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We present a quenched lattice calculation of all six form factors: vector [f1ðq2Þ], weak-magnetism

[f2ðq2Þ], induced scalar [f3ðq2Þ], axial-vector [g1ðq2Þ], weak electricity [g2ðq2Þ], and induce pseudoscalar
[g3ðq2Þ] form factors, in hyperon semileptonic decay �0 ! �þl� using domain wall fermions. The q2

dependences of all form factors in the relatively low q2 region are examined in order to evaluate their

values at zero momentum transfer. The �0 ! �þ transition is highly sensitive to flavor SU(3) breaking

since this decay corresponds to the direct analogue of neutron beta decay under the exchange of the down

quark with the strange quark. The pattern of flavor SU(3) breaking effects in the hyperon beta decay is

easily exposed in a comparison to results for neutron beta decay. We measure SU(3)-breaking corrections

to f1ð0Þ, f2ð0Þ=f1ð0Þ, and g1ð0Þ=f1ð0Þ. A sign of the leading-order corrections, of which the size is less

than a few percent, on f1ð0Þ is likely negative, while f2ð0Þ=f1ð0Þ and g1ð0Þ=f1ð0Þ receive positive

corrections of order 16% and 5%, respectively. The observed pattern of the deviation from the values in

the exact SU(3) limit does not support some of the model estimates. We show that there are nonzero

second-class form factors in the �0 ! �þ decay, measuring f3ð0Þ=f1ð0Þ ¼ 0:14ð9Þ and g2ð0Þ=g1ð0Þ ¼
0:68ð18Þ, which are comparable to the size of first-order SU(3) breaking. It is also found that the SU(3)

breaking effect on g3ð0Þ=g1ð0Þ agrees with the prediction of the generalized pion-pole dominance.
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I. INTRODUCTION

The latest lattice calculations of K ! �l� (Kl3) semi-
leptonic decays have been greatly developed with high
precision [1–3]. The results for the vector form factor
fþð0Þ of Kl3 decays, which deviates from unity due to
flavor SU(3) breaking, can be used to provide a very
precise determination of the element Vus of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [4,5]. Those first-
principles calculations contribute greatly to a stringent
test of the CKM unitary through the first row relation
jVudj2 þ jVusj2 þ jVubj2 ¼ 1 [6]. On the other hand,�S ¼
1 semileptonic hyperon decays provide alternative deter-
minations of jVusj [7]. The consistency of the values of
jVusj determined from different experiments needs to be
confirmed. As we will explain later, however, the determi-
nation of jVusj from the hyperon decays should be affected
by larger theoretical uncertainties than those of Kl3 decays
[8]. This is simply because the lack of a reliable theoretical
calculation of the leading symmetry-breaking corrections
in the hyperon beta decays. Indeed, the conventional
Cabibbo model [5], where flavor SU(3) breaking effects
are ignored, is commonly used for the analysis of the
hyperon beta-decay data [9].

An essential difference from the case of Kl3 decays is
that the axial-vector current also contributes to the transi-

tion in the hyperon beta decays. Thus, the precise deter-
mination of jVusj in the hyperon beta decays requires
information of the ratio of the axial vector to vector form
factors g1ð0Þ=f1ð0Þ in addition to the vector form factor
f1ð0Þ [9]. Here we recall that the various ratios g1ð0Þ=f1ð0Þ
in the hyperon beta decays also provide vital information to
the analysis of strange quark spin fraction of the proton
spin, together with the polarized deep inelastic scattering
data [10]. However, such analysis heavily relies on the
Cabibbo model. The flavor SU(3) breaking introduces the
systematic uncertainty on the strange quark contribution to
the proton spin. This issue is still under debate [11].
Recently, a new analysis, where the first-order corrections
of both SU(3) and SU(2) symmetry breaking are properly
taken into account within the Cabibbo model, was pro-
posed by Yamanishi [12]. The author has reported that
flavor breaking effects significantly affect the evaluation
of the amount of spin carried by the strange quarks inside
the proton [12].
In the hyperon decays, a model independent evaluation

of SU(3)-breaking corrections is highly demanded for both
the CKM unitary test and the proton spin problem. The
weak matrix element of the hyperon beta decays can be
calculated with high accuracy from first principles using
the techniques of lattice QCD, similar to what is achieved
in the case of Kl3 decays [1–3]. There is a single lattice
study to be completed for a specific hyperon decay, �� !
nl�. The lattice simulation has been performed by
Guadagnoli et al. with OðaÞ-improved Wilson fermions
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in the quenched approximation [13,14]. As we are inter-
ested primarily in flavor SU(3) breaking effects not in the
absolute values of each form factor, we choose a different
hyperon decay, �0 ! �þl� in this study. This is simply
because the �0 ! �þ transition is the direct analogue of
neutron beta decay under the exchange of the down quark
with the strange quark. The flavor SU(3) breaking can be
easily exposed through a comparison with results of neu-
tron beta decay. In Ref. [15], for the axial-vector coupling
of neutron beta decay, g1ð0Þ ¼ 1:212ð27Þ in the chiral limit
is obtained from quenched lattice QCD calculations with
domain wall fermions (DWFs). It underestimates the ex-
perimental value of 1.2695(29) by less than 5%. Other
relevant weak form factors have been subsequently inves-
tigated in Ref. [16]. We naturally extend the quenched
DWF calculation for investigating SU(3)-breaking correc-
tions to the hyperon semileptonic decay form factors.

