highly

excited radial states. We compare our resulting mass spectra in the scalar, vector, and axial-vector sectors

with the respective QCD resonances and find reasonable agreement using the known values for the pion

mass and decay constant.
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I. INTRODUCTION

The anti-de Sitter/conformal field theory correspon-
dence [1–4] provides a remarkable mathematical tool
with which to understand strongly coupled gauge theories.
By using an effective dictionary that relates strongly
coupled gauge theories to higher-dimensional gravitational
theories, calculations performed on the gravity side can be
reinterpreted as due to nonperturbative effects on the field
theory side. This allows for previously incalculable quan-
tities to be calculated using the gravitational dual. The
theory of the strong interactions, or quantum chromody-
namics (QCD), is a strongly coupled gauge theory at low
energies, and therefore a natural candidate with which to
apply the gauge/gravity correspondence. This had led to a
bottom-up approach, commonly known as AdS/QCD [5,6],
which relates QCD to a five-dimensional (5D) gravity
theory. This model is simple and predictive, capturing the
essential features of the low-lying meson spectrum.

In an attempt to incorporate more realistic features of the
excited states such as the linear Regge behavior of QCD,
the AdS/QCD model can be modified to include a dilaton
with a quadratic profile [7]. While the linear radial spec-
trum is indeed produced in this soft-wall version of the
AdS/QCD model, the form of chiral-symmetry breaking is
not QCD-like. In particular, the bulk scalar field, dual to
the quark bilinear operator �qq, whose vacuum expectation
value (VEV) is responsible for spontaneous chiral-
symmetry breaking, does not allow the spontaneous and
explicit breaking to be independent. Moreover, chiral sym-
metry is restored for the highly excited states, a phenome-
nological feature that is not supported in the QCD mass
spectrum [8].

In this paper, we modify the existing soft-wall version of
the AdS/QCD model in order to incorporate these two

phenomenological features of QCD. This is done by add-
ing a quartic term to the bulk scalar potential and changing
the dilaton profile. By assuming that the bulk scalar field
contains the desired limiting behavior for nonrestoration of
chiral symmetry [4,8], we derive a new dilaton background
profile. The extra parameter introduced by the quartic term
decouples the quark mass from the chiral condensate,
thereby allowing for spontaneous and explicit chiral-
symmetry breaking to occur independently. The dilaton
profile resulting from the required form of the bulk scalar
field VEV conforms to the expected behavior required to
obtain linear trajectories at large conformal coordinate z.
The small z behavior of the dilaton modifies the potential,
thus affecting the mesons in the extra dimension and
producing different mass spectra for the mesons under
consideration.
Of course, constructing an AdS dual theory that encom-

passes the richness of QCD presents the greatest challenge,
a task yet to be accomplished. In fact certain QCD-like
characteristics such as event shapes in high energy colli-
sions are not reproduced in the simple 5D gravitational
model [9–11]. Instead, genuine stringy dynamics seem to
be required to capture the complete QCD behavior.
Nevertheless, the remarkable fact that at large t’ Hooft
coupling certain features of the hadron spectrum can be
calculated by a relatively simple 5D model make the AdS/
QCD correspondence an important analytic tool that can
further our understanding of QCD.
The outline of this paper is as follows: We introduce the

modified soft-wall model in Sec. II and describe how the
new dilaton profile and higher-order terms lead to a model
describing spontaneous and explicit chiral-symmetry
breaking. Our fit to the QCD meson spectrum is made in
Sec. III where we analyze the scalar, vector, and axial-
vector sectors of the model. In Sec. IV, we determine the
pion decay constant, the Gell-Mann-Oakes-Renner rela-
tion, the coupling of the vector mesons to the pions, and the
pion electromagnetic form factor. We conclude with a
discussion in Sec. V.
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II. THE 5D MODEL

We will consider a modified version of the soft-wall
AdS/QCD model first introduced in [7] and further inves-
tigated in [12–18]. The background geometry is assumed
to be 5D AdS space with the metric

ds2 ¼ gMNdx
MdxN ¼ a2ðzÞð���dx

�dx� þ dz2Þ; (1)

where aðzÞ ¼ L=z is the warp factor, L is the AdS curva-
ture radius and the Minkowski metric ��� ¼
diagð�1;þ1;þ1;þ1Þ. The conformal coordinate z has a
range 0 � z <1. To obtain linear trajectories, [7] also
introduced a background dilaton field, �, with the asymp-
totic behavior

�ðz ! 1Þ ’ �z2; (2)

where � sets the mass scale for the meson spectrum. The
varying dilaton field also ensures that conformal symmetry
is gradually broken in this phenomenological dual theory.

