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We calculate the vacuum polarization functions on the lattice using the overlap fermion formulation. By

matching the lattice data at large momentum scales with the perturbative expansion supplemented by the

operator product expansion (OPE), we extract the strong coupling constant �sð�Þ in two-flavor QCD as

�ð2Þ
MS

¼ 0:234ð9Þðþ16
�0 Þ GeV, where the errors are statistical and systematic, respectively. In addition, from

the analysis of the difference between the vector and axial-vector channels, we obtain some of the four-

quark condensates.
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I. INTRODUCTION

In quantum chromodynamics (QCD) the vacuum polar-
ization, defined through the (axial-) vector current corre-
lator, contains rich information of its perturbative and
nonperturbative dynamics. In the long-distance regime it
is sensitive to the low-lying particle spectrum. The short-
distance regime, on the other hand, can be analyzed using
perturbation theory supplemented by the operator product
expansion (OPE). The current correlator can be expressed
as an expansion in terms of the strong coupling constant �s

together with power corrections of the form hOðnÞi=Qn.

Here, the local operatorOðnÞ has a mass dimension n andQ
is the momentum scale flowing into the correlator.
Determination of �s (and of the vacuum expectation values

hOðnÞi, in principle) can be performed by applying the
formulae for experimental results of eþe� cross section
or � decay distributions [1], for instance. On the other
hand, if one can calculate the correlators nonperturba-
tively, theoretical determination of those fundamental pa-
rameters is made possible.

Lattice QCD calculation offers such a nonperturbative
technique. Two-point correlators can be calculated for
spacelike separations. In this work we investigate the use
of the perturbative formulae of the correlators for the
lattice data obtained in the high Q2 regime. The strong
coupling constant �s may then be extracted. In such an
analysis, it is essential to find the region of Q2 where the

perturbative expression can be applied and at the same time
the discretization error is under control. By inspecting the
numerical data, we find that this is indeed possible at a
lattice spacing a ’ 0:12 fm if we subtract the bulk of the
discretization effects nonperturbatively. The remaining ef-
fect can be estimated using the perturbation theory.
The idea of analyzing the short-distance regime is not

new: in fact, the analysis of hadron correlators in the whole
length scales was proposed 15 years ago [2], but to our
knowledge quantitative analysis including the determina-

tion of �s and hOðnÞi has been missing until recently.
(Calculation of the vacuum polarization from the vector
current correlator in lattice QCD may be found in [3,4].
More recently, an analysis of charmonium correlator has
been published [5].)
While the vacuum polarizations �JðQ2Þ (J denotes

vector or axial-vector channel) are ultraviolet divergent
and their precise value depends on the renormalization
scheme, their derivative DJðQ2Þ ¼ �Q2d�JðQ2Þ=dQ2,
called the Adler function [6], is finite and renormalization
scheme independent. Therefore, the continuum perturba-
tive expansion of DJðQ2Þ to order �3

s [7,8], can be directly
applied to the lattice data. At the relatively low Q2 region,
higher order terms of OPE become relevant. They include
the parameters describing the gluon condensate h�sG

2i and
the quark condensate hm �qqi (we suppress quark flavor
index assuming degenerate up and down quark masses)
at Oð1=Q4Þ, and four-quark condensates hO8i and hO1i at
Oð1=Q6Þ [9,10]. (The explicit form of O8 and O1 will be
given in Sec. III B.)*shintani@post.kek.jp
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We use the lattice QCD data containing two dynamical
flavors described by the overlap fermions [11]. The simu-
lations are performed at lattice spacing a ¼ 0:118ð2Þ fm
on a 163 � 32 lattice. For the details of the simulation
including the choice of the lattice actions and parameters,
we refer to [11]. The physical volume is about ð1:9 fmÞ3,
which is relatively small compared to the present large
scale QCD simulations. The finite volume effect is, how-
ever, not significant for the short-distance quantities con-
sidered in this work. The quark masses mq in this analysis

are 0.015, 0.025, 0.035, and 0.050 in the lattice unit, which
cover the range ½ms=6; ms=2� with ms the physical strange
quark mass. An analysis of pion mass and decay constant is
presented in [12].

The main advantage of this data set is that both the sea
and valence quarks preserve exact chiral and flavor sym-
metries by the use of the overlap fermion formulation
[13,14]. (Although the fermionic currents used in our
calculation are not conserved at finite lattice spacings, it
does not change the following argument of the operator
mixing.) The perturbative formulae for the vacuum polar-
izations can therefore be applied without any modification
due to explicit violation of the chiral symmetry. For in-
stance, the scalar density operator �qq to define the quark
condensate is free from the leading power divergence
which scales as 1=a3. This means that a term of the form
ma�3=Q4 is forbidden in the OPE formula as in the con-
tinuum theory. With the Wilson-type fermion formulation,
this term may appear and has to be identified and sub-
tracted nonperturbatively. With the staggered fermion for-
mulation, there is no such problem because of its remnant
chiral symmetry, while the effect of taste breaking may
become significant when ðaQÞ2 becomes Oð1Þ.

This paper is organized as follows. In Sec. II we define
the vacuum polarization functions and explain the method
to calculate them on the lattice. Subtraction of lattice
artifacts is discussed in some detail. Section III summa-
rizes the perturbative formulae of OPE. Then, in Sec. IV
we show the results of fitting of our data with the pertur-
bative formulae. An estimate of the systematic errors is
also given. Conclusions are given in Sec. V.

