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We perform a complete ‘‘Michel parameter’’ analysis of all possible helicity structures which can

appear in the process B ! Xc‘ ��‘. We take into account the full set of operators parametrizing the

effective Hamiltonian and include the complete one-loop QCD corrections as well as the nonperturbative

contributions. The moments of the leptonic energy as well as the combined moments of the hadronic

energy and hadronic invariant mass are calculated including the nonstandard contributions.
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I. INTRODUCTION

The experimental and theoretical developments in heavy
flavor physics allow us to perform a high precision test of
the flavor sector. In particular, the enormous amount of
data for semileptonic B decays in combination with very
reliable theoretical methods has opened the road for a
precision determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements Vcb and Vub, which
are known at a relative precision of roughly 2% and
10% [1].

Aside from testing and extracting its parameters as
precisely as possible, a second major goal of heavy flavor
physics is to look for possible effects beyond the standard
model. It is generally believed that flavor changing neutral
currents are a good place to search for effects of new
physics, since these decays are usually loop-induced and
hence sensitive to virtual effects from high-mass states.
Thus one expects here possibly an effect which is sizable
compared to the standard-model contribution.

Semileptonic processes are tree level processes in the
standard model and thus the relative effects from new-
physics contributions are likely to be small. However, a
possible right-handed admixture to the hadronic current is
completely absent in the standard model and hence such an
effect would be a clear signal for physics beyond the
standard model.

In a recent publication [2] we considered a ‘‘Michel
parameter analysis’’ [3] of semileptonic B decays, where
we considered mainly a possible right-handed contribution
to the hadronic b ! c current. In the present paper we
complete the analysis of [2] by extending the analysis to all
possible two-quark–two-lepton operators.

There is an extensive literature on a possible non-
standard model contributions to semileptonic B decays
[4–8]. However, the analysis presented here is different
in two respects. First of all, our analysis is completely
model-independent; however, we neglect the lepton

masses and hence our analysis would need to be extended
straightforwardly to include e.g. a discussion of a charged
Higgs contribution as in [5,6,8]. Secondly, we consider
different observables (i.e. the moments of spectra) which
have become available only recently through the precise
data of the B factories; in this way a much better sensitivity
to a nonstandard contribution is expected.
Experimentally, there are limits on nonstandard contri-

butions from various sources. In the leptonic sector the
measurement of the � and � decay parameters yields
already stringent limits [9]; likewise the neutrino data yield
limits on right-handed admixtures. In total, the data in the
leptonic sector indicate that a right-handed admixture for
charged leptons is well below 1%.
Limits on a right-handed contribution can also be in-

ferred from high-energy processes [9]. The global analysis
of the LEP data does not give any indication for a right-
handed admixture, which would show up in inconsisten-
cies in the determination of the weak mixing angle. From
the electroweak fit one obtains a mass limit for a right-
handed W boson of MWR

> 715 GeV, which yields a limit

for a right-handed admixture in the charged currents of
cR < 1:3%.
Finally one may also use the data on exclusive B decays

to obtain limits on a right-handed contribution. In [4] the

data on B ! Dð�Þ‘ ��‘ have been used to extract a limit on a
right-handed admixture. This limit of cR ¼ ð14� 18Þ% is
not as stringent as the ones mentioned above, but refers to
the specific transition b ! c.
In the next section we perform an effective-field-theory

analysis of possible new-physics contribution, which is
kept completely model-independent. It turns out that only
very few operators contribute to the semileptonic b ! c
transition. Compared to the usual Michel-parameter analy-
sis, well known from muon decay, this effective theory
analysis also yields order-of-magnitude estimates of the
various contributions.
Based on these effective interactions we recompute the

spectra of inclusive semileptonic b ! c transitions includ-
ing the new interactions. We make use of the standard
heavy quark expansion (HQE) and include QCD radiative
corrections as well as nonperturbative contributions.
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In Sec. III we shall perform the HQE including the new-
physics operators. In subsection III Awe compute the QCD
radiative corrections for the various helicity combinations
of the hadronic current. We adopt the kinetic scheme as it
has been used for the calculation of semileptonic moments
in [10] and perform the complete one-loop calculation for
the new-physics terms. We note that the standard-model
calculations have been performed already to order �2

s in
[11,12].

In subsection III C we calculate the nonperturbative
contributions of the new-physics operators to order 1=m2

b.

Finally, in Sec. IV we quote our results for the various
moments which are frequently used in the analysis of
semileptonic decays and conclude.

II. EFFECTIVE-FIELD-THEORYANALYSIS OF
b ! c‘ ��‘

It is well known that any contribution to the effective
Lagrangian of some yet unknown physics at a high scale�
can be written as contributions of operators with dimen-
sions larger than 4. These operators are SUð3Þ � SUð2Þ �
Uð1Þ invariant and suppressed by an appropriate power of
1=�. We note that for such an analysis we have to make an
assumption of the yet unestablished Higgs sector: We shall
stick with our analysis to the single Higgs doublet case; an
extension to a type-II two-Higgs doublet as e.g. needed for
supersymmetry is straightforward.

The lowest dimension relevant for our analysis is six; the
list of relevant operators has been given in [13] and we
shall use the notations of our previous paper [2]. The quark
and lepton fields are grouped into

QL ¼
uL

dL

 !
;

cL

sL

 !
;

tL

bL

 !
left-handed quarks

(1)

QR ¼
uR

dR

 !
;

cR

sR

 !
;

tR

bR

 !
right-handed quarks

(2)

LL ¼
�e;L

eL

 !
;

��;L

�L

 !
;

��;L

�L

 !
left-handed leptons

(3)

LR¼
�e;R

eR

 !
;

��;R

�R

 !
;

��;R

�R

 !
right-handed leptons;

(4)

where QL and LL are doublets under SUð2ÞL and QR and
LR are doublets under an (explicitly broken) SUð2ÞR. Note
that we also introduced a right-handed neutrino in order to
complete the right-handed lepton doublets.

