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Supersymmetric models with broken R parity provide mechanisms that allow to generate Majorana

neutrino masses and magnetic moments through virtual particle-sparticle loops. This constitutes an

attractive alternative to the seesaw mechanism. In this paper, we present a detailed calculation of the

transition magnetic moments of a Majorana neutrino in gauge-mediated supersymmetry breaking minimal

supersymmetric standard model (MSSM) without R parity. We base our analysis on the renormalization

group evolution of the MSSM parameters, which are unified at the grand unified theory scale.
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I. INTRODUCTION

After establishing the fact that neutrinos do oscillate [1],
the window to physics beyond the standard model (SM)
has been opened. It is difficult to guess to what extend the
already known theory of elementary particles and interac-
tions needs altering. It is customary to believe, however,
that the SM should be treated as a low-energy approxima-
tion of a more general theory, which will not only work for
high energies, thus describing the creation of the Universe,
but should also use a unified description of all the inter-
actions, presumably including gravity. A good candidate
seems to be somehow connected with the string theory,
which in turn requires supersymmetry (as well as addi-
tional spatial dimensions) for consistency.

A close cooperation between the development of theory
and experiments is essential. Despite the fact that direct
testing of these models in the ultra-high energy regime is
by now impossible, different models may foresee certain
features of some elementary particles, branching ratios and
others. These subtle clues, when found in future generation
experiments, may lead to favoring some and ruling out the
other models, providing an important insight into high-
energy exotic physics. One cannot therefore underestimate
the importance of the study of different theories beyond the
SM and their implications.

One of the most promising concepts that extends beyond
the SM is supersymmetry (SUSY). It is strongly connected
with the string theory, which in order to be able to describe
not only interactions (bosonic strings) but also matter
(fermionic strings) requires the introduction of SUSY.
SUSY provides an elegant way of describing fermionic
and bosonic fields grouped in a single supermultiplet, and
it is a basic exercise to show that each supermultiplet must
consist of an equal number of degrees of freedom of both
kinds. Therefore, introduction of SUSY unifies in some
sense the description of matter and interactions. What is
more, the minimal supersymmetric standard model

(MSSM; see [2,3] and references therein for a review)
possesses the attractive feature that the gauge couplings
unify at the energy mGUT � 1016 GeV, which is not true in
the ordinary SM. It is remarkable that in order to go beyond
the SM in a consistent way one is forced to accept a whole
bunch of new ideas like supersymmetry, extra dimensions,
grand unification (GUT), and others. The problem, how-
ever, is that nobody can really state the actual details of
these models. For example, supposing that supersymmetry
exists, it needs to be broken, as it is not observed in our
energy regime. Of course the details of the mechanism of
this breaking are not known. The difficulty with extra
dimensions is that one needs to justify why they cannot
be seen, why do they not open, what is the mechanism of
compactification and stabilization. The pattern and mecha-
nism of unification of matter and interactions at mGUT or
mPlanck can also be only a guess.
As mentioned at the very beginning, the only link we

directly investigate, leading beyond the SM, are neutrinos.
In spite of the fact that it is a neutral particle, in certain
exotic models it may possess nonzero transition magnetic
moments (in the case of Majorana neutrinos this is the only
possible type of magnetic moment; the Dirac neutrinos
may possess the transition as well as the diagonal magnetic
moments). This happens in all supersymmetric models in
which the so-called R parity is not conserved [4–8]. In
principle this feature should leave a clear signature, but the
present sensitivities of the experiments are at best 5 orders
of magnitude too weak. The observation of an electromag-
netic interaction of the neutrino would be a breakthrough
and may give us important information about details of the
exotic models.
The problem of generating Majorana neutrino mass and

transition magnetic moments in R parity violating MSSM
has been widely discussed in the literature [9–15]. Many
older approaches used certain simplifying assumptions
about the low-energy mass spectrum of the MSSM model.
This has been corrected by the use of GUT conditions and
renormalization group equations (RGE) [13–15], which
made the whole discussion dependent on a few unification
parameters only. Up to our best knowledge, all calculations
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made so far used the supergravity mechanism of super-
symmetry breaking.