To describe chiral-symmetry breaking in the meson
sector the 5D action contains SUð2ÞL � SUð2ÞR gauge
fields and a bifundamental scalar field X. As suggested
by [7], we add a quartic term in the potential VðXÞ of our
5D action,

S5 ¼ �
Z

d5x
ffiffiffiffiffiffiffi�g

p
e��ðzÞ Tr

�
jDXj2 þm2

XjXj2

� �jXj4 þ 1

4g25
ðF2

L þ F2
RÞ
�
; (3)

where m2
X ¼ �3=L2, � is a constant and g25 ¼ 12�2=Nc,

with Nc the number of colors. The field tensors FL;R are

defined as

FMN
L;R ¼ @MAN

L;R � @NAM
L;R � i½AM

L;R; A
N
L;R�;

where AMN
L;R ¼ AMNa

L;R ta and Tr½tatb� ¼ �ab=2, and the co-

variant derivative becomes DMX ¼ @MX � iAM
L X þ

iXAM
R . To describe the vector and axial-vector mesons we

simply transform to the vector (V) and axial-vector fields
(A), where VM ¼ 1=2ðAM

L þ AM
R Þ and AM ¼ 1=2ðAM

L �
AM
R Þ.

A. Bulk scalar VEV solution

The scalar field, X, which is dual to the operator �qq, is
assumed to obtain a z-dependent VEV,

hXi � vðzÞ
2

1 0
0 1

� �
; (4)

which breaks the chiral symmetry SUð2ÞL � SUð2ÞR !
SUð2ÞV . Assuming (4) we obtain a nonlinear equation for
the VEV vðzÞ,

@zða3e��@zvðzÞÞ � a5e��

�
m2

XvðzÞ �
�

2
v3ðzÞ

�
¼ 0: (5)

When � ¼ 0, the solution of (5), which leads to a finite

action in the limit z ! 1 is given by [7,16]

vðzÞ ’ mqzUð12; 0; z2Þ; (6)

where Uða; b; yÞ is the Tricomi confluent hypergeometric
function. Note that with a UV boundary located at z ¼ z0, a
boundary mass term for the scalar field needs to be added
so that (6) remains a consistent solution.
As expected from the anti-de Sitter/conformal field the-

ory dictionary established in [3,4], the VEV as z ! 0
should take the asymptotic form

vðzÞ ¼ 	zþ 
z3: (7)

The quark mass mq and the chiral condensate h �qqi � �,

are then related to the constants in (7), via

mq ¼ 	L

�
; (8)

� ¼ 
L�; (9)

where � is the normalization parameter introduced in [15].
For fixed values of mq and �, the introduction of � still

satisfies the Gell-Mann-Oakes-Renner relation m2
�f

2
� ¼

2mq�. Expanding the solution (6) in the small z limit leads

to 	 / mq and 
 / � / mq. Thus, in the limit mq ! 0 the

model eliminates explicit and spontaneous chiral-
symmetry breaking in contradiction with QCD. It will be
seen that the introduction of a quartic term in the potential
VðXÞ avoids the dependence of the chiral condensate on the
quark mass encountered in [7,14,16].
Furthermore, the solution (6) has an asymptotic limit

vðzÞ ! constant for large values of z. This asymptotic
behavior suggests chiral-symmetry restoration in the
mass spectrum, a phenomenon not supported in QCD
(although speculation continues on whether such a resto-
ration indeed exists [19,20]). As noted in [8] the highly
excited mesons exhibit seemingly parallel slopes signify-
ing that chiral symmetry is not restored. In order to incor-
porate this behavior the scalar VEV vðzÞ must behave
linearly as z becomes large,

vðz ! 1Þ � z; (10)

causing the mass difference between vector and axial-
vector resonances to approach a constant as z ! 1. By
including a quartic term and requiring vðzÞ to have this
linear asymptotic behavior we aim to incorporate these
QCD-like characteristics into the soft-wall model.