Our paper is organized as follows. In Sec. II, we first
present a brief introduction of the hyperon beta decays. In
Sec. III, details of our Monte Carlo simulations and some
basic results are given. We also describe the lattice method
for calculating the baryon beta-decay form factors.
Section IV is devoted to our determination of the scalar
form factor fSðq2Þ, which will be defined in the next
section, at finite-momentum transfer. We describe the in-
terpolation of the form factor to zero momentum transfer
and the chiral extrapolation in order to evaluate the value of
f1ð0Þ at the physical point. We also present our estimate of
jVusj. Section V gives the result of the ratio of g1ð0Þ=f1ð0Þ
at the physical point. We then discuss flavor SU(3)-
breaking effects that appeared in g1ð0Þ=f1ð0Þ for the�0 !
�þ transition in comparison to neutron beta decay. The
results for the other form factors including the second-class
form factors f3 and g2 are presented in Sec. VI. Finally, in
Sec. VII, we summarize our results and conclusions.

II. HYPERON BETA DECAYS

The general form of the baryon matrix element for
semileptonic decays B ! bl� is given by both the vector
and axial-vector transitions:

hbðp0ÞjV�ðxÞ þ A�ðxÞjBðpÞi
¼ �ubðp0ÞðOV

�ðqÞ þOA
�ðqÞÞuBðpÞeiq�x; (1)

where q � p� p0 is the momentum transfer between the
initial state (B) and the final state (b) which belongs to the
lightest JP ¼ 1=2þ SUð3Þ octet of baryons ðp; n;�;�;�Þ.
The vector and axial-vector currents are defined as
V�ðxÞ ¼ �uðxÞ��dðxÞ and A�ðxÞ ¼ �uðxÞ���5dðxÞ for�S ¼
0 decays, and V�ðxÞ ¼ �uðxÞ��sðxÞ and A�ðxÞ ¼
�uðxÞ���5sðxÞ for �S ¼ 1 decays. Six form factors are
needed to describe the hyperon beta decays: the vector
(f1), weak-magnetism (f2), and induced scalar (f3) form
factors for the vector current,

O V
�ðqÞ ¼ ��f

B!b
1 ðq2Þ þ ���q�

fB!b
2 ðq2Þ

MB þMb

þ iq�
fB!b
3 ðq2Þ

MB þMb

(2)

and the axial-vector (g1), weak electricity (g2), and in-
duced pseudoscalar (g3) from factors for the axial current,

O A
�ðqÞ ¼ ���5g

B!b
1 ðq2Þ þ ���q��5

gB!b
2 ðq2Þ

MB þMb

þ iq��5

gB!b
3 ðq2Þ

MB þMb

; (3)

which are here given in the Euclidean metric convention
(we have defined ��� ¼ 1

2i ½��; ���) [17]. Here, MB (Mb)

denotes the rest mass of the initial (final) state. Note that
although the sign convention of the f3 and g3 form factors
is opposite in comparison with that of Refs. [9,18], in our
convention both g1 and g3 form factors are positively
defined for neutron beta decay. In addition, our adopted
normalization of 1=ðMB þMbÞ, instead of 1=MB that
adopted in experiments, is theoretically preferable for con-
sidering the time-reversal symmetry on the matrix ele-
ments [19].
For convenience in later discussions, we consider the

scalar form factor fSðq2Þ for the vector-current form fac-
tors given in Eq. (2):

fB!b
S ðq2Þ � fB!b

1 ðq2Þ þ q2

M2
B �M2

b

fB!b
3 ðq2Þ; (4)

which can be defined through the matrix element of the
divergence of the vector current as
hbðp0Þj@�V�ð0ÞjBðpÞi ¼ ðMb �MBÞfSðq2Þ �ubðp0ÞuBðpÞ
(see Appendix A for details), and also introduce a particu-
lar linear combination of the axial-vector-current form
factors given in Eq. (3) as

~g B!b
1 ðq2Þ � gB!b

1 ðq2Þ �MB �Mb

MB þMb

gB!b
2 ðq2Þ; (5)

which is defined in an alternative parametrization ofOA
�ðqÞ

(see Appendix B for details). Both fS and ~g1 form factors
are relevant in lattice calculations [13].
In the literature, the vector and the axial-vector form

factors at zero momentum transfer are called the vector
coupling gV ¼ f1ð0Þ and the axial-vector coupling gA ¼
g1ð0Þ, respectively. According to Weinberg’s classification
[20], the terms f3 and g2 are known as the second-class
form factors, which are identically zero in the certain
symmetric limit [isospin symmetry, U-spin symmetry, or
V-spin symmetry as SU(2) subgroups of the flavor SU(3)
symmetry] within the standard model. For an example, the
second-class form factors in �S ¼ 0 decays such as neu-
tron beta decays are prohibited from having nonzero values
because of G parity conservation in the isospin symmetry
limit (mu ¼ md) [9]. For �S ¼ 1 decays, the V-spin sym-
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metry (md ¼ ms) plays a similar role instead of the isospin
symmetry. Observation of nonzero second-class form fac-
tors corresponds to the direct signal of flavor SU(3)-
breaking effects in the hyperon beta decays. On the other
hand, the terms f3 and g3 are suppressed in the evaluation
of the beta-decay transition amplitude by a factor
½ml=ðMB þMbÞ�2 where ml is the charged lepton mass.
Therefore, for the decay B ! be ��e, their contributions can
be safely ignored. As no accurate experiment has yet been
performed on muonic hyperon decays, it is hard to access
information of f3 and g3 form factors in present
experiments.