In this paper, we present detailed calculations performed
assuming the gauge-mediated supersymmetry breaking
mechanism, for the whole allowed parameter space. The
paper is organized as follows. In the next section we define
the model, which is the minimal supersymmetric standard
model with gauge-mediated supersymmetry breaking and
not conserved R parity. In Sec. III, we describe our proce-
dure of obtaining the low-energy spectrum of the model,
together with different constraints we impose on the re-
sults. Next, we discuss the Majorana neutrino transition
magnetic moments and present numerical results. A short
conclusion follows at the end.

II. RPV MSSM WITH GAUGE-MEDIATED
SUPERSYMMETRY BREAKING

The minimal supersymmetric standard model [2,3] is a
minimal extension of the usual SM which incorporates
supersymmetry. It implies that each particle gains a super-
partner with spin different by a 1=2 unit. There is also an
additional Higgs doublet introduced, in order to assign
masses to the up- and down-type particles. As a result,
the number of particles in MSSM roughly doubles that of
the SM.

In basic formulation of the MSSM, one assumes ad hoc
the conservation of the lepton and baryon numbers. This is
achieved by the introduction of an artificial symmetry
called the R parity. It is defined as R ¼ ð�1Þ3BþLþ2S,
where B is the baryon number, L the lepton number, and
S the spin of the particle. The definition implies that all
ordinary SM particles have R ¼ þ1 and all their super-
partners have R ¼ �1. In theories preserving R parity the
product of R of all the interacting particles in a vertex of a
Feynman diagram must be equal to 1. It follows that a
SUSY particle must decay into another SUSY particle,
thus the lightest SUSY particle must remain stable and is
considered a good candidate for the cold dark matter. In
many models this particle is the lightest neutralino, but
sometimes the gluino takes its place. In the case of gauge-
mediated supersymmetry breaking, the lightest stable
SUSY particle is the gravitino.

The main motivation for the introduction of R parity is
the conservation of L and B numbers. However, we already
know that at least the flavor lepton numbers Le, L�, and L�

are not conserved, as has been seen in the neutrino oscil-
lation experiments. There is also a strong suspicion that at
higher energies the full L symmetry may not be exact.
From a formal theoretical point of view, nothing motivates
the rejection of interaction terms that do violate the R
parity. This leads us to R-parity violating (RpV) models,
which exhibit richer and more interesting phenomenology.

The full RpV MSSM model is described by the super-
potential, which includes the Lagrangian as its F term. It
consists of two parts: W ¼ WMSSM þWRpV. The R-parity

conserving part of the superpotential of MSSM is usually
written as

WMSSM ¼ �ab½ðYEÞijLa
i H
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while its RpV part reads
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TheY’s are 3� 3Yukawa matrices. L andQ are the SUð2Þ
left-handed doublets while �E, �U, and �D denote the right-
handed lepton, up-quark and down-quark SUð2Þ singlets,
respectively. Hd and Hu mean two Higgs doublets. We
have introduced color indices x, y, z ¼ 1, 2, 3, generation
indices i; j; k ¼ 1; 2; 3 ¼ e;�; � and the SUð2Þ spinor in-
dices a, b ¼ 1, 2.
The mass terms (self-interaction terms) for the Higgs

bosons, sfermions, and gauginos take the standard form:
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(3)

where the second part represents bino, wino, and gluinos
(� ¼ 1; . . . ; 8), and lower case letters denote the scalar part
of the respective superfield.
There are a few schemes of supersymmetry breaking

among which the two most popular are the supergravity
(SUGRA) and the gauge-mediated (GMSB) mechanisms.
In SUGRA [3,16] the SUSY breaking occurs at the Planck
scale, so that no supersymmetry is observed in the whole
energy regime except the mPlanck, where gravity enters the
game.
In the GMSB mechanism [3,17], the scale of SUSY

breaking is much lower, and is defined by the characteristic
scale of an intermediate messenger sector. The assumption
is, that SUSY is broken in a hidden (secluded) sector,
whose detailed structure does not change the phenomenol-
ogy of the low-energy world. In our approach, we assumed
that the secluded sector consists of a gauge singlet super-

field Ŝ, whose lowest S and F components acquire vacuum
expectation values (VEV).
Supersymmetry breaking is communicated to the visible

world via the messenger sector (see Fig. 1). The interaction
among superfields of the secluded and messenger sectors is
described by the superpotential