II. VACUUM POLARIZATION FUNCTION

A. Definition

In the continuum theory, the vacuum polarization func-

tions �ð‘Þ
J ðQ2Þ are defined through two-point correlation

functions as

hJ�J�iðQÞ �
Z

d4xeiQ�xhTfJij�ðxÞJji� ð0Þgi

¼ ð���Q
2 �Q�Q�Þ�ð1Þ

J ðQ2Þ
�Q�Q��

ð0Þ
J ðQ2Þ; (1)

where the current Jij� may either be a vector current Vij
� ¼

�qi��qj or an axial-vector current Aij
� ¼ �qi���5qj with

flavor indices i � j. �ð1Þ
J ðQ2Þ and �ð0Þ

J ðQ2Þ denote the
transverse and longitudinal parts of the vacuum polariza-
tion, respectively. For the vector channel (J ¼ V),

�ð0Þ
V ðQ2Þ ¼ 0 is satisfied due to current conservation. For

the axial-vector channel (J ¼ A), the longitudinal compo-
nent may appear when the quark mass is finite.
In the lattice calculation we employ the overlap fermion

formulation [13,14], for which the Dirac operator is given
by

DðmÞ ¼
�
m0 þm

2

�
þ

�
m0 �m

2

�
�5sgn½HWð�m0Þ� (2)

for a bare quark mass m. The kernel operator HWð�m0Þ �
�5DWð�m0Þ is constructed from the conventional Wilson-
Dirac operator DWð�m0Þ at a large negative mass �m0.
We set m0 ¼ 1:6 in the numerical simulation. We use the
vector and axial-current operators of the form

Vij
� ¼ Z �qi��

�
1� D

2m0

�
qj; (3)

Aij
� ¼ Z �qi���5

�
1� D

2m0

�
qj: (4)

With this choice, the vector and axial charges form a
multiplet under the axial transformation �a

Aqi ¼
"�aij�5ð1�D=m0Þqj, �a

A �qi ¼ " �qj�
a
ji�5, where " denotes

an infinitesimal parameter and �a is a generator of the
flavor SUð2Þ symmetry. The overlap fermion action is
invariant under this modified chiral transformation [15],
as it satisfies the Ginsparg-Wilson relation D�5 þ �5D ¼
D�5D=m0 [16]. The common renormalization factor Z has
been calculated nonperturbatively as Z ¼ 1:3842ð3Þ [12].
An obvious drawback of the (axial-)vector currents in

(3) and (4) is that the current conservation property
@�J� ¼ 0 (J ¼ V or A) is not satisfied at finite lattice

spacing. It leads to a significant complication in the ex-

traction of the functions �ð0Þ
J ðQ2Þ and �ð1Þ

J ðQ2Þ, as de-
scribed in the next subsection. The use of the conserved
(axial-) vector current [17] reduces this complication.

Once we have extracted the functions �ð0Þ
J ðQ2Þ and

�ð1Þ
J ðQ2Þ, these two types of currents should give an

equally good approximation to the continuum one up to
the unphysical constant shift (and the discretization error).
Our preliminary study employing the conserved currents
shows that this is indeed the case.

B. Nonperturbative subtraction of lattice artifact

Because of the discretization effects including the cur-
rent nonconservation effect, the two-point correlation
functions (1) may have more complicated structures.
Taking account of remaining symmetries on the lattice
(parity and cubic symmetries) but without the current
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conservation, the correlators on the lattice hJ�J�ilatðQÞ can
be expressed as an expansion in Q�:

hJ�J�ilatðQÞ ¼ �ð1Þ
J ðQÞQ2��� ��ð0þ1Þ

J ðQÞQ�Q�

� X1
n¼0

BJ
nðQÞQ2n

� ��� �
X1

m;n¼1

CJ
mnðQÞ

� fQ2mþ1
� Q2n�1

� þQ2mþ1
� Q2n�1

� g; (5)

in the momentum space. The lattice momentum Q� is

defined as Q� ¼ ð2=aÞ sinð�n�=L�Þ with an integer

four-vector n� whose components take values in

ð�L�=2; L�=2� on a lattice of size L� in the�-th direction

(Li¼1;2;3 ¼ 16 and Lt ¼ 32 in our case). The functions

corresponding to the continuum counterparts, �ð1Þ
J ðQÞ

and �ð0þ1Þ
J ðQÞ ( � �ð0Þ

J ðQÞ þ�ð1Þ
J ðQÞ), may also have

Lorentz-violating effects and could be a function of Q�

in general rather than a function of just a single argument
Q2.

The term BJ
0ðQÞ���, which has the same Lorentz struc-

ture as the term of physical �ð1Þ
J ðQÞ does, contains a

quadratically divergent contact term. Since one cannot
disentangle the physical contribution from the unphysical
divergence using the Lorentz structure alone, we focus on

extracting �ð0þ1Þ
J ðQÞ, which is free from the contact term.

The terms including functions BJ
n>0ðQÞ and CJ

mnðQÞ
represent the lattice artifacts that violate the Lorentz sym-
metry. They are generally written in terms of an expansion
in aQ� and aQ�. (Physically relevant terms are separately

written with a conventional notation �ð1Þ
J ðQÞ and

�ð0þ1Þ
J ðQÞ.) The lowest order term BJ

1ðQÞ remains constant
in the continuum limit aQ ! 0, while the terms of BJ

2ðQÞ
and CJ

11ðQÞ are relatively suppressed by OððaQÞ2Þ and

vanish in the continuum limit. Higher order terms are
suppressed by additional powers of a at a fixed Q. Since
the momentum scaleQ of interest is not much less than the
lattice cutoff 1=a, the convergence of the expansion at our
lattice spacing must be carefully investigated for the lattice
data. These terms can be identified nonperturbatively, and
we found that the lowest nontrivial terms including BJ

2ðQÞ
and CJ

11ðQÞ are already very small as described below.