In the exact SU(3) limit, the vector couplings are simply
given by SU(3) Clebsch-Gordan coefficients as f1ð0Þ ¼
fklm, while the axial-vector couplings g1ð0Þ are governed
by two parameters F and D as g1ð0Þ ¼ Ffklm þDdklm
[4,9] [F ¼ 0:475ð4Þ and D ¼ 0:793ð5Þ are quoted in
Ref. [12] for the conventional Cabibbo fit]. Here, dklm is
the totally symmetric tensor of the SU(3) group. Moreover,
the conserved vector current (CVC) hypothesis becomes
valid in this limit. The vector part of the weak current is
a conserved current like the electromagnetic current.
Thus, the value of f2ð0Þ is described by f2ð0Þ¼
ð�p��nÞfklm�3�ndklm, where �p and �n represent the

anomalous magnetic moments of the proton and neutron.
In the case of neutron beta decay, we get fn!p

1 ð0Þ ¼ 1,
gn!p
1 ð0Þ ¼ FþD, and fn!p

2 ð0Þ ¼ �p � �n, respectively.

For the �0 ! �þ decay, the exact SU(3) symmetry pre-

dicts that f�!�
1 ð0Þ, g�!�

1 ð0Þ, and f�!�
2 ð0Þ are identical to

those of neutron beta decay.
The experimental rate of the hyperon beta decays, B !

bl ��, is given by

� ¼ G2
F

60�3
ðMB �MbÞ5ð1� 3�ÞjVusj2jfB!b

1 ð0Þj2

�
�
1þ 3

��������
gB!b
1 ð0Þ

fB!b
1 ð0Þ

��������
2þ . . .

�
; (6)

where GF denotes the Fermi constant. The ellipsis can be
expressed in terms of a power series in the small quantity
� ¼ ðMB �MbÞ=ðMB þMbÞ, which is regarded as the
size of flavor SU(3) breaking [21]. The first linear term,
which should be given by �4�½g2ð0Þg1ð0Þ=f1ð0Þ2�B!b, is
safely ignored as small asOð�2Þ since the nonzero value of
the second-class form factor g2 should be induced at first
order of the � expansion [21]. The absolute value of
g1ð0Þ=f1ð0Þ can be determined by measured asymmetries
such as electron-neutrino correlation [9,21]. Therefore a
theoretical estimate of f1ð0Þ is primarily required for the
precise determination of jVusj. First of all, the value of
f1ð0Þ should be equal to the SU(3) Clebsch-Gordan coef-
ficient up to the second order in SU(3) symmetry breaking,
thanks to the Ademollo-Gatto theorem [22]. As the mass
splitting among octet baryons is typically of the order of
10%–15%, the expected size of the second-order correc-

tions is a few percent level. However, either the size, or the
sign of the second-order corrections are somewhat contro-
versial among various theoretical studies at present as
summarized in Table I.
In the bag model [23] and quark-model calculations

[24,25], flavor SU(3)-breaking effects on f1ð0Þ are mainly
accounted for wave function mismatches between strange
and nonstrange quarks. Both models predict a small nega-
tive correction. On the other hand, the 1=Nc expansion
approach including SU(3) symmetry breaking up to the
second order predicts a relatively large and positive cor-
rection. Recently, the full one-loop Oðp4Þ calculation in
heavy baryon chiral perturbation theory (HBChPT) was
completed by Villadoro [27]. However, the author empha-
sized that the SU(3) version of HBChPT does not seem to
be of help for the determination of f1ð0Þ. This is because a
slow convergence of the chiral expansion is observed. It is
also pointed out that a serious convergence problem is
revealed by the inclusion of spin-3=2 decuplet degrees of
freedom into the framework of HBChPT. Subsequently, the
complete one-loop order result has been checked in a
different regularization scheme, covariant baryon chiral
perturbation theory (CBChPT) [28]. Both the size and
the sign of the second-order corrections are found to be
different from results of HBChPT. The authors of Ref. [28]
have estimated partial corrections of Oðp5Þ in HBChPT
and then reconfirmed that the convergence behavior of
SU(3) baryon chiral perturbation seems to be problematic
as pointed out previously in Ref. [27]. Unlike the case of
Kl3 decays, the reliability of the chiral perturbation ap-
proach is questionable for the hyperon decays. A model
independent estimate of f1ð0Þ is highly required to settle
both the size, and the sign of the second-order corrections
on f1ð0Þ.
The leading correction to the axial-vector coupling g1ð0Þ

starts at first order in symmetry breaking, while flavor
SU(3)-breaking effects to f1ð0Þ are suppressed in first order
by the Ademollo-Gatto theorem [22]. Therefore, sizable
breaking corrections, which are of the order of 10% esti-
mated from the mass splitting in the octet baryons, are to be
expected in the ratio of g1ð0Þ=f1ð0Þ. However, the current

TABLE I. Theoretical uncertainties of f1ð0Þ for the �0 ! �þ
transition process.