B. A new parametrized solution

The solution for the VEV vðzÞ was derived from the
dilaton form (2) and, as we have seen, does not reproduce
the phenomenological features expected in QCD. Instead
of solving for vðzÞ directly, we assume the VEVasymptoti-
cally behaves as expected, namely,
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vðz ! 0Þ ¼ mq�

L
zþ �

�L
z3; (11)

vðz ! 1Þ ¼ �

L
z; (12)

and then solve for the dilaton �ðzÞ using (5), which be-
comes

�0ðzÞ ¼ 1

a3v0ðzÞ
�
@zða3v0ðzÞÞ � a5

�
m2

XvðzÞ �
�

2
v3ðzÞ

��
;

(13)

where the prime (0) denotes the derivative with respect to z.
Given the required behavior (11) and (12) we can uniquely
determine the dilaton profile up to a constant. With this
procedure the two sources of chiral-symmetry breaking
decouple while simultaneously allowing for linear trajec-
tories in the meson spectrum.

A particularly simple parametrized form for vðzÞ that
satisfies (11) and (12) is

vðzÞ ¼ z

L
ðAþ B tanhCz2Þ; (14)

where A, B, and C are all positive coefficients dependent
uponmq,�, Nc, and �, as plotted in Fig. 1. Expanding (14)

at small and large z leads to the desired asymptotic forms

vðz ! 0ÞL ¼ Azþ BCz3 þOðz5Þ; (15)

vðz ! 1ÞL ¼ ðAþ BÞz: (16)

When A ¼ 0, corresponding to a zero quark mass, the
coefficients of the cubic term in (15) and of the linear
term in (16) are nonzero, implying a nonzero chiral con-
densate and non restoration of chiral symmetry.

Alternatively, when B ¼ 0 (or C ¼ 0), corresponding to
a zero chiral condensate, the coefficients of the linear terms
in (15) and (16) are both nonzero, implying a nonzero
quark mass and non restoration of chiral symmetry. Thus,
the parametrized form in (14) allows the sources of sponta-
neous and explicit chiral-symmetry breaking to remain
independent.
Substituting (14) into (13) leads to the following asymp-

totic behavior:

�ðz ! 0Þ ¼ �

4
A2z2 þOðz6Þ; (17)

�ðz ! 1Þ ¼ �

4
ðAþ BÞ2z2; (18)

where we have chosen the integration constant arising from
(13) to be zero in order for the background to be confor-
mally invariant at z ¼ 0. To reproduce the limits (15) and
(16) the dilaton profile at small z (17) must differ from that
at large z (18). Importantly, this does not sacrifice the linear
trajectories, which (as will be shown) depend on the dilaton
having the asymptotic form (2). Note that the quartic term
with strength � is necessary to obtain the required behav-
ior. Therefore, modifying the dilaton and introducing
quartic interaction terms in the Lagrangian is necessary
to improve the soft-wall version of the AdS/QCD model.
The normalization � is not a free parameter but is

determined by QCD as shown in [15], namely, � ¼ffiffiffiffiffiffi
Nc

p
=ð2�Þ ¼ ffiffiffi

3
p

=g5. Then the parameters �, A, B, and C
can be expressed in terms of the input parametersmq,�, �,

�,

� ¼
ffiffiffiffiffiffi
4�

�

s
; (19)

A ¼
ffiffiffi
3

p
mq

g5
; (20)

B ¼ �� A; (21)

C ¼ g5�ffiffiffi
3

p
B
: (22)

The input parameters are determined as follows. The pa-
rameter � is determined by the average slope of the radial
trajectories of the scalar, vector, and axial-vector mesons
for radial quantum numbers n � 3. Its value was deter-
mined to be � ¼ 0:1831 GeV2, as explained in the next
section. The quark mass, quark condensate, pion decay
constant, and pion mass are all related by the Gell-Mann-
Oakes-Renner relation f2�m

2
� ¼ 2mq�. This relation holds

in this model as a natural consequence of chiral symmetry
[5]; see also Sec. IV. We use the measured values of f� ¼
92:4 MeV and m� ¼ 139:6 MeV, and adjust the quark
mass to reproduce the input value of f� from a solution

FIG. 1. A plot of vðzÞ=z for various parameterizations fitted to
the mass spectra. The best fit to the mass spectra is obtained with
the tanh form (14).
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to the axial-vector field equation in Sec. IV for a given
value of �. The parameter � essentially controls the mass
splitting between the vector and axial-vector mesons. It is
determined to be � ¼ 15 by a best fit to the radial spectra
of the axial-vector mesons, also shown in the next section.
This results in mq ¼ 9:75 MeV and therefore � ¼
ð204:5 MeVÞ3. The inferred value of the quark mass is
consistent with an average of the up and down quark
masses as summarized in the Review of Particle Physics
(RPP) [21] as appropriate at the hadronic energy scale.