Higher order terms are thus safely neglected.
Extraction of BJ

1;2ðQÞ and CJ
11ðQÞ from the lattice data

goes as follows. The off-diagonal components hJ�J�ilatðQÞ
(� � �) contain �ð0þ1Þ

J ðQÞ and CJ
11ðQÞ, hence by taking

the data with two different momentum configurations giv-
ing the same Q2 one can solve a linear equation to disen-

tangle �ð0þ1Þ
J ðQÞ from the lattice artifact. To be explicit,

for two different momentum configurations aQð1Þ and

aQð2Þ giving the same ðaQð1ÞÞ2 ¼ ðaQð2ÞÞ2 ¼ ðaQÞ2, the
linear equation is written as

hJ�J�ilatj���ðQð1ÞÞ ¼ aQð1Þ
� aQð1Þ

� �ð0þ1Þ
J ðQð1ÞÞ

� ðaQð1Þ
� ðaQð1Þ

� Þ3

þ aQð1Þ
� ðaQð1Þ

� Þ3ÞCJ
11ðQð1ÞÞ;

hJ�J�ilatj���ðQð2ÞÞ ¼ aQð2Þ
� aQð2Þ

� �ð0þ1Þ
J ðQð2ÞÞ

� ðaQð2Þ
� ðaQð2Þ

� Þ3

þ aQð2Þ
� ðaQð2Þ

� Þ3ÞCJ
11ðQð2ÞÞ:

(6)

We may assume the equalities �ð0þ1Þ
J ðQð1ÞÞ ¼

�ð0þ1Þ
J ðQð2ÞÞ and CJ

11ðQð1ÞÞ ¼ CJ
11ðQð2ÞÞ for small enough

ðaQÞ2, because aQð1Þ and aQð2Þ are different only by
permutations of space-time directions. The linear equation
(6) can be solved when

Qð1Þ
� Qð1Þ

� Qð2Þ
� Qð2Þ

� ½ðQð2Þ
� Þ2þðQð2Þ

� Þ2�ðQð1Þ
� Þ2�ðQð1Þ

� Þ2�� 0:

(7)

It is easy to see that three different nonzero components

must be contained in aQð1Þ and aQð2Þ to satisfy (7). The
smallest possible momentum assignment corresponds to

the combination jnð1Þ� j ¼ ð2; 1; 0; 1Þ, jnð2Þ� j ¼ ð1; 2; 0; 1Þ
with ð�;�Þ ¼ ð1; 4Þ and its permutations. Since the fourth
(temporal) direction is longer for our lattice (Li¼1;2;3 ¼ 16
while L4 ¼ 32), the fourth component of Q� is effectively

1=2 of spatial components when they are the same in n�.

The corresponding momentum squared for this choice is
ðaQÞ2 ’ 0:776. For larger lattice momenta, there are many
possible choices that this procedure is applied.
The lattice artifact in the diagonal pieces, BJ

1ðQÞ and

BJ
2ðQÞ, can be extracted in a similar manner by solving

linear equations for � ¼ � after subtracting the CJ
11ðQÞ

terms. For instance, the leading contribution ð�ð1Þ
J ðQÞQ2 �

BJ
0ðQÞÞ��� is extracted by subtracting the subleading con-

tribution BJ
1ðQÞQ2

����, which can be identified from a

difference between hJ1J1ilatðQÞ and hJ2J2ilatðQÞ at the
same Q2, for instance.
Figure 1 shows the numerical results for BJ

1ðQÞ,
BJ
2ðQÞ=a2, and CJ

11ðQÞ=a2 at the smallest quark mass

(mq ¼ 0:015) as a function of ðaQÞ2 for both vector and

axial channels. In the momentum region ðaQÞ2 < 2:3 only
the BJ

1ðQÞ term gives sizable contribution, while the others

are an order of magnitude smaller even without the sup-
pression due to ðaQÞ2. Their dependence on ðaQÞ2 is rather
mild, so that it seems reasonable to fit these functions as a
polynomial of ðaQÞ2. We use a third-order polynomial to
model these functions. This is used to subtract the artifacts
at the momentum points for which the above procedure is
not applicable, e.g. below the lowest ðaQÞ2 ’ 0:776.
We notice that the difference between J ¼ V and J ¼ A

is consistent with zero within statistical errors. This indi-
cates that these lattice artifacts are strongly constrained by
the exact chiral symmetry of the overlap fermion, and the
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effect of the finite quark mass is negligible. It also suggests
that such short-distance quantities are insensitive to the
spontaneous chiral symmetry breaking, as it should be.
This property is essential in the calculation of the differ-

ence �ð‘Þ
V ðQÞ ��ð‘Þ

A ðQÞ, which is related to the electro-
magnetic mass difference of pions [18,19].

C. Perturbative calculation of the lattice artifacts

Since the lattice artifacts are most significant in the high
ðaQÞ2 region, perturbative analysis of the discretization
effects is expected to give a reasonable estimate. We
calculate the vacuum polarization functions in the lattice
perturbation theory at one-loop level, which means that
only the zeroth order of �s is included. We then extract the

terms corresponding to �ð0þ1Þ
J ðQÞ, BJ

1;2ðQÞ, and CJ
11ðQÞ.