The Higgs field and its charge conjugate are written as a
2� 2 matrix

H ¼ 1ffiffiffi
2

p �0 þ i�0

ffiffiffi
2

p
�þffiffiffi

2
p

�� �0 � i�0

 !
(5)

transforming under SUð2ÞL � SUð2ÞR. The potential of the
Higgs fields leads to a vacuum expectation value (VEV) for
the field �0.
The dimension-6 operators fall into two classes, the two-

quark operators with gauge and Higgs fields and the two-
quark–two-lepton operators. In our previous analysis [2]
we considered only the first class, and the first step towards
a full analysis is to also take into account the second class.
The list of two-quark–two-lepton operators with

SUð2ÞL � SUð2ÞR consists of1

O ðiÞ
LL;LL ¼ ð �QL�iQLÞðLL�iLLÞ (6)

P ðiÞ
LL;LL ¼ ð �QL�

a�iQLÞðLL�
a�iLLÞ (7)

O ðiÞ
LL;RR ¼ ð �QL�iQLÞðLR�iLRÞ (8)

O ðiÞ
RR;LL ¼ ð �QR�iQRÞðLL�iLLÞ (9)

O ðiÞ
RR;RR ¼ ð �QR�iQRÞðLR�iLRÞ (10)

P ðiÞ
RR;RR ¼ ð �QR�

a�iQRÞðLR�
a�iLRÞ (11)

while the operators with explicitly broken SUð2ÞR read

R ðiÞ
LL;RR ¼ ð �QL�iQLÞðLR�i�

3LRÞ (12)

R ðiÞ
RR;LL ¼ ð �QR�i�

3QRÞðLL�iLLÞ (13)

R ðiÞ
RR;RR ¼ ð �QR�iQRÞðLR�i�

3LRÞ (14)

S ðiÞ
RR;RR ¼ ð �QR�

a�iQRÞðLR�
a�3�iLRÞ (15)

T ðiÞ
RR;RR ¼ ð �QR�

a�3�iQRÞðLR�
a�3�iLRÞ: (16)

Here we have defined

�i � �i ¼ 1 � 1; �� � ��;

���5 � �5�
�; ��� � ���:

(17)

Note that these operators are not all independent.
Furthermore, note that operators with the helicity combi-
nations such as ðLRÞðLRÞ cannot appear at the level of
SUð2ÞW �Uð1ÞY-invariant dimension-6 operators; they
will appear as dimension-8 operators and will be of the

1In order to have a streamlined notation we suppress all flavor
indices in the following.
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general form

ð �QL�iHQRÞð �LL�iHLRÞ
involving additional Higgs fields.

We shall assume that the right-handed neutrino acquires
a large Majorana mass in which case it can be integrated
out at some high scale, which we assume to lie well above
�. In this case SUð2ÞR is ‘‘maximally broken’’ for the
leptons, which means that the possible operators always
have a projection P� ¼ ð1� �3Þ=2 and thus only right-
handed interactions involving the right-handed charged
leptons remain.

For the case at hand we are interested in the charged
current interactions containing a b ! c transition. Since
we eliminated the right-handed neutrino and helicities are
conserved for both currents we end up with the conclusion
that the charged leptonic current has to be left-handed.
Thus we have only the operators

O1 ¼ ð �bL��cLÞð ��‘;L�
�‘LÞ (18)

O2 ¼ ð �bR��cRÞð ��‘;L�
�‘LÞ; (19)

where ‘ ¼ e, �, or �, since any helicity changing combi-
nation has to originate from dimension-8 operators yield-
ing an additional suppression of a factor v2=�2 relative to
the dimension-6 contributions.

However, as has been discussed in our previous paper,
helicity violating combinations such as ðLRÞðLLÞ opera-
tors can appear from the two-quark operators with gauge
and Higgs fields. These operators induce anomalous
gauge-boson couplings which are suppressed by a factor
v2=�2. They originate from two-quark operators, which
are (at the scale of the weak bosons)

Oð1Þ
LL ¼ �QLL6 QL (20)

Oð2Þ
LL ¼ �QLL6 3QL (21)

with

L� ¼ HðiD�HÞy þ ðiD�HÞHy (22)

L
�
3 ¼ H�3ðiD�HÞy þ ðiD�HÞ�3Hy: (23)

The terms proportional to �3 have once again been in-
cluded to break the custodial symmetry explicitly.

In the same spirit we define RR operators

Oð1Þ
RR ¼ �QRR6 QR (24)

Oð2Þ
RR ¼ �QRf�3; R6 gQR (25)

Oð3Þ
RR ¼ i �QR½�3; R6 �QR (26)

Oð4Þ
RR ¼ �QR�3R6 �3QR (27)

with

R� ¼ HyðiD�HÞ þ ðiD�HÞyH: (28)

Using an odd number of Higgs fields we can construct
invariant LR operators. For our analysis the relevant op-
erators are

Oð1Þ
LR ¼ �QLð���B

��ÞHQR þ H:c: (29)

Oð2Þ
LR ¼ �QLð���W

��ÞHQR þ H:c: (30)

Oð3Þ
LR ¼ �QLðiD�HÞiD�QR þ H:c: (31)

After spontaneous symmetry breaking the LL and RR
operators contain anomalous quark-boson couplings of the
order of magnitude v2=�2. For the LR operators the field
strengths of the weak bosons appear, inducing an addi-
tional factor of a quark momentum p, and hence the order
of magnitude is pv=�2 �mqv=�

2.

At the scale of the bottom quark these anomalous cou-
pling terms have the same power counting as the two-
quark–two-lepton operators: Integrating out the weak bo-
sons, their propagator together with the gauge couplings
reduce to a pointlike interaction proportional to g2=M2

W ¼
1=v2. Combining this with the order of magnitude of the
anomalous coupling of LL and RR v2=�2 we find that at
the scale of the bottom mass these contributions scale in
the same way as the two-quark–two-lepton operators di-
rectly induced at the high-scale �. For the case of LR the
additional momentum p of the quark is of the order of its
mass, and hence is as well of the order v2=�2, possibly
further suppressed by a small quark Yukawa coupling.
This conclusion may be altered in a two-Higgs doublet

model in the case of large tan	, i.e. of a large ratio of Higgs
vacuum expectation values. After integrating out the heavy
degrees of freedom tan	 will play the role of a coupling
constant which then may be enhanced by a large value. In
e.g. [8] such a scenario has been considered, where a
sizable value of tan	 overcomes the suppression of the
factor ðm‘mbÞ=m2

Hþ in the amplitude; in this case also

scalar contributions to the leptonic current have to be taken
into account.
To this end, the parametrization introduced in [2] re-

mains valid also in the general case, if only dimension-6
operators are included. Thus the effective Hamiltonian
reads

H eff ¼ 4GFVcbffiffiffi
2

p Jq;�J
�
l ; (32)

where J
�
l ¼ �e��P��e is the usual leptonic current and

Jh;� is the generalized hadronic b ! c current which is

given by
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Jh;� ¼ cL �c��P�bþ cR �c��Pþbþ gL �ciD
$

�P�b

þ gR �ciD
$

�Pþbþ dLi@
�ð �ci���P�bÞ

þ dRi@
�ð �ci���PþbÞ; (33)

where P� denotes the projector on positive/negative chi-
rality and D� is the QCD covariant derivative. Note that

the term proportional to cL contains the standard-model
contribution as well as a possible new-physics contribution
and cR may now also contain a contribution from a two-
quark–two-lepton operator induced at the high scale �.
The gauge part ig3A

a
�
a=2 of the QCD covariant derivative

D� gives rise to a new quark-quark-gluon-boson vertex.