Note that other parameterizations of the VEV vðzÞ,
which lead to qualitatively similar behavior as that required
in (11) and (12), can also be used. In particular, other forms
for vðzÞ=z include ða1 þ a2z

2Þ=ð1þ a3z
2Þ [Pade], b1 þ

b2 arctanðb3z2Þ, c1 � c2 expð�c3z
2Þ [Gaussian],

d1 tanhððz2 þ d23Þ=d22Þ, and e1 þ e2tanh
2ðe3zÞ. These forms

were all studied but the best results were found to be
obtained using the form (14). The tanh parameterization
(14), as well as the Pade and Gaussian forms, are shown in
Fig. 1 using the above parameters. The resulting plots of
d�=dz, which enters the differential equations that deter-
mine the mass spectra, and the dilaton profile �ðzÞ, are
shown in Figs. 2 and 3. It becomes quite evident from the
figures that a small change in vðzÞ parametrization leads to
drastic change in the behavior of the dilaton �ðzÞ.

III. MESON MASS SPECTRA

The soft-wall model can be used to fit the meson mass
spectra, and it is interesting to see how well this simple 5D
model matches real data. The scalar, vector and axial-
vector resonances used in our fits are given in Tables I,
II, and III. All but one of the included states are listed in the
RPP [21]. A notable absence is the ð1570Þ, which may be
an Okubo, Zweig, Iizuka violating decay of the ð1700Þ.
The review by Bugg [22] lists the state f0ð2020� 38Þ,
which we interpret to be the same state listed in the RPP
as f0ð1992� 16Þ. The RPP lists the f0ð2103� 8Þ, follow-
ing Bugg’s f0ð2102� 13Þ, which nicely fits the n ¼ 7
radial excitation. The RPP also lists the f0ð2314� 25Þ
based on Bugg’s f0ð2337� 14Þ, which would be n ¼ 8.
The most uncertainty lies with the scalar mesons since
mixing is expected among light quark mesons, four quark
states, s�s mesons, and glueballs. This could shift the
masses of the ‘‘pure’’ radial excitations of the lightest
scalar meson by Oð100 MeVÞ. As pointed out in [22], it
has long been known that the ð1465Þ is too massive to be
the first radial excitation of the ð775Þ. Reference [23]
studied the reaction pþ �p ! 2�þ þ 2��. They infer
the n ¼ 2 radial excitation of the  to be 1282� 37, which
is the value used in our fits.

FIG. 3. The dilaton profile �ðzÞ resulting from the various
parameterizations of vðzÞ. The best fit to the meson spectra
occurs with the tanh parameterization (14). For z & 1 the be-
havior deviates from the quadratic asymptotic form (2).

FIG. 2. A plot of �0ðzÞ=z derived from the various parameter-
izations of vðzÞ. The best fit to the mass spectra is obtained with
the tanh form (14).

TABLE I. The experimental and predicted values of the scalar
meson masses.

n f0 experimental (MeV) f0 model (MeV)

1 550þ250
�150 799

2 980� 10 1184

3 1350� 150 1466

4 1505� 6 1699

5 1724� 7 1903

6 1992� 16 2087

7 2103� 8 2257

8 2314� 25 2414
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A straightline is fitted to them2 versus n plot with n � 3
for all three mesons, assuming the same slope 4� but
different intercepts, namely m2

n ¼ 4�nþm2
0. The results

are � ¼ 0:1831� 0:0059 GeV2, m2
V;0 ¼ 0:0806�

0:0104 GeV2, m2
A;0 ¼ 1:5023� 0:0366 GeV2, and m2

S;0 ¼
�0:6634� 0:0038 GeV2. See Fig. 4. We use this value of
� in our model calculations.

A. Scalar sector

Introducing a quartic term in the Lagrangian causes the
scalar excitations to couple with their own VEV, giving a
modified equation of motion unlike those in [6,16].