We calculate the vacuum polarization diagram in which
two (axial-) vector currents (3) and (4) are inserted. The
renormalization factor Z is set equal to 1 at this order. In
the momentum space, the two-point function is written as

hV�V�ilatðQÞ ¼
Z �

��

d4K

ð2�Þ4 Tr

��
1� 1

2m0

D0ðKÞ
�

� S0ðKÞ��

�
1� 1

2m0

D0ðK �QÞ
�

� S0ðK �QÞ��

�
; (8)

where the fermion propagator S0ðKÞ is given by

S0ðKÞ ¼ 1

2m0

��i
P
�
�� sinðK�Þ

!ðKÞ þ bðKÞ þ 1

�
(9)

with

!ðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�

sin2ðK�Þ þ bðKÞ2
s

; (10)

bðKÞ ¼ X
�

ð1� cosðK�ÞÞ �m0 (11)

for the overlap fermion andD0ðKÞ�1 ¼ S0ðKÞ. We set a ¼
1 in this subsection. In the perturbative calculation,m0 may
be set equal to 1. At the perturbative level, the vector and
axial-vector current correlators are equivalent in the mass-
less limit, because of the exact chiral symmetry of the
overlap fermion.
After performing the numerical integral in (8) we extract

B1;2ðQÞ, C11ðQÞ, and �VðQÞ in (5) through the same

numerical procedure as we used in the nonperturbative
extraction. To be explicit, we take representative values
of ðaQÞ2 between 0.4 and 2.3 and consider two different

momentum configurations aQð1Þ and aQð2Þ. The results for
B1ðQÞ, B2ðQÞ=a2, and C11ðQÞ=a2 are shown in Fig. 2. As
we found in the nonperturbative calculation, the ðaQÞ2
dependence is rather mild and we may precisely model
these functions by quadratic functions: BPT

1 ðQÞ ¼
0:069 30ð59Þ � 0:003 32ð85ÞðaQÞ2 þ 0:000 09ð27ÞðaQÞ4,
BPT
2 ðQÞ ¼ 0:0025ð22Þ þ 0:0023ð30ÞðaQÞ2 � 0:0009ð9Þ�

ðaQÞ4, and CPT
11 ðQÞ ¼ �0:005 07ð14Þ þ 0:002 27ð20Þ�

ðaQÞ2 � 0:000 46ð6ÞðaQÞ4. The fit curves are shown in
Fig. 2.
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FIG. 2 (color online). Momentum dependence of BJ
1ðQÞ,

CJ
11ðQÞ=a2, and BJ

2ðQÞ=a2 calculated in perturbation theory.
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FIG. 1 (color online). Momentum dependence of BJ
1ðQÞ,

BJ
2ðQÞ=a2, and CJ

11ðQÞ=a2 at mq ¼ 0:015. Circles (crosses)

show the vector (axial-vector) channel. The solid curves repre-
sent a polynomial fit and the dashed curves show the one-loop
results.
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The same curves are also plotted in Fig. 1 by dashed
lines. These perturbative results show reasonable agree-
ment with the lattice data. It indicates that the lattice
artifacts are indeed well described by the perturbation
theory.

D. Results for the vacuum polarization functions

Lattice results for the vacuum polarization function

�ð0þ1Þ
J ðQÞ for J ¼ V are shown in Fig. 3. The vacuum

polarization function can be extracted from off-diagonal
� � � (triangles) and from diagonal � ¼ � (circles) com-
ponents. Upper and lower panels show the data before and
after the subtraction of BJ

nðQÞ and CmnðQÞJðQÞ terms.

Namely, for the upper panel, �ð0þ1Þ
J ðQÞ is identified with

the formula (5) but without the BJ
nðQÞ and CJ

mnðQÞ terms.
As discussed above, raw lattice data of the diagonal com-
ponents receive large contamination from BJ

1ðQÞ while the
artifact for the off-diagonal components is much smaller
(below 0.01).

After the nonperturbative subtraction of BJ
1;2ðQÞ and

CJ
11ðQÞ, we observe that the off-diagonal and diagonal

components give consistent results. It strongly indicates
that the higher order lattice artifacts are unimportant. We
average the diagonal and off-diagonal data in the following
analysis.

III. OPERATOR PRODUCT EXPANSION

A. V and A channels

We now discuss the fit of the lattice data to the OPE
expression of the form [20]

�ð0þ1Þ
J jOPEðQ2Þ ¼ cþ C0ðQ2; �2Þ þm2

Q2
CJ
mðQ2; �2Þ

þ CJ
�qqðQ2Þ hm �qqi

Q4

þ CGGðQ2Þ hð�s=�ÞGGi
Q4

: (12)