III. OPERATOR PRODUCT EXPANSION

The operator product expansion (OPE) for inclusive
decays has become textbook material [14]. For the case
of inclusive semileptonic decays the OPE is formulated for
the T product of the two hadronic currents

T�� ¼
Z

d4xe�ixðmbv�qÞ

� hBðpÞj �bvðxÞ��cðxÞ �cð0Þ�y
�bvð0ÞjBðpÞi; (34)

where � is the combination of Dirac matrices and deriva-
tives given in (33), v ¼ p=MB is the four velocity of the
decaying B meson and q is the momentum transferred to
the leptons. The quantity T�� is expanded in inverse

powers of the scale of the order mb, where mb is the the
heavy quark mass. Technically this procedure is an OPE
for the product of the two currents.

The standard-model calculation has been performed at
tree level up to order 1=m4

b and it turns out that the non-

perturbative corrections are small. The radiative correc-
tions have been computed to order �s, 	0�

2
s , and recently

also to order �2
s for the leading (i.e. the parton model) term

[11] and to order �s for the term of order 1=m2
b involving

�2
�.
In the following we shall consider the perturbative and

nonperturbative contributions to the OPE, performed with
the modified current (33). We shall compute the complete
one-loop contributions as well as the leading nonperturba-
tive corrections proportional to �2

� and �2
G.

A. QCD corrections and renormalization group
analysis

The calculation of the QCD radiative corrections has
been performed in [15] and the results in the kinetic
scheme have been given in [10] for the semileptonic mo-
ments in the standard model. In order to perform an analy-
sis of possible nonstandard contributions we have to
calculate the QCD radiative corrections for the current
(33) to order �s. Thus we have to evaluate the Feynman
diagrams shown in Figs. 1 and 2 for the real and virtual
corrections, respectively. Note that the scalar current (i.e.

the terms proportional to gL=R) induces new vertices shown

in the Feynman diagrams at right. The real and virtual
corrections are individually IR-divergent. We regulated
the IR divergence by introducing a gluon mass which drops
out upon summation of the real and virtual correction being
IR-convergent. In the calculation of the virtual corrections
the wave function renormalizations of the b and c quark
field also have to be included.
The total amplitude consists of the sum of the standard-

model contribution and the one from the new-physics
operators. Since the new-physics piece is of order 1=�2,
we shall include only the interference term of the standard
model with this contribution. The square of the new-
physics term is already of order 1=�4 and has to be
neglected, since we compute only up to this order. Thus
we compute

d� ¼ 1

2mb

ðhcl�jcLH SM
eff jbihcl�jH effjbi�

þ hcl�jH effjbihcl�jcLH SM
eff jbi�Þd�PS; (35)

where d�PS is the corresponding phase space (PS) element
and

H SM
eff ¼ 4GFVcbffiffiffi

2
p ð �c��P�bÞð �e��P��eÞ

is the standard-model effective Hamiltonian, which has the
same helicity structure as the new-physics contribution
proportional to cL.
The relevant Feynman rules for the new-physics opera-

tors at tree level can be read off from (33); note that the
terms involving gL and gR yield a boson-gluon-quark-
antiquark vertex in order to maintain QCD gauge
invariance.
It is well known that the left- and right-handed currents

do not have anomalous dimensions and hence the parts of

FIG. 1. Real corrections.

FIG. 2. Virtual corrections.
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(33) with cL and cR are not renormalized. However, the
scalar and tensor contributions have anomalous dimen-
sions and hence we need to normalize these operators at
some scale and run them down to the scale of the bottom
quark.

To this end, we have to calculate the anomalous-
dimension matrix of these currents to set up the renormal-
ization group equation. It can be obtained from the require-
ment that the physical matrix elements must not depend on
the renormalization scale �:

0 ¼ d

d ln�
hc‘�ejH effjbi: (36)

Inserting the OPE for the Hamiltonian we get:

hc‘�ejH effjbi¼ 4GFVcbffiffiffi
2

p �hc‘�ej½cLð �c��P�bÞð �e��P�veÞ

þcRð �c��PþbÞð �e��P�veÞ�jbi
þ4GFVcbffiffiffi

2
p ~C � hc‘�ej ~Ojbi; (37)

with

~C ¼

gL
gR
dL
dR
cmb
L

cmb

R

cmc

L

cmc

R

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

~O ¼

ð �ciD$�P�bÞð �e��P�veÞ
ð �ciD$�PþbÞð �e��P�veÞ

ði@�ð �ci���P�bÞÞð �e��P�veÞ
ði@�ð �ci���PþbÞÞð �e��P�veÞ
ðmb �c��P�bÞð �e��P�veÞ
ðmb �c��PþbÞð �e��P�veÞ
ðmc �c��P�bÞð �e��P�veÞ
ðmc �c��PþbÞð �e��P�veÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
:

(38)

where the operators ~O are of dimension-7.
In the following we consider the renormalization group

mixing of these dimension-4 operators. The calculation of
the one-loop anomalous dimension is standard. We define
the anomalous-dimension matrix � by

d ~C

d ln�
¼ �Tð�Þ ~C (39)

and compute � from the divergencies of the renormaliza-
tion constants in the usual way. We obtain

�Tð�Þ ¼ 2�sð�Þ
3�

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 3 0 0 3 0 0 0
3 0 0 0 0 3 0 0
3 0 0 0 0 0 3 0
0 3 0 0 0 0 0 3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (40)

The renormalization group (RG) equation for the Wilson
coefficient is�

@

@ ln�
þ 	ð�sÞ @

@�s

�
~C ¼ �Tð�sð�ÞÞ ~C: (41)