Assuming Xðx; zÞ � ðvðzÞ=2þ Sðx; zÞÞe2i�ðx;zÞ, with
�ðx; zÞ the pion field and Sðx; zÞ ¼ SnðxÞSnðzÞ, we obtain

@zða3e��@zSnðzÞÞ � a5e��

�
m2

X � 3

2
�v2ðzÞ

�
SnðzÞ

¼ �a3e��m2
Sn
SnðzÞ; (23)

where SnðzÞ are the Kaluza-Klein modes, and only linear
terms in Sn have been kept in (23). Note that by ignoring
the nonlinear terms in (23) we are assuming infinitesimally
small amplitudes Sn. Because of the z-dependent mass
term, (23) is difficult to solve analytically for the parame-
trized solution of vðzÞ; however, we implement a shooting
method in which (23) is solved for various values of mSn .

The eigenvalues are then those mass values that produce a
solution for SnðzÞ that is bounded as z ! 1.

The scalar equation of motion (23) can be brought into a
Schrödinger-like form by using the substitution

SnðzÞ ¼ e!s=2snðzÞ; (24)

where !s ¼ �ðzÞ þ 3 logz and leads to

�@2zsnðzÞ þ
�
1

4
!02

s � 1

2
!00

s � 3

2

L2

z2
�v2ðzÞ � 3

z2

�
snðzÞ

¼ m2
Sn
snðzÞ: (25)

Applying the shooting method to (25) with the boundary
conditions limz0!0snðz0Þ ¼ 0, @zsnðz ! 1Þ ¼ 0 produces

the scalar mass spectra listed in Table I, and displayed in
Fig. 5. The reproduction of the experimentally measured
masses is reasonable, apart from an overall normalization.
This could well be a failure of this specific model.
However, considering that these light quark/antiquark ra-

TABLE II. The experimental and predicted values of the vec-
tor meson masses.

n  experimental (MeV)  model (MeV)

1 775:5� 1 475

2 1282� 37 1129

3 1465� 25 1429

4 1720� 20 1674

5 1909� 30 1884

6 2149� 17 2072

7 2265� 40 2243

FIG. 4. A straightline fit to the measured scalar, vector and
axial-vector mass spectra for n � 3 used to determine the dilaton
mass parameter �.

FIG. 5. Comparison of the predicted scalar mass eigenvalues
using the tanh form (14) of vðzÞ [solid] with the QCD f0 scalar
mass spectrum [21].

TABLE III. The experimental and predicted values of the
axial-vector meson masses.

n a1 experimental (MeV) a1 model (MeV)

1 1230� 40 1185

2 1647� 22 1591

3 1930þ30
�70 1900

4 2096� 122 2101

5 2270þ55
�40 2279
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dial excitations mix with scalar s�s excitations, scalar glue-
balls, and possible four quark states, it may be that either
the lowest or first radially excited state has been misiden-
tified. Removing either the f0ð550Þ or the f0ð980Þ would
shift all the higher masses to the left by one unit of n,
resulting in a much better fit to the model. An obvious
extension of this work would be to include strange quarks
and glueballs and to determine the mixing among the
resulting scalar states.

B. Vector sector

The soft-wall model with the dilaton �ðzÞ ¼ �z2 de-
scribes the meson spectrum surprisingly well [7]. In fact,
since the scalar field VEV does not couple to the vector
sector, any dilaton with the behavior (2) causes the vector
mass spectrum to exhibit linear trajectories for the higher
resonances. Examining the QCD experimental data, one
sees that the  mass spectrum exhibits linear behavior
around ð1465Þ or ð1720Þ; therefore, one expects the
appropriately modified dilaton as z ! 0 will only affect
lower lying resonances as higher eigenfunctions localize
toward the IR and are less dependent on small z behavior.

From the action (3) the equation of motion of the vector
field Vn

�ðx; zÞ ¼ V n
�ðxÞVnðzÞ using the axial gauge V5 ¼ 0

is given by

� @2zVn þ!0@zVn ¼ m2
Vn
Vn; (26)

where ! ¼ �ðzÞ þ logz. With the substitution Vn
� ¼

e!=2vn, (26) can be written in the Schrödinger form

� @2zvn þ
�
1

4
!02 � 1

2
!00

�
vn ¼ m2

Vn
vn: (27)