Instead of directly treating the Adler function, we analyze

its indefinite integral�ð0þ1Þ
J jOPEðQ2Þ. The coefficient func-

tions C0ðQ2; �2Þ, CJ
mðQ2; �2Þ, CJ

�qqðQ2Þ, and CGGðQ2Þ are
analytically calculated in perturbation theory. The terms of
order 1=Q6 and higher are not included.
A constant c is divergent and thus scheme dependent,

while other terms are finite and well defined. Although we
need to specify the renormalization scheme, the scheme
dependence should disappear as the higher order terms are
included. The following formulae are consistently given in

theMS scheme, so that the strong coupling constant �sð�Þ
is defined in this conventional scheme.
The leading term C0ðQ2; �2Þ is known to be Oð�2

sÞ in
the massless limit [7,8] as

C0ðQ2; �2Þ ¼ 1

16�2

�
20

3
þ 4 ln

�2

Q2
þ �sð�2Þ

�

�
55

3
� 16�ð3Þ

þ 4 ln
�2

Q2

�
þ

�
�sð�2Þ

�

�
2
�
41 927

216
� 3701

324
Nf

�
�
1658

9
� 76

9
Nf

�
�ð3Þ þ 100

3
�ð5Þ

þ
�
365

6
� 11

3
Nf �

�
44� 8

3
Nf

�
�ð3Þ

þ
�
11

2
� 1

3
Nf

�
ln
�2

Q2

�
ln
�2

Q2

��
; (13)

where Nf denotes the number of flavors, and the zeta

function is numerically given as �ð3Þ ¼ 1:202 05 � � � ,
�ð5Þ ¼ 1:036 92 � � � . For a finite quark mass there is a
contribution of Oðm2=Q2Þ with running mass m ¼ mð�Þ.
This term is represented by CJ

mðQ2; �2Þ, which is also
calculated to be Oð�2

sÞ as

CV
mðQ2; �2Þ ¼ 1

4�2

�
�6þ �sð�2Þ

�

�
�16� 12 ln

�2

Q2

�

þ
�
�sð�2Þ

�

�
2
�
� 19 691

72
þ 95

12
Nf � 124

9
�ð3Þ

þ 1045

9
�ð5Þ �

�
55þ 12 ln

�2

Q2

�
ln
�2

Q2

�
�
11� 2

3
Nf

��
13

2
þ 3

2
ln
�2

Q2

�
ln
�2

Q2

��

þ Nf

16�2

�
�sð�2Þ

�

�
2
�
128

3
� 32�ð3Þ

�
; (14)

0

0.05

0.1

0.15

0.2 Π
V

(0+1)
+[C

11
] (off-diag.)

Π
V

(0+1)
+[B

1,2
,C

11
] (diag.)

0.5 1 1.5 2

(aQ)
2

0

0.05

0.1

0.15

0.2 Π
V

(0+1)
 (off-diag.)

Π
V

(0+1)
 (diag.)

m
q
=0.015

FIG. 3 (color online). �ð0þ1Þ
V ðQÞ from off-diagonal � � � and

diagonal � ¼ � correlators with (lower panel) and without
(upper panel) the subtraction of BJ

1;2ðQÞ and CJ
11ðQÞ.
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CA
mðQ2;�2Þ ¼ 1

4�2

�
�6þ�sð�2Þ

�

�
�12� 12 ln

�2

Q2

�

þ
�
�sð�2Þ

�

�
2
�
�4681

24
þ 55

12
Nf

�
�
34� 8

3
Nf

�
�ð3Þ þ 115�ð5Þ

�
�
47þ 12 ln

�2

Q2

�
ln
�2

Q2
�

�
11� 2

3
Nf

�

�
�
11

2
þ 3

2
ln
�2

Q2

�
ln
�2

Q2

��
þ Nf

16�2

�
�sð�2Þ

�

�
2

�
�
128

3
� 32�ð3Þ

�
: (15)

We ignore terms of Oðm4Þ and higher.

The OPE corrections of the form hOðnÞi=Qn start from
the dimension-four operators m �qq and ð�s=�ÞGG. Their
Wilson coefficients CJ

�qqðQ2Þ and CGGðQ2Þ are known to be
Oð�2

sÞ and Oð�sÞ, respectively, as [21]

CV=A
�qq ðQ2Þ ¼ �2

�sð�2Þ
�

�
1þ 1

24

�sð�2Þ
�

�
ð116� 4NfÞ

þ ð66� 4NfÞ ln�
2

Q2

��
þ =� 2

�
1þ 4

3

�sð�2Þ
�

þ 4

3

�
�sð�2Þ

�

�
2
��
191

24
� 7

36
Nf

�

þ
�
11

4
� 1

6
Nf

�
ln
�2

Q2

��
þ Nf

3

�
�sð�2Þ

�

�
2

�
�
4�ð3Þ � 3þ ln

�2

Q2

�
þ 0=4; (16)

CGGðQ2Þ ¼ 1

12

�
1� 11

18

�sðQÞ
�

�
: (17)

Here we note that the ‘‘gluon condensate’’ hð�s=�ÞGGi is
defined only through the perturbative expression like (12).
Because of an operator mixing with the identity operator,
the operator ð�s=�ÞGG contains a quartic power diver-
gence that cannot be unambiguously subtracted within
perturbation theory, which is known as the renormalon
ambiguity [22]. Therefore, the term hð�s=�ÞGGi in (12)
only has a meaning of a parameter in OPE, which may
depend on the order of the perturbative expansion, for
instance.

The quark condensate h �qqi is, on the other hand, well
defined in the massless limit, since it does not mix with
lower dimensional operators, provided that the chiral sym-
metry is preserved on the lattice. Power divergence may
appear at finite quark mass as ma�2. In the OPE formula
(12), it thus leads to a functional dependence m2a�2=Q4.
Since the quark mass in the lattice unit is small (0.015–
0.050) and ðaQÞ2 is of Oð1Þ in our lattice setup, this
divergent contribution is tiny (� 0:1%–0:2%). In fact,

we do not find any significant m2 dependence in the lattice
data. We therefore neglect this m2 dependence in the
numerical analysis.