Type of result ½f1ð0Þ��0!�þ Reference

Bag model 0.97 [23]

Quark model 0.987 [24]

Quark model 0.976 [25]

1=Nc expansion 1:12� 0:05 [26]

Full Oðp4Þ HBChPT 1.009 a [27]

Full Oðp4Þ þ partial Oðp5Þ HBChPT 1:004� 0:026 [28]

Full Oðp4Þ CBChPT 0:944� 0:016 [28]

aThe value is obtained by the isospin relation from that of the
�� ! �0 transition process.
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experimental precision is not enough to provide conclusive
evidence of the violation of a two-parameter (F and D) fit
based on the conventional Cabibbo model to ratios
g1ð0Þ=f1ð0Þ measured in various hyperon decays [9]. As
mentioned earlier, the �0 ! �þ beta decay is highly
sensitive to flavor SU(3) breaking since the ratio
g1ð0Þ=f1ð0Þ of this particular decay should be identical to
that of neutron beta decay if the flavor SU(3) symmetry is
manifest. Therefore, flavor SU(3)-breaking effects may be
easily exposed in the�0!�þ process. Indeed, the center-
of-mass correction approach [29] and the 1=Nc expansion
approach [26] predict that the ½g1ð0Þ=f1ð0Þ��!� is smaller
than the ½g1ð0Þ=f1ð0Þ�n!p by 8%–10% and 20%–30%,

respectively. Such sizable breaking corrections could be
distinguishable in an experiment. However, the first and
single experiment done by the KTeV Collaboration at
Fermilab showed no indication of flavor SU(3)-breaking
effects on g1ð0Þ=f1ð0Þ, measuring ½g1ð0Þ=f1ð0Þ��!� ¼
1:32�0:21

0:17 [18]. The KTeVexperiment reported no evidence

for a nonzero second-class form factor g2 [18] within their
experimental precision. The value of f2ð0Þ=f1ð0Þ has also
been measured in the KTeV experiment using the electron
energyspectrum.Theirobservedvalue, ½f2ð0Þ=f1ð0Þ��!�¼
3:8�2:3, seems to be consistent with that of neutron beta
decay as ½f2ð0Þ=f1ð0Þ�n!p ¼ �p � �n ¼ 3:706. Needless

to say, its error is too large to discriminate either the exact
SU(3) value or other theoretical predictions. See Table II,
where several theoretical predictions of the value
½f2ð0Þ��!� are compiled.

In this context, one would tend to conclude that the
predictions of the exact SU(3) symmetry limit hold better
in the case of hyperons. Indeed, it is true that the mass
splitting for hyperons is rather small compared to mesons.
Nevertheless, as we will show from our lattice simulations,
this is indeed not the case.

III. SIMULATION DETAILS

A. Lattice setup

We have performed a quenched lattice calculation on a
L3 � T ¼ 163 � 32 lattice with a renormalization group
improved gauge action, DBW2 (doubly blocked Wilson in
two-dimensional parameter space) gauge action [32,33] at
� ¼ 6=g2 ¼ 0:87. The inverse of lattice spacing is about
1.3 GeV, set by the 	-meson mass [34], yielding a physical
volume of ð2:4 fmÞ3. The spatial size 2.4 fm is large
enough to accurately calculate the axial-vector coupling
gA ¼ g1ð0Þ [16], which is one of the most sensitive ob-
servables to finite volume effects [15,35,36].
The previous quenched DWF studies by the RBC

Collaboration reported that the residual chiral symmetry
breaking of DWFs is significantly improved with a mod-
erate size of the fifth dimension. The residual quark mass
for Ls ¼ 16 is measured as small as mres � 5� 10�4 in
lattice units [34]. Although we work with relatively coarse
lattice spacing, a � 0:15 fm, good scaling behaviors of the
light hadron spectrum [34], the kaon B parameter BK [37],
and proton decay matrix elements [38] are observed be-
tween at � ¼ 0:87 (a � 0:15 fm) and 1.04 (a � 0:10 fm).
Therefore, we may deduce that no large scaling violation is
ensured for other observables as well in our DWF calcu-
lations. In Table III, some basic physics results are com-
piled from Ref. [34].
In this study, DWF quark propagators were generated

with three lighter quark masses mud ¼ 0:04, 0.05, and 0.06
for up and down quarks [39] and with two heavier quark
massesms ¼ 0:08 and 0.10 for the strange quark with Ls¼
16 and M5¼1:8. We then take 5 different combinations
between the up (down) quark and the strange quark as
ðmud;msÞ¼ ð0:04;0:08Þ, (0.05, 0.08), (0.06, 0.08), (0.04,
0.10), and (0.05, 0.10), which yield different SU(3)-

TABLE II. Theoretical predictions of f2ð0Þ for the �0 ! �þ transition process. For evaluations, we use current values of the
anomalous magnetic moments of � and � baryons [30].

Type of evaluation (Ref.) Formula ½f2ð0Þ��0!�þ ½f2ð0Þ��0!�þ=½f2ð0Þ�n!p

Exact SU(3) case �p � �n 3.706 1

Cabibbo model [9]
M�þM�

2MN
ð�p � �nÞ 4.958 1.338

Generalized CVC ��þ � ��0 2.708 0.731

Sirlin’s formula [31]
M�þM�

2M�
ð��þ þ 1

2���Þ � M�þM�

2M�
ð��0 þ 1

2���Þ 2.475 0.668

Experimental value [18] not applicable 3:8� 2:3 a 1:03� 0:62

aA factor ðM� þM�Þ=M�, equal to ’ 1:9048 is different from definitions of the f2 form factor adopted in Ref. [18].