W ¼ �iŜ�i
��i; (4)

where �i and ��i denote appropriate messenger super-
fields. Because of nonzero VEV of the lowest S and F

components of the superfield Ŝ, fermionic components of
the messenger superfields gain Dirac massesMi ¼ �iS and
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determine in this way the messenger scale M.
Simultaneously mass matrices of their scalar superpartners

j�iSj2 �iF
��
i F

� j�iSj2
� �

(5)

have eigenvalues j�iSj2 � j�iFj.
It is easy to see that vevVEV of S generates masses for

fermionic and bosonic components of messenger super-
fields, while VEV of F destroys degeneration of these
masses, which results in supersymmetry breaking.
Defining Fi � �iF one can introduce a new parameter
�i � Fi=S measuring the fermion-boson mass splitting,

mf ¼ Mi; mb ¼ Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �i

Mi

s
: (6)

Parameter � and the messenger scale M are in the follow-
ing treated as free parameters of the model.

Messenger superfields transmit SUSY breaking to the
visible sector. It is realized through loops containing in-
sertions of S and results in gaugino and scalar masses at the
M scale:

M~�i
ðMÞ ¼ ki
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4�

�G; (7)
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where i ¼ 1, 2, 3 is the gauge group index, and

�G ¼ XNg
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�
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�
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with k being the flavor index. In Eqs. (9) and (10), nk is the
doubled Dynkin index of the messenger superfield repre-

sentation with flavor k. Coefficients C
~f
i are the quadratic

Casimir operators of sfermions. For the d-dimensional
representation of SUðdÞ their eigenvalues are C ¼ ðd2 �

1Þ=2d. In the case of theUð1Þ group,C ¼ Y2 ¼ ðQ� T3Þ2.
It follows that coefficients ki are equal to 5=3, 1, and 1, for
SUð3Þ, SUð2Þ, and Uð1Þ, respectively. The normalization
here is conventional and assures that all ki�i meet at the
GUT scale. Finally, the functions f and g have the follow-
ing forms:

gðxÞ ¼ 1

x2
½ð1þ xÞ logð1þ xÞ� þ ðx ! �xÞ; (11)

fðxÞ ¼ 1þ x

x2

�
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�
x

1þ x

�
þ 1

2
Li2

�
2x

1þ x

��

þðx!�xÞ: (12)

In the minimal model of GMSB there is only one
messenger field flavor. Thus, dropping flavor indices, one
can write Eqs. (7) and (8), using the explicit forms Eqs. (9)
and (10), as

M~�i
ðMÞ ¼ Nki

�iðMÞ
4�

�g

�
�

M

�
; (13)

m2
~f
ðMÞ ¼ 2N

X3
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4�

�
2
�2f

�
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�
1; (14)

where C
~f
1 ¼ Y2, C

~f
2 ¼ 3=4 for SUð2ÞL doublets and 0 for

singlets, C
~f
3 is equal to 4=3 for SUð3ÞC triplets and 0 for

singlets. In Eq. (14), 1 denotes the unit matrix in generation
space and guarantees the lack of flavor mixing in soft
breaking mass matrices at the messenger scale. N, the so-

called generation index, is given by N ¼ PNg

i¼1 ni, where
Ng means the total number of generations. In this paper we

study the following two cases: (1) a single flavor of 5þ �5

representation of SUð5Þ, with SUð2ÞL doublets (l and ~l) and
SUð3Þ triplets (q and ~q), and (2) a single flavor of both

representations 5þ �5 and 10þ 10 of the SUð5Þ group. In
case (1) N is equal to 1, while in case (2) N ¼ 1þ 3 ¼ 4,

because for 10þ 10 representation of SUð5Þ the doubled
Dynkin index is equal to 3.