We seek a solution of this equation with the initial con-
ditions

cmb

L=Rð�Þ ¼ 0 ¼ cmc

L=Rð�Þ; (42)

since the matching of the left- and right-handed currents is
performed by fixing the coefficients cL and cR and all
additional contributions are only due to renormalization
group running. Inserting the one-loop expressions we ob-
tain

cL=Rð�Þ ¼ cL=Rð�Þ gL=Rð�Þ ¼ gL=Rð�Þ

dL=Rð�Þ ¼ ðgL=Rð�Þ þ dL=Rð�ÞÞ
�
�sð�Þ
�sð�Þ

�
4=ð3	0Þ

� gL=Rð�Þ

cmb

L=Rð�Þ ¼ gR=Lð�Þ
��
�sð�Þ
�sð�Þ

�
4=ð	0Þ � 1

�

cmc

L=Rð�Þ ¼ gL=Rð�Þ
��
�sð�Þ
�sð�Þ

�
4=	0 � 1

�
:

(43)

One may reexpand (43) using the one-loop expression for
the strong coupling constant and obtain the logarithmic
terms of the one-loop calculation. However, we have per-
formed the complete one-loop calculation which yields
also nonlogarithmic terms. Except for the vector and axial
vector currents these nonlogarithmic contributions depend
on the renormalization scheme, for which we have used the

usual MS scheme.
It is well known that in order to fix this dependence on

the renormalization scheme, one would need to include the
RG running at two loops, which, however, goes beyond the

scope of the present paper. In the present paper, we useMS
and fix the scale to be � ¼ mb, which is the relevant scale
of the decay processes.
The advantage of keeping the nonlogarithmic terms is

that they lead to kinematic effects as e.g. a bremsstrahlung
spectrum for the hadronic invariant mass. Thus they lead
to a distortion of the spectra and hence have an impact on
the moments. In particular the partonic mass moments
hðM2

x �m2
cÞni with n > 0 will start at order �s.
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B. Mass scheme

The calculation of the process is usually set up with pole
masses of the particles; the pole mass is known not to be a
well-defined mass. The problems manifest themselves by
abnormally large radiative corrections when the pole mass
scheme is used. It has been discussed extensively in the
literature that an appropriately defined short-distance mass
is better suited for the OPE calculation of an inclusive
semileptonic rate.

In the present analysis we will use the kinetic mass
scheme, where the mass is defined by a nonrelativistic
sum rule for the kinetic energy [16]. At one-loop level
the kinetic mass is related to the pole mass by

mkin
q ð�fÞ ¼ mpole

q

�
1� 4

3

�s

�

�
4

3

�f

mb

þ �2
f

2m2
b

��
; (44)

where �f is a factorization scale for removing contribu-

tions below from the mass definition. The factorization
scale is set to 1 GeV since this is the typical energy release
in the process. This low renormalization scale is in fact the

reason why the MS scheme is inappropriate.
The ratio � ¼ m2

c=m
2
b is rather stable under the choice of

schemes (provided that the same scheme is chosen for both
mb and mc) and thus the choice of the mass scheme enters
only through the m5

b dependence of the rates. It is well

known from the calculation in the standard model that the
Oð�sÞ corrections from the relation of the kinetic mass
with the pole mass

�
m

pole
q

mkin
q ð1 GeVÞ

�
5 	 1þ 2:0899

�s

�
: (45)

compensate to a large extent the radiative corrections to the
rates computed in the pole scheme, leaving only small
QCD radiative corrections. It turns out that this also is
the case in our calculation including the anomalous
couplings.

C. Nonperturbative corrections

The nonperturbative corrections at tree level, including
the modified current (33), have been studied in [17], how-
ever, these results have not yet been published, and hence
we shall quote these results in the following.

The calculation of the nonperturbative corrections at tree
level requires to compute the Feynman diagram shown in
Fig. 3, where the one-gluon graph is needed to obtain the

matching coefficient of the chromomagnetic moment
operator.
The calculation is standard and yields somewhat lengthy

results, thus we defer the presentation of these expressions
to Appendix A.
To the order we calculate, the nonperturbative effects are

parametrized by the kinetic energy �2
� and the chromo-

magnetic moment �2
G, which are small quantities com-

pared to the b-quark mass. Inserting the values extracted
from b ! c semileptonic decays we find

�2
�

m2
b

� �2
g

3m2
b

� 0:02: (46)

Hence the nonperturbative corrections are tiny compared
to the leading terms, as long as there are no abnormally
large coefficients or the leading term vanishes. As it has
been investigated in [17] this as well holds true for the new-
physics contributions parametrized by (33).

IV. RESULTS AND DISCUSSION

We have evaluated the new-physics contributions to the
various moments of the leptonic and hadronic energy and
the hadronic invariant mass spectra. We have included tree-
level partonic and 1=m2

b corrections as well as the QCD

radiative corrections at one-loop with a renormalization
group treatment as described in the last section. The had-
ronic energy and the hadronic invariant mass of the decay
products can be written as

EHad ¼ v � ðpB � qÞ ¼ mB � v � q
sHad ¼ ðpB � qÞ2 ¼ m2

B � 2mBv � qþ q2;
(47)

where mB and pB ¼ mBv are the mass and the momentum
of the B meson and q is the momentum of the leptonic
system. The B-meson mass can be expanded as

mB ¼ mb þ ��þ�2
� þ�2

g

2mb

þ � � � : (48)

Thus it is possible to relate the hadronic variables in (47) to
the partonic ones

Ê0 ¼ E0

mb

¼ v � ðpb � qÞ
mb

¼ 1� v � q̂

ŝ0 ¼ s0
m2

b

¼ ðpb � qÞ2
m2

b

¼ 1� 2v � q̂þ q̂2;

(49)

where pb is the b-quark momentum. In the following we
shall quote the results in terms of the partonic variables
(49).
We have also included a cut on the charged lepton

energy since such a cut has to be used in the experimental
analysis. The results may be obtained as FORTRAN code
from the authors. In order to have a qualitative discussion
of the results, we give the results in Tables I, II, III, IV, and
V for various moments without an energy cut for theFIG. 3. Nonpertubative corrections at tree level.
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charged lepton energy El and with a cut of 1 GeV for this
quantity. In Table I we list the results for the moments

Ln ¼ 1

�0

Z
Ecut

dÊlÊ
n
l

d�

dÊl

; (50)

in Table II we consider the scale dependence of the Ln, and
in the Tables III and V we quote

Hij ¼ 1

�0

Z
Ecut

dÊl

Z
dŝ0dÊ0ðŝ0 � �ÞiEj

0

d3�

dÊ0dŝ0dÊl

(51)

with � ¼ m2
b=m

2
c, where the normalization

�0 ¼ G2
FjVcbj2m5

b

192�3
ð1� 8�� 12�2 ln�þ 8�3 � �4Þ

(52)

is given in terms of the partonic rate. Note that we perform
the calculations in the kinetic scheme, and we also insert
the value of the kinetic mass in the normalization �0.