TABLE III. The residual mass mres, inverse lattice spacing (a�1
	 , set by the 	 meson mass), the renormalization factor of the axial-

vector current (ZA), the pion decay constant (F�), and the kaon decay constant (FK). Those values are taken from Ref. [34], where
simulations are performed on a 163 � 32 volume.

Gauge action (�) M5 Ls mres a�1
	 [GeV] ZAðmf ¼ �mresÞ F� [MeV] FK [MeV]

DBW2 (0.87) 1.8 16 5:69ð26Þ � 10�4 1.31(4) 0.77759(45) 91.2(5.2) 104.2(3.8)
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breaking patterns characterized by �¼ðMB�MbÞ=ðMBþ
MbÞ for the B ! b process in the range of 0.009 to 0.028.
Our results are analyzed on 377 configurations.
Preliminary results were first reported in Refs. [40,41].

As mentioned earlier, the previous study of neutron beta
decay with the same simulation parameters successfully
yields a value of g1ð0Þ=f1ð0Þ as 1:212� 0:027, which just
underestimates the experimental one by less than 5% [15].
This success encourages us to study flavor SU(3)-breaking
effects in the hyperon beta decays through a comparison
between neutron beta decay and �0 beta decay.

B. Mass spectra and dispersion relation

In order to compute baryon masses or beta-decay matrix
elements, we use the following baryon interpolating op-
erator:

ð
S
XÞijkðt;pÞ

¼ X
x

e�ip�x"abc½qTa;iðy1; tÞC�5qb;jðy2; tÞ�qc;kðy3; tÞ

��ðy1 � xÞ�ðy2 � xÞ�ðy3 � xÞ; (7)

where C is the charge conjugation matrix defined as C ¼
�t�y and the index X 2 fB; bg distinguishes between the

initial (B) and final (b) states. The superscript T denotes
transpose and the indices abc and ijk label color and
flavor, respectively. The superscript S of the interpolating
operator 
 specifies the smearing for the quark propaga-
tors. In this study, we use two types of source: local source
as �ðxi � xÞ ¼ �ðxi � xÞ and Gaussian smeared source.
Here we take x1 ¼ x2 ¼ x3 ¼ 0 in our calculation. As for
the Gaussian smeared source, we apply the gauge-invariant
Gaussian smearing [42,43] with N ¼ 30, ! ¼ 4:35.
Details of our choice of smearing parameters are described
in Ref. [44].

We construct two types of the two-point function for the
baryon states. One interpolating operator at the source
location is constructed from Gaussian smeared quark
fields, while the other interpolating operator at the sink
location is either constructed from local quark fields (de-
noted LG) or Gaussian smeared ones (denoted GG):

CSG
X ðt� tsrc;pÞ ¼ 1

4 TrfPþh
S
Xðt;pÞ �
G

X ðtsrc;�pÞg (8)

with S ¼ L or G. The projection operator Pþ ¼ 1þ�t

2 can

eliminate contributions from the opposite-parity state for
jpj ¼ 0 [45,46]. It is rather expensive to make the Gaussian
smeared interpolating operator projected onto a specific
finite momentum at the source location (tsrc). However, it is
sufficient to project only the sink operator onto the desired
momentum by virtue of momentum conservation. Thus,
the quark fields at the source location are not projected
onto any specific momentum in this calculation. For the
momentum at the sink location (tsink), we take all possible
permutations of the three momentum p including both
positive and negative directions in this study.

All hadron masses are computed by using the LG-type
correlators. We use the conventional interpolating opera-
tors, �u�5dð �u�5sÞ for the � (K) state, "abcðuTaC�5dbÞuc for
the nucleon, "abcðuTaC�5sbÞuc for the � state, and
"abcðsTaC�5ubÞsc for the � state. All fitted values, which
are obtained from the conventional single exponential fit
for baryons (N, �, and�) and the conventional cosh fit for
mesons (� andK), are summarized in Tables IVand V. Our
simulated values of the pion mass range from 0.54 GeV to
0.67 GeV.
The evaluation of the squared four-momentum transfer

q2 requires precise knowledge of the baryon energies
EXðpÞ (X ¼ N, �, �) with finite momentum. This can be
achieved by an estimation of the energy with the help of the
dispersion relation and the measured rest mass that can be
most precisely measured. As we reported in Ref. [16], the
relativistic dispersion relation

EXðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

X

q
; (9)

where p ¼ ðpx; py; pzÞ with continuumlike momenta pi ¼
2�
L ni (ni ¼ 0; 1; 2; . . . ; ðL� 1Þ), is indeed fairly consistent

with the energies computed at least at the four lowest
nonzero momenta: (1, 0, 0), (1, 1, 0), (1, 1, 1), and (2, 0,
0) in our simulations. It implies that our simulations do not
much suffer from large Oða2Þ errors even at finite q2. We
utilize such estimated energies instead of actually mea-
sured values in our whole analysis [47].