Using the dilaton form � ¼ �z2, the eigenvalues of (27) at
large n can be solved analytically with the boundary con-
ditions limz0!0vnðz0Þ ¼ 0, @zvnðz ! 1Þ ¼ 0 and agree

with those found in [7], namely,

m2
Vn

	 ð4nþ 4Þ�; n ¼ 0; 1; 2; . . . ; (28)

where � sets the scale for the vector meson Kaluza-Klein
tower. However, since the dilaton specified in (13) is
modified for z & 1 there is a change in the slope of the
mass spectrum around n ¼ 2, which matches the behavior
of the experimental data. The numerical vector mass spec-
trum is compared to the experimental data in Fig. 6 and
displayed in Table II. While the prediction for the ð775Þ
mass is low, the rest of the vector meson masses are in
reasonable agreement with experiment. Most likely the
agreement with the ð775Þ could be improved upon by
using a parameterization of vðzÞ, which rises more rapidly
to its asymptotic value at large z. Nevertheless, the purpose
of this paper is to incorporate QCD-like chiral-symmetry
breaking in soft-wall AdS/QCD models, not just to fit data.

C. Axial-vector sector

Unlike the vector field, the axial-vector couples to the
scalar field VEV, producing a z-dependent mass term in its
equation of motion. Similarly to the vector field case, the
equation of motion assuming A�ðx; zÞ ¼ An

�ðxÞAnðzÞ us-
ing the axial gauge A5 ¼ 0 is given by

� @2zAn þ!0@zAn þ g25
L2

z2
v2ðzÞAn ¼ m2

An
An: (29)

Using the same transformation as for the vector field, An ¼
e!=2an, one can express (29) as

� @2zan þ
�
1

4
!02 � 1

2
!00 þ g25

L2

z2
v2ðzÞ

�
an ¼ m2

An
an:

(30)

The expression (30) for the axial-vector field matches that
of the vector field except for the additional term
g25v

2ðzÞL2=z2. Because of this z-dependent mass term,

Eq. (30) is difficult to solve analytically and again requires
a numerical solution using the shooting method. Using the
boundary conditions limz0!0anðz0Þ ¼ 0, @zanðz ! 1Þ ¼
0, the axial-vector meson spectrum is obtained for the fixed
values of �, mq, �, and �, and match the a1 experimental

data [21].
The limiting behavior of vðzÞ as z ! 1 leads to a

constant shift between the vector and axial-vector spectra
at high mass values. Comparing the equations of motion
(27) and (30) for these fields one finds the asymptotic
behavior

FIG. 6. Comparison of the predicted vector mass eigenvalues
using the tanh form (14) of vðzÞ [solid] with the QCD  mass
spectrum [21].
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�m2 � ðm2
An

�m2
Vn
Þn!1 ¼ g25

L2

z2
v2ðz ! 1Þ ¼ 4g25�

�
:

(31)

Together with the slope �, this determines the numerical
value to be �� 30, although the best visual global fit to all
the data suggests � ¼ 15, which is the value used here.
This is probably due to the small number of radial excita-
tions to which we are fitting. The results of our analysis are
plotted in Fig. 7 and displayed in Table III. The a1ð1260Þ
resonance is predicted to within 5%, and there is good
agreement with the higher resonances of a1.

Note that from (31), �m2 > 0 implies that � > 0, which
means that the potential in (3) is unbounded from below. To
address the stability of the gravity-dilaton background
requires a complete fluctuation analysis generalizing the
work in [24]. Even though this is beyond the scope of the
present work it does suggest that higher-order terms will be
needed for stability.

IV. PION COUPLING

To confirm that our model is in fact consistent with AdS/
QCD model predictions, we calculate the pion decay con-
stant using the formula [5]

f2� ¼ � 1

g25
lim
�!0

@zA0ð0; zÞ
z

��������z¼�
; (32)

where with our setup we calculate f� ¼ 92:4 MeV. Here
A0ðq; zÞ is the axial-vector bulk-to-boundary propagator
with boundary conditions A0ð0; �Þ ¼ 1 and @zA0ð0; z !
1Þ ¼ 0, and �q2 replaces m2

An
. Using the Gell-Mann-

Oakes-Renner relation and the measured values of the
pion decay constant and pion mass, the above formula

returns the measured value of the pion decay constant if
mq ¼ 9:75 MeV, � ¼ 15, and � ¼ 0:1831 GeV2.