The entries in the tables contain the coefficients corre-
sponding to the expansion of the various moments:

Ln ¼ c2LL
ðcLcLÞ
n þ cLcRL

ðcLcRÞ
n þ cLdLL

ðcLdLÞ
n

þ cLdRL
ðcLdRÞ
n þ cLgLL

ðcLgLÞ
n þ cLgRL

ðcLgRÞ
n (53)

Hij ¼ c2LH
ðcLcLÞ
ij þ cLcRH

ðcLcRÞ
ij þ cLdLH

ðcLdLÞ
ij

þ cLdRH
ðcLdRÞ
ij þ cLgLH

ðcLgLÞ
ij þ cLgRH

ðcLgRÞ
ij ;

(54)

where all the coefficients have an expansion in �s and in
1=mb

Lðc1c2Þ
n ¼ L

ðc1c2;m0
b
;�0

s Þ
n þ�2

�

m2
b

L
ðc1c2;m2

b
;�0

s Þ
n þ �2

g

3m2
b

L
ðc1c2;m2

b
;�0

s Þ
n

þ � � � þ �s

�
L
ðc1c2;m0

b
;�1

s Þ
n þ � � �

Hðc1c2Þ
ij ¼ H

ðc1c2;m0
b
;�0

s Þ
ij þ�2

�

m2
b

H
ðc1c2;m2

b
;�0

s Þ
ij

þ �2
g

3m2
b

H
ðc1c2;m2

b
;�0

s Þ
ij þ � � � þ �s

�
H

ðc1c2;m0
b
;�1

s Þ
ij

þ � � � ;

where we have only shown the terms which we have
calculated. Note that the one-loop calculation of the mo-
ments yields results of the (schematic) form

Ln ¼ LBorn
n

�
1þ an

�s

�
ln

�
�2

m2
b

�
þ bMS

n

�s

�

�

¼ Lnð�Þ
�
1þ an

�s

�
ln

�
�2

m2
b

�
þ bMS

n

�s

�

�
(55)

and similar expression for the hadronic moments.
As discussed above, the nonlogarithmic contribution bn

depends on the chosen scheme, and

Lnð�Þ ¼ LBorn
n

�
1þ an

�s

�
ln

�
�2

�2

��

is replaced by the RG-improved results given in (43).
The results of the calculations are displayed in Tables I,

II, III, IV, and V in Appendix B. Within those tables the
scales have been chosen to be � ¼ MW and � ¼ mb.
Table I contains the results for the leptonic moments
normalized to the total leptonic rate at tree level (52) for
all lepton energies and for a cut of 1 GeV on the lepton
energy. It turns out that the radiative corrections to the
scalar and tensor admixtures are sizable, i.e. the �s=�
coefficients are large. In addition, these coefficients have
the opposite sign as the tree-level piece, and hence a
substantial reduction of the tree result is expected.
Table II contains the sum of the tree level and the �s

contributions using the one-loop expression for the running
coupling �s. As discussed above, the full next-to-leading
order (NLO) expressions for the scalar and tensor cou-
plings are not available yet and hence a residual scale
dependence remains. We expect the scale � to be of the
order ofmb and hence we evaluate the expressions for� ¼
mb=2, mb, and 2mb. For c

2
L as well as for cLcR the scale

dependence is weak and originates from yet unknown
NNLO effects. Because of the large �s=� coefficients
the scale dependence for the tensor couplings is sizable,
while it is huge for the scalar couplings, since the tree
contribution is almost canceled by the radiative correction.
A full NLO calculation will very likely not improve this
situation and hence we have to conclude that we will not
have a good sensitivity to the tensor couplings and practi-
cally no sensitivity to the scalar couplings, at least for the
lepton-energy moments.
The coefficients of the nonperturbative contributions at

tree level are in general of similar size as the ones of the �s

corrections. Since �s=����=m
2
b, the nonperturbative

corrections are of similar importance as the radiative
ones. However, the leptonic moments are all dominated
by the tree-level contribution and hence the radiative as
well as the nonperturbative corrections to the moments are
small.
Tables III and V contain the various hadronic moments

computed without and with a cut on the lepton energy. For
the i ¼ 0moments we have to draw the same conclusion as
for the leptonic moments: The scalar and tensor couplings
have large and opposite-sign coefficients compared to the
tree-level piece; this leads in the same way to a sizable
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reduction of the tree-level result as well as to a large scale
dependence, which is shown in Table IV, where the result
up to order �s is shown.

Clearly the moments with i > 0 do not have a tree-level
contribution at the partonic level since the tree-level par-
tonic rate is proportional to the mass shell delta function

ðŝ0 � �Þ. For these moments the leading contributions are
at order�s or 1=m

2
b. Hence their dependence on the scale is

given by the dependence of �s. However, here the radiative
corrections are small compared to the nonperturbative
ones. The nonperturbative corrections at tree level contain
also derivatives of the mass shell delta function 
ðŝ0 � �Þ,
where at leading order 1=mb the maximum number of
derivatives is two. Because of this, the first and second i
moments are of order 1=m2

b; higher moments with i > 2
will only have contributions of order 1=m3

b or higher.

The sensitivity to a possible new-physics contribution is
mainly limited by the precision of the standard-model
calculation. Current analyses use up to the second mo-
ments in both the leptonic energy and the invariant mass
squared. The highest moments included in the standard-
model analyses are (roughly) sensitive to terms of the order
1=m3

b which is the highest order in the 1=mb expansion

included in the fit. The size of these terms together with the
size of the �2

s corrections may serve as a conservative
estimate of the uncertainties of the standard-model calcu-
lation, which at the end determines the sensitivity to a
possible new-physics contribution. Furthermore, an inclu-
sion of higher moments in the fit, including the new con-
tributions (in particular with i > 2), needs the calculation
of the 1=m3

b terms for the new-physics contributions. As

the impact of such hadronic mass moments to the fit is
small we did not include a table of them in this paper, but
the results of the calculation can be obtained from the
authors in a FORTRAN or MATHEMATICA file.

V. SUMMARYAND CONCLUSIONS

This work completes the analysis of possible new-
physics effects in inclusive semileptonic B decays.
Starting from a general ansatz for anomalous couplings
in semileptonic decays we compute the effects on leptonic
and hadronic moments which are used in the analysis of
inclusive semileptonic decays.

As far as the leptonic moments are concerned, the QCD
radiative corrections turn out to be as important as the
nonperturbative ones. We have presented the complete
expressions to order �s and to order 1=m2

b including the

new-physics pieces.