C. Three-point correlation functions

We next define the finite-momentum three-point func-
tions for the relevant components of either the local vector
current (J V

�) or the local axial current (J A
�) with the

interpolating operators 
B and 
b for the B and b states:

h
bðt0;p0ÞJ �
�ðt;qÞ
Bð0;�pÞi

¼ G�;B!b
� ðp; p0Þ � fðt; t0; EBðpÞ; Ebðp0ÞÞ þ . . . ; (10)

TABLE IV. Mass spectrum of nonstrange hadrons (pion and
nucleon) in lattice units.

mud M� MN

0.06 0.5050(8) 1.0821(42)

0.05 0.4617(9) 1.0358(46)

0.04 0.4148(9) 0.9869(50)

TABLE V. Mass spectrum of strange hadrons (kaon, �, and�)
in lattice units.

ms mud MK M� M�

0.08 0.06 0.5455(7) 1.1161(41) 1.1375(39)

0.05 0.5257(8) 1.0895(43) 1.1210(39)

0.04 0.5055(8) 1.0626(46) 1.1039(40)

0.10 0.05 0.5652(8) 1.1201(46) 1.1741(40)

0.04 0.5462(8) 1.0941(50) 1.1577(41)
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where the initial (B) and final (b) states carry fixed mo-
menta p and p0, respectively and then the current operator
has a three-dimensional momentum transfer q ¼ p� p0.
Here, Dirac indices have been suppressed. The ellipsis
denote excited state contributions which can be ignored
in the case of t0 � t 	 1 and t 	 1. The ground state
contribution of the three-point correlation function is de-
scribed by two parts. The first part, G�

�ðp; p0Þ, is defined as
G�;B!b

� ðp; p0Þ ¼ ð�i� � p0 þMbÞO�;B!b
� ðqÞ

� ð�i� � pþMBÞ; (11)

whereO�
�ðqÞ corresponds to either Eqs. (2) and (3), and the

factor fðt; t0; EBðpÞ; Ebðp0ÞÞ collects all the kinematical
factors, normalization of states, and time dependence of
the correlation function. The trace of G�

�ðp; p0Þ with some
appropriate projection operator P for specific combina-
tions of � and � yields some linear combination of form
factors in each � channel. On the other hand, all time
dependences of the factor fðt; t0; EBðpÞ; Ebðp0ÞÞ can be
eliminated by the appropriate ratio of three- and two-point
functions [48]

R B!bðtÞ ¼ CP ;B!b
�;� ðt;p0;pÞ

CGG
b ðtsink � tsrc;p

0Þ
�
CLG
B ðtsink � t;pÞCGG

b ðt� tsrc;p
0ÞCLG

b ðtsink � tsrc;p
0Þ

CLG
b ðtsink � t;p0ÞCGG

B ðt� tsrc;pÞCLG
B ðtsink � tsrc;pÞ

�
1=2

; (12)

where

CP ;B!b
�;� ðt;p0;pÞ ¼ 1

4 TrfP h
G
b ðtsink;p0ÞJ �

�ðt;qÞ �
G
B ðtsrc;�pÞig;

(13)

which are calculated by the sequential source method
described in Ref. [15].

In this study, we consider the hyperon decay process
BðpÞ ! bð0Þ at the rest flame of the final (b) state (p0 ¼ 0),
which leads to q ¼ p. Therefore the squared four-
momentum transfer is given by q2 ¼ 2MbðEBðpÞ �MBÞ �
ðMB �MbÞ2. The energies of the initial and final baryon
state are simply abbreviated as EB and Eb, hereafter. In
these kinematics, G�

�ðp; p0Þ is represented by a simple
notation G�

�ðpÞ. Then, the ratio (12) gives the asymptotic
form as a function of the current operator insertion time t,

R B!bðtÞ ! 1

4
TrfPGB!b

�;� ðqÞg � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

bEBðEB þMBÞ
q

(14)

in the limit when the Euclidean time separation between all
operators is large, tsink 	 t 	 tsrc with fixed tsrc and tsink.

We choose particular combinations of the projection
operator P and the current operator J �

� (� ¼ V or A).
Two types of the projection operator, P t ¼ Pþ�t and
P z

5 ¼ Pþ�5�z are considered in this study. The latter

operator implies that the z direction is chosen as the
polarized direction. We then obtain some linear combina-
tion of desired form factors from the following projected
correlation functions:

1

4
TrfP tGV;B!b

t ðqÞg ¼ MbðEB þMBÞ
�
fB!b
1 ðq2Þ

� EB �MB

MB þMb

fB!b
2 ðq2Þ

� EB �Mb

MB þMb

fB!b
3 ðq2Þ

�
; (15)

1

4
TrfP tGV;B!b

i ðqÞg ¼ �iqiMb

�
fB!b
1 ðq2Þ

� EB �Mb

MB þMb

fB!b
2 ðq2Þ

� EB þMB

MB þMb

fB!b
3 ðq2Þ

�
; (16)

1

4
TrfP z

5G
V;B!b
i ðqÞg ¼ �i"ijzqjMb½fB!b

1 ðq2Þ
þ fB!b

2 ðq2Þ� (17)

for the vector currents J V
t and J V

i (i ¼ x, y, z). Similarly,
we get

1

4
TrfP z

5G
A;B!b
t ðqÞg ¼ iqzMb

�
gB!b
1 ðq2Þ

� EB þMB

MB þMb

gB!b
2 ðq2Þ

� EB �Mb

MB þMb

gB!b
3 ðq2Þ

�
; (18)

1

4
TrfP z

5G
A;B!b
i ðqÞg ¼ Mb

�
ðEB þMBÞ

�
gB!b
1 ðq2Þ

�MB �Mb

MB þMb

gB!b
2 ðq2Þ

�
�iz

� qiqz
MB þMb

ðgB!b
2 ðq2Þ

þ gB!b
3 ðq2ÞÞ

�
(19)

for the axial-vector currents J A
t and J A

i (i ¼ x, y, z). In
this calculation, we use the four nonzero three-momentum
transfer q ¼ 2�

L n (n2 ¼ 1, 2, 3, 4). All possible permuta-

tions of the lattice momentum including both positive and
negative directions are properly taken into account. All
three-point correlation functions are calculated with a
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source-sink separation of 10 in lattice units, which is the
same in the previous DWF calculations of the axial-vector
coupling gA [15] and the weak matrix elements of the
nucleon [16].