B. V �A channel

In addition to the individual vector and axial-vector
correlators, we consider the V � A vacuum polarization

function. For the difference �ð0þ1Þ
V�A ðQÞ � �ð0þ1Þ

V ðQÞ �
�ð0þ1Þ

A ðQÞ, the lattice data are more precise than the indi-

vidual�ð0þ1Þ
J ðQÞ, so that the 1=Q6 and 1=Q8 terms are also

necessary:

�ð0þ1Þ
V�A jOPEðQ2Þ ¼ ðCV

m � CA
mÞðQ2Þ 1

Q2

þ ðCV
�qq � CA

�qqÞðQ2Þ hm �qqi
Q4

þ
�
a6ð�Þ þ b6ð�Þ lnQ

2

�2
þ c6mq

�
1

Q6

þ a8
Q8

: (18)

In the V � A combination the coefficients CV
m � CA

m and
CV

�qq � CA
�qq start at Oð�sÞ. The coefficients a6ð�Þ and

b6ð�Þ contain dimension-six operatorsO8 andO1 as [9,10]

a6ð�Þ ¼ 2�h�sO8ið�Þ þ 2
54h�2

sO8ið�Þ þ 2h�2
sO1ið�Þ;

(19)

b6ð�Þ ¼ �h�2
sO8ið�Þ þ 8

3h�2
sO1ið�Þ; (20)

and the definition of these operators is given by

hO8i ¼
X
�;i;j

hð �qi���
3
ijqjÞð �qi���

3
ijqjÞ

� ð �qi���5�
3
ijqjÞð �qi���5�

3
ijqjÞi; (21)

hO1i ¼
X

�;a;i;j

hð �qi��	
a�3ijqjÞð �qi��	

a�3ijqjÞ

� ð �qi���5	
a�3ijqjÞð �qi���5	

a�3ijqjÞi; (22)

with generator matrices �3 and 	a of flavor SU(2) and color
SU(3) symmetries, respectively. The numerical coeffi-
cients in the definition of a6 and b6 correspond to those
of the naive dimensional regularization (NDR) of �5.
Unlike the dimension-four quark condensate hm �qqi,

hO8i and hO1i remain finite in the massless limit, hence
gives leading contribution. The term c6, which has a mass-
dimension five, describes their dependence on the quark
mass. The term a8=Q

8 represents the contributions from
dimension-eight operators.
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IV. FITTING RESULTS

A. Fit parameters

In the fitting of the lattice data with the functions (12)
and (18), we fix the scale � to 2 GeV. We use the value of
the quark condensate obtained from a simulation in the 

regime using the same lattice formulation at slightly
smaller lattice spacing, h �qqið2 GeVÞ ¼ �½0:251ð7Þ�
ð11Þ GeV�3 [23]. (The values quoted in [12,24,25] are
slightly different from but consistent with this number.
The precise value does not affect the fit much, since the
contribution of the C �qq term is subdominant.) The quark

mass is renormalized in the MS scheme using the non-
perturbative matching factor Zmð2 GeVÞ ¼ 0:838ð17Þ [12]
as mð�Þ ¼ Zmð�Þmq. The coupling constant �sð�Þ is

transformed to the scale of two-flavor QCD, �ð2Þ
MS

, using

the four-loop formula [26]

�sð�2Þ
�

¼ 1

�0L

�
1��1

�2
0

lnL

L
þ 1

�2
0L

2

�
�2

1

�2
0

ðln2L� lnL�1Þ

þ�2

�0

�
þ 1

�3
0L

3

�
�3

1

�3
0

�
�ln3Lþ5

2
ln2Lþ2lnL�1

2

�

�3
�1�2

�2
0

lnLþ �3

2�0

��
(23)

with

�0 ¼ 1
4ð11� 2

3NfÞ; (24)

�1 ¼ 1
42
ð102� 38

3NfÞ; (25)

�2 ¼ 1
43
ð28572 � 5033

18 Nf þ 325
54N

2
fÞ; (26)

�3 ¼ 1
44
½149 7536 þ 3564�ð3Þ � ð1 078 361162 þ 6508

27 �ð3ÞÞNf

þ ð50 065162 þ 6472
81 �ð3ÞÞN2

f þ 1093
729N

3
f�; (27)

and L ¼ lnð�2=�
ðNfÞ2
MS

Þ.
Then, the free parameters in the fit are the scheme-

dependent constant c, the gluon condensate parameter

hð�s=�ÞGGi, and the QCD scale �ð2Þ
MS

for the fit of an

average�ð0þ1Þ
VþA ðQÞ � �ð0þ1Þ

V ðQÞ þ�ð0þ1Þ
A ðQÞ. For the dif-

ference�ð0þ1Þ
V�A ðQÞ, �ð2Þ

MS
obtained above is used as an input

and the dimension-six condensates a6, b6, and c6 are free
parameters.