This holds also true for the hadronic energy moments.
However, the hadronic mass moments (taken with respect
to m2

c) do not have a tree-level contribution. Hence the
nonperturbative corrections of order 1=m2

b as well as the

terms of order �s are the leading contributions in the heavy
quark expansion. It turns out that, numerically, the non-
perturbative contributions are in general dominant.
For the leptonic moments and for the i ¼ 0 hadronic

moments the radiative correction for the scalar and tensor
couplings turns out to be sizable. This leads to a substantial
reduction of the moments and in the case of the scalar
coupling to a near cancellation between tree level and the
radiative corrections, which induces a large scale depen-
dence. Hence the sensitivity to scalar and tensor couplings
of the moments is limited. However, the moments with i �
0 appear first at order �s and have a reasonable sensitivity
to scalar and tensor couplings.
The standard analysis in semileptonic decays is to per-

form a combined fit of Vcb, the quark masses and the HQE
parameters, usually up to order 1=m3

b. We propose to use

the results given here to include the anomalous couplings
induced by possible new physics into such a fit.
The effective-theory analysis indicates that a right-

handed admixture could be the largest effect. Since the
radiative corrections to the right-handed currents are com-
pletely known to NLO and the size of the coefficients
indicates a good sensitivity to the anomalous coupling cR
this coefficient should be the first to be searched for in a
moment analysis.
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APPENDIX A: NONPERTURBATIVE
CORRECTIONS TO THE NONSTANDARD

CURRENTS

In this appendix we show the results for the new-physics
contributions based on (33). We have calculated the inter-
ference term of the standard-model contribution with the
current (33) and list the terms proportional to the coupling
constants. We obtain

�
d�

dy

�
cLcL ¼

�
2ðy� 3Þy2�3

ðy� 1Þ3 � 6y2�2

ðy� 1Þ2 � 6y2�þ 2ð3� 2yÞy2
�
þ
�
4ðy2 � 5yþ 10Þ�3y3

3ðy� 1Þ5 þ 2ð5� 2yÞ�2y3

ðy� 1Þ4 þ 10y3

3

�
�2

�

m2
b

þ
�
10y2ðy2 � 4yþ 6Þ�3

ðy� 1Þ4 � 18ðy� 2Þy2�2

ðy� 1Þ3 þ 12y2ð2y� 3Þ�
ðy� 1Þ2 þ 2y2ð5yþ 6Þ

�
�2

g

3m2
b
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�
d�

dy

�
cLcR ¼ ffiffiffiffi

�
p �

� 12�2y2

ðy� 1Þ2 �
24�y2

y� 1
� 12y2

�
þ ffiffiffiffi

�
p �

4ð5� 2yÞ�2y3

ðy� 1Þ4 þ 4ð5� 3yÞ�y3
ðy� 1Þ3

�
�2

�

m2
b

þ ffiffiffiffi
�

p �
12�y3

ðy� 1Þ2 �
36ðy� 2Þ�2y2

ðy� 1Þ3 þ 24ð2y� 3Þy2
y� 1

�
�2

g

3m2
b

�
d�

dy

�
cLgL ¼

�
� 12�2y2

y� 1
� 12ðy� 1Þy2 � 24�y2

�
mb þ

�
� 2ð4y2 � 9yþ 3Þ�2y2

ðy� 1Þ3 � 12�y2 þ 6y2
�
�2

�

m2
b

þ
�
6ð3� 2yÞ�2y2

ðy� 1Þ2 � 12ðy� 3Þ�y2
y� 1

þ 18y2
�
�2

g

3m2
b

�
d�

dy

�
cLgR ¼ ffiffiffiffi

�
p �

� 12�2y2

y� 1
� 12ðy� 1Þy2 � 24�y2

�
mb þ ffiffiffiffi

�
p �

� 2ð4y2 � 9yþ 3Þ�2y2

ðy� 1Þ3 � 12�y2 þ 6y2
�
�2

�

m2
b

þ ffiffiffiffi
�

p �
30ð3� 2yÞ�2y2

ðy� 1Þ2 � 60ðy� 3Þ�y2
y� 1

þ 90y2
�
�2

g

3m2
b

�
d�

dy

�
cLdL ¼

�
� 8�3y3

ðy� 1Þ3 �
12�2y3

ðy� 1Þ2 þ 4y3
�
mb þ

�
4ð�4y2 þ 11yþ 5Þ�3y3

3ðy� 1Þ5 þ 2ð�3y2 þ 4yþ 5Þ�2y3

ðy� 1Þ4 � 10y3

3

�
�2

�

m2
b

þ
�
12ð5� 2yÞ�3y3

ðy� 1Þ4 � 6ðy� 3Þ�2y3

ðy� 1Þ3 þ 24ðy� 2Þ�y3
ðy� 1Þ2 þ 6y3

�
�2

g

3m2
b

�
d�

dy

�
cLdR ¼ ffiffiffiffi

�
p �

12ðy� 3Þ�2y2

ðy� 1Þ2 þ 4ðy� 3Þy2 þ 12ðy� 3Þ�y2
y� 1

�
mb

þ ffiffiffiffi
�

p �
8ðy2 � 5yþ 10Þ�3y3

3ðy� 1Þ5 þ 2ð3y2 � 16yþ 25Þ�2y3

ðy� 1Þ4 þ 4ð5� 3yÞ�y3
ðy� 1Þ3 � 10y3

3

�
�2

�

m2
b

þ ffiffiffiffi
�

p �
20y2ðy2 � 4yþ 6Þ�3

ðy� 1Þ4 þ 6y2ð5y2 � 25yþ 36Þ�2

ðy� 1Þ3 þ 12ð6� 5yÞy2�
ðy� 1Þ2 � 2y2ð5y2 � 5yþ 12Þ

y� 1

�
�2

g

3m2
b

d�

dy
¼ G2

Fm
5
b

192�3
jVcbj

��
d�

dy

�
cLcL

c2L þ
�
d�

dy

�
cLcR

cLcR þ
�
d�

dy

�
cLgL

cLgL þ
�
d�

dy

�
cLgR

cLgR þ
�
d�

dy

�
cLdL

cLdL þ
�
d�

dy

�
cLdR

cLdR

�
:

APPENDIX B: TABLES

In this appendix we present the results from the calculation introduced in Sec. IV. We show tables for the various
moments of the leptonic and hadronic invariant mass spectra for the new-physics contributions. These tables include tree-

level partonic and 1=m2
b corrections as well as radiative corrections at one-loop, computed in the MS scheme. For the

numerical analysis we use mkin
b ð1 GeVÞ ¼ 4:6 GeV and � ¼ m2

c=m
2
b ¼ 0:0625.
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TABLE I. Tree level and �s=� coefficients of the leptonic moments without El cuts and with a cut El > 1 GeV. Note that we have
redefined dL=R ¼ mBdL=R and gL=R ¼ mBgL=R with mB ¼ 5:279 GeV in order to tabulate dimensionless quantities. The scale-

dependent couplings have to be taken at the scale � ¼ MW and � is taken to be � ¼ mb.

n c2L cLcR cLgL cLgR cLdL cLdR

No El cuts Tree-level Parton 0 1.0000 �0:6685 0.2212 0.5400 0.3315 �0:6597
1 0.3072 �0:2092 0.0613 0.1372 0.0977 �0:2307
2 0.1030 �0:0708 0.0188 0.0388 0.0314 �0:0845
3 0.0365 �0:0252 0.0062 0.0118 0.0107 �0:0319

�2
�=m

2
b coeff. 0 �0:5000 0.3342 �0:0017 0.1703 �0:1652 0.3288

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0858 �0:0590 0.0365 0.1146 0.0261 �0:0702
3 0.0730 �0:0503 0.0210 0.0575 0.0214 �0:0637

�2
g=m

2
b coeff. 0 �1:9449 4.9934 1.0232 1.5624 �2:1536 3.7106

1 �0:9625 1.8578 0.3253 0.6011 �0:7986 1.5873

2 �0:4495 0.7237 0.1124 0.2427 �0:3081 0.6840

3 �0:2052 0.2902 0.0410 0.1008 �0:1220 0.2966

�s=� coeff. 0 0.3125 0.8009 �2:6592 �8:8212 �2:1497 4.3637

1 0.0908 0.2284 �0:7171 �2:3141 �0:5594 1.4880

2 0.0276 0.0739 �0:2174 �0:6843 �0:1660 0.5394

3 0.0085 0.0260 �0:0711 �0:2189 �0:0538 0.2039

El > 1 GeV cut Tree-level Parton 0 0.8148 �0:5617 0.1621 0.3586 0.2631 �0:6161
1 0.2776 �0:1919 0.0520 0.1089 0.0867 �0:2232
2 0.0979 �0:0678 0.0172 0.0340 0.0296 �0:0831
3 0.0356 �0:0246 0.0059 0.0109 0.0104 �0:0317

�2
�=m

2
b coeff. 0 �0:4504 0.3225 0.0433 0.3440 �0:1479 0.3631

1 0.0087 �0:0021 0.0564 0.2247 0.0031 0.0059

2 0.0874 �0:0594 0.0377 0.1194 0.0267 �0:0691
3 0.0733 �0:0504 0.0213 0.0583 0.0215 �0:0635

�2
g=m

2
b coeff. 0 �2:1029 4.6903 0.8592 1.4595 �2:0451 3.7102

1 �0:9883 1.8078 0.2989 0.5845 �0:7805 1.5871

2 �0:4540 0.7149 0.1078 0.2398 �0:3049 0.6840

3 �0:2060 0.2886 0.0401 0.1003 �0:1214 0.2966

�s=� coeff. 0 0.2640 0.5740 �1:8506 �5:9374 �1:3992 3.9213

1 0.0828 0.1930 �0:5920 �1:8692 �0:4440 1.4126

2 0.0262 0.0679 �0:1964 �0:6098 �0:1467 0.5260

3 0.0083 0.0249 �0:0674 �0:2058 �0:0504 0.2014

TABLE II. Summed up tree-level and �s=� coefficients of the leptonic moments without El cuts for � ¼ 2:3, 4.6, and 9.2 GeV.

� n c2L cLcR cLgL cLgR cLdL cLdR

2.3 GeV 0 1.0253 �0:6037 0.0042 �0:1916 0.1533 �0:2983
1 0.3145 �0:1907 0.0028 �0:0552 0.0512 �0:1074
2 0.1052 �0:0648 0.0011 �0:0182 0.0176 �0:0397
3 0.0372 �0:0231 0.0004 �0:0065 0.0062 �0:0150

4.6 GeV 0 1.0208 �0:6151 0.0441 �0:0474 0.1883 �0:3692
1 0.3132 �0:1940 0.0135 �0:0169 0.0604 �0:1317
2 0.1048 �0:0658 0.0043 �0:0068 0.0204 �0:0485
3 0.0371 �0:0234 0.0015 �0:0028 0.0071 �0:0184

9.2 GeV 0 1.0177 �0:6231 0.0715 0.0752 0.2146 �0:4223
1 0.3123 �0:1963 0.0208 0.0164 0.0674 �0:1499
2 0.1046 �0:0666 0.0065 0.0034 0.0225 �0:0552
3 0.0370 �0:0237 0.0022 0.0005 0.0078 �0:0209
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TABLE III. Tree-level and �s=� coefficients of the hadronic moments without El cuts. The partonic tree-level moments for i > 1
are all zero. Note that we have redefined dL=R ¼ mBdL=R and gL=R ¼ mBgL=R with mB ¼ 5:279 GeV in order to tabulate

dimensionless quantities. The scale-dependent couplings have to be taken at the scale � ¼ MW and � is taken to be � ¼ mb.

i j c2L cLcR cLgL cLgR cLdL cLdR

Tree-level Parton 0 0 1.0000 �0:6685 0.2212 0.5400 0.3315 �0:6597
0 1 0.4220 �0:2500 0.0961 0.2556 0.1217 �0:2559
0 2 0.1832 �0:0964 0.0429 0.1219 0.0461 �0:1021
0 3 0.0815 �0:0383 0.0196 0.0586 0.0180 �0:0418

i > 0 j 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�2
�=m

2
b coeff. 0 0 �0:5000 0.3342 �0:0017 0.1703 �0:1652 0.3288

0 1 �0:5000 0.3342 �0:100 �0:2229 �0:1652 0.3288

0 2 �0:2902 0.1836 �0:0773 �0:2119 �0:0899 0.1840

0 3 �0:1382 0.0837 �0:0448 �0:1348 �0:0406 0.0853

1 0 �0:5780 0.4185 �0:2038 �0:5937 �0:2091 0.4025

1 1 �0:1584 0.1172 �0:0695 �0:2158 �0:0585 0.1129

1 2 �0:0283 0.0280 �0:0217 �0:0718 �0:0143 0.0258

2 0 0.1609 �0:0728 0.0386 0.1159 0.0337 �0:0809
2 1 0.0735 �0:0302 0.0180 0.0561 0.0138 �0:0343
3 0 0.0000 0.0000 0.0000 0.0000 0.0000 �0:0000