Here, it is worth noting that the longitudinal momentum
(qz) dependence explicitly appears in Eq. (19) due to our
choice of the polarized direction. This fact provides two
kinematical constraints on determination of the three-point
functions in our calculation. First, there are two types of
kinematics, qz � 0 and qz ¼ 0 in the longitudinal compo-
nent (i ¼ z) of Eq. (19), except for the case of n2 ¼ 3
where qz is always nonzero. Second, the transverse com-
ponents (i ¼ x or y) of Eq. (19) are prevented from vanish-
ing by the kinematics only if n2 ¼ 2 and 3, where two
components of the momentum including the polarized
direction (z direction) are nonzero.

First of all, in Fig. 1, we plot the dimensionless projected
correlators of the vector part

�V;B!b
0 ¼

1
4 TrfP tGV;B!b

t ðqÞg
MbðEB þMBÞ ; (20)

�V;B!b
S ¼ � 1

3

X
i¼x;y;z

1
4 TrfP tGV;B!b

i ðqÞg
iqiMb

; (21)

�V;B!b
T ¼ � 1

2

�1
4 TrfP z

5G
V;B!b
x ðqÞg

iqyMb

�
1
4 TrfP z

5G
V;B!b
y ðqÞg

iqxMb

�
(22)

as a function of the current insertion time slice t for the
�0 ! �þ process at ðmud;msÞ ¼ ð0:04; 0:08Þ as typical
examples. Good plateaus for all squared three-momentum
transfer are observed in the middle region between the
source and sink points. The quoted errors are estimated
by a single elimination jackknife method. The lines plotted
in each figure represent the average value (solid lines) and
their 1 standard deviations (dashed lines) in the time slice
range 13 
 t 
 17.

Similarly, we also define the dimensionless projected
correlators of the axial-vector part as

�A;B!b
L ¼

1
4 TrfP z

5G
A;B!b
z ðqÞg

MbðEB þMBÞ ; (23)

�A;B!b
T ¼ � 1

2

�1
4 TrfP z

5G
A;B!b
x ðqÞg

qzqx

þ
1
4 TrfP z

5G
A;B!b
y ðqÞg

qzqy

�
; (24)

�A;B!b
0 ¼

1
4 TrfP z

5G
A;B!b
t ðqÞg

iqzMb

; (25)

which are also evaluated from the plateau of the ratio (12).

Figure 2 is plotted for �A
L, which explicitly depends on the

longitudinal momentum qz because of the chosen direction
of the polarization. Two figures represent two types of
kinematics, qz � 0 and qz ¼ 0. Solid and dashed lines
are defined as in Fig. 1. Good plateaus for all squared
three-momentum transfer q2 are observed, similar to
what we observe in the vector channel.
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FIG. 1 (color online). Relevant ratios of three- and two-point
functions, �V

0 (top), �V
S (middle), and �V

T (bottom), for all

possible three-momentum transfer q as a function of the current
insertion time slice at ðmud;msÞ ¼ ð0:04; 0:08Þ.
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The remaining two ratios�A
T and�

A
0 are shown in Fig. 3.

The upper figure is for �A
T , which is accessible only for

q2 ¼ 2 and 3 in units of ð2�=LÞ2, where two components
of the momentum including the polarized direction (z
direction) are allowed to be nonzero. Again, we observe
reasonable good plateaus in the time slice range 13 
 t 

17. However, in the lower figure, the ratio �A

0 at two lower

q2 does not exhibit a clear plateau, while the reasonable
plateau can be observed at two higher q2 similar to other
ratios. We count a short shoulder plateau in the time slice
range 13 
 t 
 15 to take the average value of �A

0 at two

smaller q2. It is worth mentioning that g1ðq2Þ and g3ðq2Þ
are mainly determined by either �A

L or �A
T , since contri-

butions of �A
0 in Eqs. (49) and (51) are numerically much

smaller than others. The precise determination of the
second-class form factor g2ðq2Þ may be affected by the
poor plateau observed in �A

0 at two lower q. However, the
subtraction procedure for the second-class form factors
f3ðq2Þ and g2ðq2Þ, which will be described in the proceed-
ing section (Sec. VI B), may reduce the systematic error
stemming from the above mentioned issue.