B. V þA channel

The OPE analysis requires a window in Q2 where the
systematic errors are under control. The upper limit
ðaQÞ2max ’ 1:3238 is set by taking the points where differ-
ent definitions of the lattice momentum, i.e.Q� ¼ ð2=aÞ�
sinð�n�=L�Þ and Q� ¼ ð2=aÞ�n�=L�, give consistent

results within one standard deviation. In the physical

unit, this corresponds to 1.92 GeV. To determine ðaQÞ2min,

we investigate the dependence of the fit parameters on

ðaQÞ2min in Fig. 4. We observe that the results for �ð2Þ
MS

,

hð�s=�ÞGGi, and c are stable between ðaQÞ2min ’ 0:48 and
0.65, which correspond to the momentum scale 1.16–
1.35 GeV. Above ðaQÞ2min ’ 0:65 the fit becomes unstable;

the results are still consistent within one standard
deviation.

Figure 5 shows the lattice data for �ð0þ1Þ
VþA ðQÞ at each

quark mass and corresponding fit curves. It is clear that the
Q2 dependence of the lattice data is well reproduced by the
analytic formula. The quark mass dependence of

�ð0þ1Þ
VþA ðQÞ is, on the other hand, not substantial as expected

from the fit function (12). Our fit with the known value of
h �qqi reproduces the data well. In the chiral limit, (12) is

controlled by two parameters:�ð2Þ
MS

and hð�s=�ÞGGi (apart
from the unphysical constant term c). The fit result in the
chiral limit is drawn by a solid curve. The dashed curve
drifting upwards towards the low Q2 region shows the
result when the contribution from the hð�s=�ÞGGi term
is omitted by hand. It indicates that the Q2 dependence is
mainly controlled by the perturbative piece while the
dimension-four term gives a minor contribution, which
becomes slightly more important in the low Q2 regime.

Numerically, we obtain �ð2Þ
MS

¼ 0:234ð9Þ GeV and

hð�s=�ÞGGi ¼ �0:058ð7Þ GeV4 from a global fit of the
lattice data at four different quark masses. The fit range of
ðaQÞ2 is [0.65, 1.3238].

0.1

0.2

0.3

Λ
MS

(2)
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s
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c

FIG. 4 (color online). Fit range dependence of �ð2Þ
MS

,
hð�s=�ÞGGi, and the constant term c. The maximum momentum
squared ðaQÞ2max is 1.324.
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Figure 6 shows �ð2Þ
MS

extracted from the lattice data at

each quark mass. The flat behavior provides another evi-
dence that the lattice data are consistent with the perturba-
tive prediction (12).

C. Systematic errors

In this subsection we discuss possible systematic errors

in this determination of �ð2Þ
MS

. That includes an estimate of

the discretization effects and that of the truncation of
perturbative and operator product expansions.

As indicated from the perturbative analysis presented in
Sec. II C, the discretization effects are estimated reason-
ably well using the perturbation theory. Here, we discuss
the one-loop results for�JðQÞ on the lattice for our choice
of the fermion action and the current operators. This aims
at estimating the remaining systematic errors due to the
discretization effects after explicitly subtracting the BJ

nðQÞ
and CJ

mnðQÞ terms.
We again calculate the same one-loop vacuum polariza-

tion diagram at representative values of ðaQÞ2 between 0.1
and 2.0. After subtracting the BJ

1;2ðQÞ and CJ
11ðQÞ terms

determined perturbatively in Sec. II C we numerically
obtain the piece corresponding to �JðQÞ, which contains
the physical logarithmic dependence �1=ð4�Þ2 lnððaQ2ÞÞ
as well as the lattice artifacts. In the continuum theory (or
the perturbative calculation with the dimensional regulari-
zation, to be specific) only this logarithmic term appears,
hence we may identify the remaining terms as the lattice
artifacts. They are parametrized by a polynomial of ðaQÞ2.

The result of the one-loop calculation is shown in Fig. 7
(upper panel). We fit the data with a function including the
known logarithmic term plus a quadratic function of ðaQÞ2

and obtain the numerical result �LatPT
V ðQ2Þ ¼ � 1

4�2 �
lnððaQÞ2Þ þ 0:030 85ð9Þ þ 0:009 52ð30ÞðaQÞ2 �
0:001 32ð20ÞðaQÞ4.
In order to estimate the impact of this size of the dis-

cretization effect, we add this term to the fit function (12)

and repeat the whole analysis. The result is �ð2Þ
MS

¼
0:249ð37Þ GeV and hð�s=�ÞGGi ¼ þ0:11ð15Þ GeV4. We

find that �ð2Þ
MS

is not largely affected, while hð�s=�ÞGGi is
very sensitive to the lattice artifact and in fact changes its
sign.
Other (Lorentz-violating) discretization effects due to

BJ
nðQÞ and CJ

mnðQÞ are subtracted nonperturbatively so that
the associated error should be negligible. With our prelimi-
nary calculation of the above-mentioned conserved vector
and axial-vector currents for the overlap fermion, we con-
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FIG. 5 (color online). �ð0þ1Þ
VþA ðQÞ as a function of ðaQÞ2. The

lattice data at different quark masses are shown by open sym-
bols. Fit curves for each quark mass and in the chiral limit are
drawn. The full result in the chiral limit (dashed-dots curves are
at the finite masses, and solid curve is in the chiral limit), as well
as that without h�sG

2i=Q4 term (dashed curve), are shown.
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FIG. 6 (color online). �ð2Þ
MS

from the data at each quark mass.
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firmed that the results are consistent with the calculation
presented in this paper obtained with the nonconserved
currents (3) and (4) up to the unphysical constant term c.
This observation confirms that our procedure to subtract
the BJ

nðQÞ and CJ
mnðQÞ terms is working as expected.