�2
g=m

2
b coeff. 0 0 �1:9449 4.9934 1.0232 1.5624 �2:1536 3.7106

0 1 �0:3850 1.2777 0.4097 0.4782 �0:5223 0.9700

0 2 �0:0302 0.2833 0.1576 0.1391 �0:1109 0.2254

0 3 0.0298 0.0342 0.0578 0.0350 �0:0146 0.0347

1 0 0.3143 �0:6395 �0:1100 �0:2167 0.2027 �0:4360
1 1 0.1195 �0:2561 �0:0529 �0:0925 0.0744 �0:1709
1 2 0.0466 �0:1059 �0:0254 �0:0405 0.0282 �0:0689

i > 1 j 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�s=� coeff. 0 0 0.3128 0.8007 �2:6592 �8:8212 �2:1497 4.3637

0 1 0.1631 0.3441 �1:2391 �4:1901 �0:8839 1.8575

0 2 0.0910 0.1477 �0:5850 �2:0067 �0:3694 0.8017

0 3 0.0526 0.0632 �0:2793 �0:9681 �0:1568 0.3505

1 0 0.0901 �0:0363 0.0028 0.0176 0.0032 �0:0095
1 1 0.0470 �0:0178 0.0014 0.0093 0.0015 �0:0046
1 2 0.0251 �0:0090 0.0007 0.0050 0.0007 �0:0023
2 0 0.0091 �0:0033 0.0001 0.0015 0.0002 �0:0008
2 1 0.0053 �0:0019 0.0000 0.0009 0.0001 �0:0004
3 0 0.0018 �0:0006 0.0000 0.0003 0.0000 �0:0001

TABLE IV. Summed up tree-level and �s=� coefficients of the nonzero tree-level hadronic moments without El cuts for � ¼ 2:3,
4.6, and 9.2 GeV.

� i j c2L cLcR cLgL cLgR cLdL cLdR

2.3 GeV 0 0 1.0253 �0:6037 0.0042 �0:1916 0.1533 �0:2983
0 1 0.4352 �0:2222 �0:0051 �0:0914 0.0486 �0:1024
0 2 0.1906 �0:0845 �0:0049 �0:0440 0.0156 �0:0360
0 3 0.0857 �0:0331 �0:0033 �0:0214 0.0050 �0:0129

4.6 GeV 0 0 1.0208 �0:6151 0.0441 �0:0474 0.1883 �0:3692
0 1 0.4329 �0:2271 0.0136 �0:0234 0.0628 �0:1322
0 2 0.1892 �0:0866 0.0040 �0:0117 0.0215 �0:0487
0 3 0.0850 �0:0340 0.0010 �0:0059 0.0075 �0:0185

9.2 GeV 0 0 1.0177 �0:6231 0.0715 0.0752 0.2146 �0:4223
0 1 0.4312 �0:2305 0.0269 0.0335 0.0734 �0:1545
0 2 0.1883 �0:0880 0.0104 0.0151 0.0258 �0:0582
0 3 0.0845 �0:0347 0.0041 0.0069 0.0093 �0:0226
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TABLE V. Tree-level and �s=� coefficients of the hadronic moments with a cut El > 1 GeV. The partonic tree-level moments for
i > 1 are all zero. Note that we have redefined dL=R ¼ mBdL=R and gL=R ¼ mBgL=R with mB ¼ 5:279 GeV in order to tabulate

dimensionless quantities. The scale-dependent couplings have to be taken at the scale � ¼ MW and � is taken to be � ¼ mb.

i j c2L cLcR cLgL cLgR cLdL cLdR

Tree-level Parton 0 0 0.8148 �0:5617 0.1621 0.3586 0.2631 �0:6161
0 1 0.3341 �0:2037 0.0682 0.1676 0.0922 �0:2365
0 2 0.1411 �0:0761 0.0295 0.0789 0.0332 �0:0933
0 3 0.0612 �0:0293 0.0131 0.0375 0.0123 �0:0378

i > 0 j 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�2
�=m

2
b coeff. 0 0 �0:4504 0.3225 0.0433 0.3440 �0:1479 0.3631

0 1 �0:4505 0.2921 �0:0597 �0:0843 �0:1329 0.3332

0 2 �0:2673 0.1561 �0:0532 �0:1300 �0:0695 0.1841

0 3 �0:1337 0.0706 �0:0327 �0:0935 �0:0308 0.0859

1 0 �0:5424 0.3590 �0:1687 �0:4845 �0:1685 0.3887

1 1 �0:1639 0.1022 �0:0598 �0:1852 �0:0478 0.1115

1 2 �0:0417 0.0262 �0:0204 �0:0678 �0:0126 0.0273

2 0 0.1203 �0:0547 0.0258 0.0742 0.0223 �0:0729
2 1 0.0538 �0:0221 0.0118 0.0355 0.0087 �0:0306
3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�2
g=m

2
b coeff. 0 0 �2:1029 4.6903 0.8592 1.4595 �2:0451 3.7102

0 1 �0:4609 1.2205 0.3461 0.4476 �0:5005 0.9855

0 2 �0:0660 0.2921 0.1348 0.1332 �0:1119 0.2391

0 3 0.0131 0.0538 0.0507 0.0363 �0:0194 0.0439

1 0 0.3074 �0:5095 �0:0803 �0:1804 0.1654 �0:4093
1 1 0.1171 �0:1971 �0:0381 �0:0751 0.0583 �0:1590
1 2 0.0458 �0:0789 �0:0180 �0:0321 0.0211 �0:0635

i > 1 j 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�s=� coeff. 0 0 0.2642 0.5739 �1:8506 �5:9373 �1:3992 3.9213

0 1 0.1216 0.2462 �0:8449 �2:7806 �0:5529 1.6572

0 2 0.0608 0.1057 �0:3919 �1:3149 �0:2221 0.7103

0 3 0.0323 0.0455 �0:1842 �0:6272 �0:0907 0.3086

1 0 0.0576 �0:0231 0.0018 0.0101 0.0018 �0:0079
1 1 0.0288 �0:0108 0.0009 0.0052 0.0008 �0:0038
1 2 0.0147 �0:0052 0.0004 0.0027 0.0004 �0:0018
2 0 0.0046 �0:0016 0.0001 0.0007 0.0001 �0:0006
2 1 0.0026 �0:0009 0.0000 0.0004 0.0000 �0:0003
3 0 0.0007 �0:0002 0.0000 0.0001 0.0000 �0:0001
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