Although we do not solve for the mass spectra of the
pseudoscalar mesons in this paper, because it involves
solving a fourth order differential equation, we have calcu-
lated the ground-state pion mass and can determine its
vector coupling g��. The V�� coupling is given in [14]

as

gn�� ¼ 1

f2�

Z
dzVnðzÞe��ðzÞ

�
1

g5z
ð@z’ðzÞÞ2 þ g5L

2v2ðzÞ
z3

� ð�ðzÞ � ’ðzÞÞ2
�
; (33)

where Vn are the rho-meson Kaluza-Klein wave functions.
They are normalized as follows:

Z
dz

e��ðzÞ

z
VnðzÞVmðzÞ ¼ �mn: (34)

The functions �ðzÞ and ’ðzÞ must be determined from the
system of equations for the axial-vector and pion as given
in [14]�

e�@z

�
e��

z
@zA�

�
� q2

z
A� � g25L

2v2ðzÞ
z3

A�

�
?
¼ 0;

(35)

e�@z

�
e��

z
@z’

�
þ g25L

2v2ðzÞ
z3

ð�� ’Þ ¼ 0; (36)

q2@z’þ g25L
2v2ðzÞ
z2

@z� ¼ 0; (37)

where A� ¼ A�? þ @�’. The pion is then the solution to

Eqs. (36) and (37). Following exactly the same steps as [5]
one may derive the Gell-Mann-Oakes-Renner relation
from this set of equations.
The expression for gn�� can be approximated by set-

ting ’ðzÞ ¼ A0ð0; zÞ � 1 and �ðzÞ ¼ �1. Previous soft-
wall models [14] have obtained values smaller than the
experimental result of g�� 	 6. Similarly, our calcula-

tions also give a low value g�� ¼ 2:89. Once we calculate

the gn��, the spacelike pion form factor can easily be

determined from a sum over vector meson poles,

F�ðq2Þ ¼
X1
n¼1

fngn��

q2 þm2
Vn

; (38)

where fn are the decay constants of the vector modes.
However (38) converges slowly1 and numerically it is
much better to use the expression in terms of the vector
and axial-vector bulk-to-boundary propagators as in [14]

FIG. 7. Comparison of the numerical results for the axial-
vector mass eigenvalues using the tanh form (14) of vðzÞ [solid
line] with the QCD a1 mass spectrum [21].

1T.M.K. thanks H. Kwee for correspondence on this issue.
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F�ðq2Þ ¼
Z

dze��ðzÞ V0ðq; zÞ
f2�

�
1

g25z
ð@z’ðzÞÞ2

þ v2ðzÞ
z3

ð�ðzÞ � ’ðzÞÞ2
�
; (39)

where V0ðq; zÞ is the vector bulk-to-boundary propagator.
The results of our F�ðq2Þ calculation are plotted in Fig. 8,
and show a slight improvement in matching the experi-
mental values compared to that obtained in Ref. [14]. It is
apparent that the QCD pion behavior is mimicked reason-
ably well, beyond that expected from the simple soft-wall
AdS/QCD model.

V. CONCLUSION

We have shown how to incorporate chiral-symmetry
breaking into a soft-wall version of the AdS/QCD model
with independent sources for spontaneous and explicit
breaking. This is achieved by introducing a quartic term

in the potential for the bulk scalar field dual to the quark
bilinear operator �qq. This changes the dilaton profile for
small z, while simultaneously maintaining the large z
quadratic behavior and therefore linear trajectories for
the radially excited states. In addition, our model is built
from the assumption of preserving chiral symmetry for
highly excited states, which is supported by the experi-
mental values of the QCD mass spectrum. This enables us
to obtain reasonable agreement within 10% of the QCD
meson mass spectra for scalar, vector, and axial-vector
fields, although the lowest lying  and f0 predictions are
not as good.
Even though our modification of the soft-wall version of

the AdS/QCD model is simple and predictive, any further
progress must recognize the limitations of this type of
phenomenological model. Genuine stringy behavior is
most likely required to fully describe the characteristics
of QCD. Nevertheless some features such as masses and
couplings seem to agree better than expected, and it would
be worth using the modified dilaton profile to study further
details of the meson spectrum. On the theoretical side it
would be interesting to further understand the soft-wall
model from the top down including finding a dynamical
solution of the features exhibited in our model along the
lines considered in Ref. [17]. In addition, the stability of
the scalar potential will most likely require higher-order
terms that can only be studied from the top down. It is
interesting that the simple 5D model contains QCD-like
features and suggests that a further understanding of QCD
can be obtained from the gauge/gravity correspondence.
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