The truncation of the perturbative and operator product
expansions is also a possible source of the systematic error.
In order to estimate the size of the former, we repeat the
analysis using the fit formulae truncated at a lower order

(two-loop level), and find that the change of �ð2Þ
MS

is much

less than one standard deviation. It indicates that the higher
order effects are negligible. The error from the truncation
of OPE is estimated by dropping the terms of Oð1=Q4Þ
from (12). From fits with higher ðaQÞ2min (between 0.79 and

0.89) to avoid contamination from the 1=Q4 effects, we

obtain �ð2Þ
MS

¼ 0:247ð3Þ GeV. The deviation of �ð2Þ
MS

is

about the same size as that due to the discretization effect.
The errors due to finite physical volume and the fixed

topological charge in our simulation [27] are unimportant
for the short-distance quantities considered in this work. A
simple order counting gives an error of order 1=ðQLÞ2 &
0:4% or smaller.

To quote the final result, we take the central value from
the fit without the discretization effect

�ð2Þ
MS

¼ 0:234ð9Þ þ16
�0

� �
GeV; (28)

where the first error is statistical and the second is system-
atic due to the discretization and truncation errors. The
result is compatible with previous calculations of �s in

two-flavor QCD: �ð2Þ
MS

¼ 0:250ð16Þð16Þ GeV [28] and

0.249(16)(25) GeV [29]. (The physical scale is normalized
with an input r0 ¼ 0:49 fm.)

D. V �A channel

For the fit of the V � A vacuum polarization �ð0þ1Þ
V�A ðQÞ,

we also examine the fit range dependence. In Fig. 8 the fit
parameters a6, b6, and a8 are shown as a function of
ðaQÞ2min while fixing ðaQÞ2max at the same value 1.3238.

We attempt to fit with (filled symbols) and without (open
symbols) the a8=Q

8 term in order to investigate how stable
the results are against the change of the order of the 1=Q2

expansion. We find that the fit with a8=Q
8 is stable down to

ðaQÞ2min ’ 0:46, while the other could not be extended

below ðaQÞ2min ’ 0:58. The difference between filled and

open symbols is marginal for a6 (circles), but too large to
make a reliable prediction for b6 (squares). To quote the

results we set ðaQÞ2min ¼ 0:586 for both �ð0þ1Þ
VþA ðQÞ and

�ð0þ1Þ
V�A ðQÞ.
In Fig. 9, we plotQ6�ð0þ1Þ

V�A ðQÞ as a function of ðaQÞ2 for
four different values of the quark massmq. The quark mass

dependence is clearly observed. The main contribution
comes from a dimension-six term c6mq=Q

6, while the

dimension-four term hm �qqi=Q4 is subdominant (�
20%), as its coefficient starts at Oð�sÞ. In the chiral limit,
there is a small but nonzero value remaining in

Q6�ð0þ1Þ
V�A jOPEðQ2Þ as shown by a dashed curve in the

plot. This is due to the four-quark condensates a6 and b6.

The four-quark condensate a6 obtained from �ð0þ1Þ
V�A ðQÞ

is

a6ð2 GeVÞ ¼ �0:0038ð3Þ þ16
�0

� �
GeV6; (29)

where the first error is statistical. The second error repre-
sents an uncertainty due to the truncation of the 1=Q2

expansion. The central value is taken from the fit with
a8=Q

8 in (18) and the error reflects the shift when this
term is discarded. The result agrees with the previous
phenomenological estimates �ð0:003� 0:009Þ GeV6
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FIG. 8 (color online). Fit range dependence of a6ð�Þ, b6ð�Þ,
and a8. The horizontal axis denotes the minimum momentum
squared ðaQÞ2min.
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[30]. The other condensate is less stable; we obtain
b6ð2 GeVÞ ¼ þ0:0017ð7Þ GeV6 or �0:0008ð2Þ GeV6

with or without the Oð1=Q8Þ term, respectively.

V. CONCLUSION

Many of the lattice calculations to date have analyzed
the two-point correlation functions to extract physical
quantities such as the hadron mass spectra and decay
constants. Usually the exponential falloff of the correlator
at large Euclidean time separation is used to isolate the
ground state contribution. In this way, however, many
interesting pieces of information are lost. They are in the
short and middle distance regime where the perturbative
analysis is also applicable. We use the two-point current
correlators calculated on the lattice to extract the strong
coupling constant with the help of the continuum pertur-
bation theory and the operator product expansion. The
recent work by Allison et al. has exploited [5] a similar
idea and applied it to the charmonium correlator to extract
the charm quark mass and the strong coupling constant.

With the exact chiral symmetry realized by the overlap
fermion formulation, the analysis of the lattice data is
simplified. For the case of the vacuum polarizations, the
continuum form of OPE may be applied without suffering
from additional operator mixings, such as the additive
renormalization of the operator �qq, which appears in the
Wilson-type fermion formulations. We also obtain the

four-quark condensates a6 and b6, which are relevant to
the analysis of kaon decays [9].
In principle, our analysis does not require lattice pertur-

bation theory, which is too complicated to carry out to the
loop orders available in the continuum theory. But the
perturbative calculation is still useful to estimate the dis-
cretization effects, which is well described by perturbation
theory in the asymptotic free theories.
The result for the strong coupling constant is compatible

with previous lattice calculations. The size of statistical
and systematic errors is also comparable with them. An
obvious extension of this work is the calculation in 2þ
1-flavor QCD, which is under way [31]. We also study the
improvement of the analysis by using the conserved cur-
rent for the overlap fermion formulation.
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