III. OBTAINING AND CONSTRAINING THE LOW-
ENERGY SPECTRUM OF THE MODEL

The MSSM model has more than 100 free parameters,
which drastically decreases its predictive power. The pos-
sible way out is to use certain unification conditions at
high-energy scale mGUT � 1016 GeV and derive the low-
energy values of all parameters by means of the renormal-
ization group equations. The set of free parameters can in
this way be reduced to few. This widely accepted approach
connects supersymmetry and grand unified theories, and is
appropriate in the SUGRA case. The main difference
between SUGRA and GMSB is that in the latter all the
parameters are evolved between the weak scale mZ and the
messenger scale M � mGUT. Besides, due to new interac-

FIG. 1. The gauge-mediated scheme of supersymmetry break-
ing (GMSB).
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tions with the messenger sector, the mass matrices are
constructed in a different way, which gives gravitino as
the lightest SUSY particle, and results in further
corrections.

In our case the free parameters of the model are: �, the
splitting between fermion and boson masses, M, the char-
acteristic energy scale of the messenger sector, tan� �
vu=vd, where vu and vd are VEVs of the Hu and Hd

superfields, and sgnð�Þ.
The whole procedure of obtaining the low-energy spec-

trum is explained in great detail in Ref. [18] and here we
will recall the basic steps only. Everything starts with
evolving all gauge and Yukawa couplings up to the mes-
senger scale M. Despite the fact that the heaviest third
generation dominates, and it is customary to drop the
dependence on the remaining generations, we use all three
of them in our equations. For the RGE evolution the one-
loop standard model equations [19] are used below the
mass threshold MSUSY, where SUSY particles start to
contribute, and the MSSM RGE [20] above that scale. In
our case the two-loop corrections, as well as corrections
coming from the RpV parts, can be safely neglected (for a
discussion of this problem, see Ref. [21]). Initially, scale
MSUSY is taken to be equal to 1 TeV, but this value is
modified during the running of the relevant masses. In
the next step the gaugino and sfermion soft mass matrices
are constructed using Eqs. (13) and (14), and the RGE
evolution of all the quantities is performed back to the mZ

scale. Meanwhile the electroweak symmetry breaking
(Higgs sector) is handled, which allows to obtain the
low-energy mass spectrum of the model.

Of course not all combinations of the values of the initial
parameters lead to a physically acceptable mass spectrum.
We test the obtained results against four additional con-
straints, i.e.: (1) finite values of Yukawa couplings at the
GUT scale; (2) proper treatment of the electroweak sym-
metry breaking; (3) requirement of physically acceptable
mass eigenvalues at low energies; (4) flavor-changing
neutral-current phenomenology. The full discussion of
the allowed parameter range for our model, coming from
these constraints, is discussed in Ref. [18].

IV. MAJORANA NEUTRINO TRANSITION
MAGNETIC MOMENTS IN GMSB MSSM

The introduction of supersymmetry means doubling the
number of particles and introducing a lot of new possible
interactions among them. SUSY with broken R parity
extends the possibility of exotic processes to occur. It is
well known, for example, that Majorana neutrinos may
acquire masses without the seesaw mechanism, due to
one-loop processes in which a neutrino decays into a
particle-sparticle pair, which combines into another neu-
trino of different flavor. The leading contributions to such a
process are schematically depicted on Fig. 2. In this paper
we consider two possibilities, with a quark and a squark,

and with a charged lepton and a slepton inside the loop.
Other contributions, like the mixing of neutrinos with
neutralinos, are much weaker [15] and are dropped here.
These processes effectively expand the neutrino-

neutrino interaction vertex into a loop of virtual charged
particles. This means that one may attach an external
photon to the loop; the amplitude of such interaction would
be proportional to the neutrino magnetic moment. The
observation of the electromagnetic interaction of a neutrino
will be a strong suggestion in favor of the RpV physics.
The problem of generating the neutrino mass matrix

from the RpV loops has been extensively discussed in the
literature [9–12], and various approaches and approxima-
tions have been used by different authors. Our method [13–
15], which involves the careful generation of the low-
energy spectrum of the model seems to be the most com-
plete by now. The calculation of the magnetic moments
bases on the knowledge of the neutrino mass matrix, and
the latter may be obtained from the experimental values of
the mixing angles, under the assumption of certain (normal
or inverted) hierarchy of the neutrino masses.
The contribution to the magnetic moments coming from

the squark-quark loop reads [14]:

�q
	ii0 ¼ ð1� 
ii0 Þ 12Qdme

16�2

X
jkl

�
�0
ijk�

0
i0kl

X
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VjaVla

wq
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� �0
ijk�

0
i0lj

X
a

VkaVla

wq
aj

mda

�
�B; (15)

where the loop integral w takes the form

wq
jk ¼

sin2�k

2

�
xjk2 lnxjk2 � xjk2 þ 1

ð1� xjk2 Þ2
� ðx2 ! x1Þ

�
: (16)

Here Qd ¼ 1=3 is the d-quark charge in units of e, and me

denotes the electron mass. V ¼ VCKM is the Cabibbo-
Kobayashi-Maskawa quark mixing matrix, as we take
into account the fact that quarks may mix inside the loops.
�B denotes the Bohr magneton. We have defined dimen-

sionless quantities xjk1 � m2
dj
=m2

~dk1
and xjk2 � m2

dj
=m2

~dk2
rep-

resenting particle to sparticle mass ratios squared.
In the case of the slepton-lepton loop two modifications

are in order. First, the mixing of leptons is negligible.
Second, leptons are colorless, so a factor of 3 drops out
from the formula. We end up with

�‘
	ii0 ¼ ð1� 
ii0 Þ 4Qeme

16�2

X
jk

�ijk�i0kj

�w‘
jk

mej
� w‘

kj

mek

�
�B;

(17)

where the loop integral is equal to

w‘
jk ¼

sin2�k

2

�
yjk2 lnyjk2 � yjk2 þ 1

ð1� yjk2 Þ2
� ðy2 ! y1Þ

�
: (18)
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Again, we have defined dimensionless quantities yjk1 �
m2

ej
=m2

~ek
1

and yjk2 � m2
ej
=m2

~ek
2

.

As one can see, in order to calculate �	 one needs to
know the RpV couplings � and �0. These are in principle
unknown free parameters of the model but fortunately it is
possible to get rid of this obstacle by the use of the mass
matrices. The latter may be expressed as

M q
ii0 ¼

3

16�2

X
jkl

��
�0
ijk�

0
i0kl

X
a

VjaVlav
q
akmda

�

þ
�
�0
ijk�

0
i0lj

X
a

VkaVlav
q
ajmda

��
; (19)

M ‘
ii0 ¼

1

16�2

X
jk

�ijk�i0kjðv‘
jkmej þ v‘

kjmekÞ; (20)

with v‘;q being another loop integral [14]. Now, we assume
that each mechanism (i.e., each combination of indices
labeling � and �0) may be analyzed separately. This is an
usual approach, which is justified by the assumption that
there is no fine-tuning between different processes that
contribute to M. In this convenient situation only one
element from the sums in M is present at a time, thus
reducing the expressions to a much simpler form. This
allows one to substitute the unknown products �� and
�0�0 in Eqs. (15) and (17) by the respective mass matrix
elements. The advantage of such an approach is obvious, as
one may construct M numerically using experimental
data.

Finally, one gets for the magnetic moments (for more
details see Ref. [14])

�q
	ii0 ’ ð1� 
ii0 ÞMq

ii0f
q
SUSY; (21)

�‘
	ii0 ’ ð1� 
ii0 ÞM‘

ii0f
‘
SUSY; (22)

where the functions fSUSY convert the neutrino masses into

magnetic moments and depend on the particle’s masses
and V matrix elements. Their explicit form and values for
different SUSY input parameters can be found in [14], but
overall these are numbers between roughly 0:5� 10�15

and 2:7� 10�18. The full transition magnetic moment
would consist of both contributions, i.e.,

�	ii0 ¼ �‘
	ii0 þ�q

	ii0 : (23)

We have calculated the transition magnetic moments
�	e�

, �	e�
, and �	��

using the following values of the

input parameters:

3 	 tan� 	 40; (24)

100 TeV 	 �<M; (25)

M ¼ 200; 500; 800; 1000 TeV; (26)

sgn ð�Þ ¼ �1; N ¼ 1; 4: (27)

The� parameter was incremented by 1 forM ¼ 200 TeV,
and by 10 for M ¼ 500, 800, 1000 TeV. tan� was incre-
mented by 1.
The construction of the neutrino mass matrix M is

straightforward. We use the standard trigonometric pa-
rametrization of M and the following values of the mass
and mixing parameters [1,22]: �m2

12 ¼ 7:1� 10�5 eV2,
�m2

23 ¼ 2:1� 10�3 eV2, sin2ð�12Þ ¼ 0:2857, sin2ð�23Þ ¼
0:5, sin2ð�13Þ ¼ 0. As will be seen later, the actual numbers
chosen here are not essential. As a matter of fact, one of the
most recent analysis suggests the best-fit value of the
sin2ð�13Þ parameter to be slightly above zero [23].
However, in our case this change plays no role, as the
dominant part, which determines the overall order of mag-
nitude of �	, is the fSUSY function. Additionally, we
assume that the lightest neutrino mass is zero, and that
the CP symmetry is conserved, which eliminates all the
phase dependencies. This results for the normal hierarchy

FIG. 2. The basic 1-loop diagrams giving rise to the Majorana neutrino mass in the R parity violating MSSM. The transition
magnetic moment is obtained by attaching an external photon to the loops.
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(NH) in

M NH ¼
2:41 2:69 2:69
2:69 25:53 19:51
2:69 19:51 25:53

0
@

1
A meV; (28)

and for the inverted hierarchy (IH) in

M IH ¼
45:27 0:25 0:25
0:25 22:80 22:80
0:25 22:80 22:80

0
@

1
A meV: (29)

Figure 3 presents values of the �	e�
transition magnetic

moment for sgnð�Þ ¼ þ1 and normal hierarchy of the
neutrino masses. The nonrectangular shapes come from
the constraints on the low-energy spectrum, and the higher
the value ofM is chosen, the more steep the results are. For
example, for M� 1000 TeV the difference between low-
est and highest values of�	 reaches 3 orders of magnitude,
while for small M� 200 TeV �	 is nearly constant. The
dependence on � is monotonic, but changes its character
for tan� equals roughly 25. For small tan� �	 is an
decreasing function of �, while for high tan� it becomes
an increasing function. The steepness of this function, as
was stated above, increases with M. The general behavior
is that for small� the dependence on tan� becomes strong,
while the values of�	e�

converge for higher� and become

nearly insensitive on tan�. The difference between N ¼ 1
and N ¼ 4 is that for higher N the overall order of magni-
tude is decreased by one. Also the resulting mass spectrum
is different, so that the shapes in Fig. 3 (lower row) are
more constrained, than those for N ¼ 1 (upper row).

A similar plot for sgnð�Þ ¼ �1 is presented on Fig. 4.
The change in the sign of the � parameter results in a

completely different behavior of the magnetic moments as
functions of the input parameters. For N ¼ 1 there are two
discontinued regions, which separate roughly at � 

200 TeV. The remark about monotonicity and its depen-
dence on tan�, which was visible in the previous case, is
valid also here, but to a much weaker extent, except the
narrow region � 
 200 TeV. Of course, for the case M ¼
200 TeV, for which �< 200 TeV (recall that always�<
M), this feature is not present. So for sgnð�Þ ¼ �1 and
N ¼ 1 the � parameter dominates the change in behavior
of the magnetic moments. When switching to N ¼ 4, the
shapes become nearly smooth surfaces. The dependence on
tan� is quite weak, in comparison with the previous cases,
while the dependence on � is a monotonic one with
decreasing character. The M parameter shows its impact
in the same way as for sgnð�Þ ¼ þ1, i.e., it stretches the
shapes along the �	 axis. The gain here is only 1 order of
magnitude, when comparing the cases M ¼ 200 TeV and
M ¼ 1000 TeV.
It is worth to notice, that the assumption of inverted

hierarchy would not change qualitatively the behavior of
�	, and therefore we do not include separate plots for this
case. The only change would be an overall shift of the
results along the �	 axis, according to different values of
the mass matrix elements for the NH and IH cases.
Also the remaining two transition magnetic moments,

�	e�
and �	��

, exhibit very similar behavior. The �	e�

magnetic moment is to a very good approximation equal
to �	e�

, while the �	��
will have values shifted up by

roughly 1 order of magnitude (see below).
A summary of the upper and lower limits of the mag-

netic moments for all considered combinations of the input
parameters are presented in Tables I and II. In most cases,
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FIG. 3. Neutrino magnetic moment �	e�
for certain values of the GMSB parameters. Here, sgnð�Þ ¼ þ1 and normal hierarchy of

neutrino masses is assumed.
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they span over 2–3 orders of magnitude. There is also a
general trend that�	��

has a factor of 10 higher values than

�	e� 
 �	e�
, which comes from the fact that respective

mass matrix elements scale in the same way [cf. Eqs. (28)
and (29)].

V. CONCLUSIONS

In the present paper, we have used the gauge-mediated
supersymmetry breaking version of the minimal supersym-
metric standard model without R parity to calculate

Majorana neutrino transition magnetic moments. In order
to reduce the number of free parameters, we have assumed
a GUT unification at high-energy scale mGUT � 1016 GeV,
and then used the RGE equations to render the values of
mass parameters and coupling constants to the low-energy
regime.
The magnetic moments are in our approach dependent

on the choice of the following parameters: �, M, N, tan�,
sgnð�Þ, and the phenomenological neutrino mass matrix
M. The latter can be calculated using the mixing parame-
ters extracted from experiments, assuming normal or in-
verted pattern of neutrino mass hierarchy.
We have discovered that the weakest dependence of �	

comes from the M matrix, which enters the formulas (21)
as a simple multiplicative factor. The dependence on�,M,
N, and tan� is rather complicated and difficult to describe.
It is presented on Figs. 3 and 4. A substantial qualitative
change in the behavior of �	 can be observed when the
sign of the � parameter is changed. In general, while for
sgnð�Þ ¼ þ1 the small and large values of tan� changed
qualitatively the behavior of �	, such a collapse for
sgnð�Þ ¼ �1 is driven by the � parameter.
This all shows, that even if the neutrino magnetic mo-

ment would be observed in an experiment, in most cases it
will not allow to state definite conclusions about the values
of the parameters in the context of the discussed model.
With some luck, it may, however, serve as a clue about the
neutrino mass hierarchy, if it happens to place in a region
covered by only one range listed in Tables I and II.
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TABLE II. Same as Table I but for sgnð�Þ ¼ �1.

Hierarchy N �	e�
, �	e� �	��

NH 1 ð0:39; 23:8Þ � 10�19 ð0:28; 17:3Þ � 10�18

NH 4 ð0:16; 6:67Þ � 10�19 ð0:11; 4:84Þ � 10�18

IH 1 ð0:36; 22:1Þ � 10�20 ð0:33; 20:2Þ � 10�18

IH 4 ð0:15; 6:19Þ � 10�20 ð0:13; 5:65Þ � 10�18

TABLE I. Lower and upper bounds on the Majorana neutrino
transition magnetic moments in GMSB MSSM, assuming NH or
IH, and two different structures of the messenger sector with the
generation index N ¼ 1, 4. The whole allowed parameter space
has been considered. Here, sgnð�Þ ¼ þ1. The unit is the Bohr
magneton �B.

Hierarchy N �	e�
, �	e� �	��

NH 1 ð0:38; 28:3Þ � 10�19 ð0:28; 20:5Þ � 10�18

NH 4 ð0:73; 66:1Þ � 10�20 ð0:53; 47:9Þ � 10�19

IH 1 ð0:36; 26:2Þ � 10�20 ð0:33; 24:0Þ � 10�18

IH 4 ð0:68; 61:3Þ � 10�21 ð0:62; 56:0Þ � 10�19
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FIG. 4. Same as Fig. 3 but for sgnð�Þ ¼ �1.
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