D. Renormalization

In general, lattice operators receive finite renormaliza-
tions relative to their continuum counterparts since the
exact symmetries of the continuum are usually realized
only in the continuum limit a ! 0. Fortunately, the well-
preserved chiral and flavor symmetries of DWFs [49–51]
make this task much easier than in the more conventional
fermions. In this study, we use the vector and axial-vector
local currents, which shares a common renormalization:
ZV ¼ ZA, up to higher-order discretization errors, Oða2Þ
[52]. Therefore, we first focus on the vector
renormalization.
The vector form factors, especially in the precise deter-

mination of f1ð0Þ, require some independent estimation of
ZV , the renormalization of the quark bilinear vector cur-
rents,

½ �qf��qf0 �ren ¼ Z
�ff0
V ½ �qf��qf0 �lattice (26)

where a subscript f denotes the flavor index. In this study,
we need two vector renormalizations, Z �ud

V and Z �us
V , for
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FIG. 3 (color online). Relevant ratios of three- and two-point
functions, �A

T (top) and �A
0 (bottom), for all possible three-

momentum transfer q as a function of the current insertion
time slice at ðmud;msÞ ¼ ð0:04; 0:08Þ.
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FIG. 2 (color online). Relevant ratios of three- and two-point
functions, �A

Lðqz ¼ 0Þ (top) and �A
Lðqz � 0Þ (bottom), for all

possible three-momentum transfer q as a function of the current
insertion time slice at ðmud;msÞ ¼ ð0:04; 0:08Þ.
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neutron beta decay and its SU(3) counterpart, the �0 !
�þ transition process. The former can be evaluated by the
inverse of the forward limit of the n ! p vector matrix
element because of limq2!0hpj½ �u�0d�renjni ¼ 1 in the

present calculation under the exact isospin symmetry
(mu ¼ md). For the latter, this prescription is not directly
applicable because of the presence of the flavor SU(3)
breaking. However, we may calculate Z �us

V ¼ Z �us
V ðmud;msÞ

for mud � ms through the following relation:

Z �us
V ðml;mhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z �us
V ðml;mlÞZ �us

V ðmh;mhÞ
q

(27)

where ml and mh (ml < mh) are simulated quark masses
for either up (down) quark or strange quark. Z �us

V ðml;mlÞ
and Z �us

V ðmh;mhÞ correspond to the case of degenerate
quark masses (mud ¼ ms). Therefore, for an evaluation
of those two vector renormalizations, we can utilize the
relation, limq2!0h�þj½ �u�0s�renj�0i ¼ 1, which is valid in

the exact SU(3) symmetry limit.
In the case of the flavor current [f ¼ f0 in Eq. (26)], we

had already observed that the relation ZV ¼ ZA is well
satisfied in the chiral limit, up to higher-order discretiza-
tion errors Oða2Þ and neglecting explicit chiral symmetry
breaking due to the moderate size of the fifth-dimensional
extent Ls. This good chiral property of DWFs is known to
be maintained even for the heavy-light vector and axial-
vector currents [53], which correspond to the extreme case
of the flavor changing current (f � f0) in Eq. (26).
Therefore, in this study, we use the common renormaliza-
tion given in Eq. (27) for both vector and axial-vector local
currents.

IV. DETERMINATION OF f1ð0Þ
A. Scalar form factor fSðq2Þ at q2 ¼ q2max

In the vector channel, only the time component of the
vector current, namely, the three-point correlation function
1
4 TrfP tGV;B!b

t ðqÞg is prevented from vanishing at zero

three-momentum transfer jqj ¼ 0 by the kinematics [15].
This nonvanishing correlator gives the scalar form factor at
specific four-momentum transfer as

fB!b
S ðq2maxÞ ¼ �V;B!b

0 ðq ¼ 0Þ; (28)

where q2max ¼ �ðMB �MbÞ2 [54]. In Fig. 4, we plot the
renormalized fSðq2maxÞ as a function of the current insertion
time slice. Good plateaus are observed in the middle region
between the source and sink points. The lines represent the
average value (solid lines) and their 1 standard deviations
(dashed lines) in the time slice range 13 
 t 
 17. We
stress that the statistical accuracy is less than about 0.5%
even in the worst case ðmud;msÞ ¼ ð0:04; 0:10Þ. The ob-
tained values of the renormalized fSðq2maxÞ as well as the
bare one and its renormalization factor ZV are summarized
in Table VI. There is a tendency that the error of fSðq2maxÞ

increases as ms deviates from mud, which was also ob-
served in the scalar form factor of Kl3 decays [3].
We should note that the renormalized fSðq2maxÞ is exactly

equal to unity in the flavor SU(3) symmetric limit, where
fSðq2maxÞ becomes f1ð0Þ. Thus, the deviation from unity in
fSðq2maxÞ is attributed to three types of the SU(3) breaking
effect: (1) the recoil correction (q2max � 0) stemming from
the mass difference of B and b states, (2) the presence of
the second-class form factor f3ðq2Þ, and (3) the deviation
from unity in the renormalized f1ð0Þ. Taking the limit of
zero four-momentum transfer of fSðq2Þ can separate the
third effect from the others, since the scalar form factor at
q2 ¼ 0, fSð0Þ, is identical to f1ð0Þ. Indeed, to measure the
third one is our main target.

B. Interpolation to zero four-momentum squared

The scalar form factor fSðq2Þ at q2 > 0 is calculable
with nonzero spatial momentum transfer (jqj � 0) [56].
We can make the q2 interpolation of fSðq2Þ to q2 ¼ 0
together with the precisely measured value of fSðq2Þ at
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FIG. 4 (color online). frenS ðq2maxÞ as a function of the current
insertion time slice. A source-sink location of three-point func-
tions is set at ½tsrc; tsink� ¼ ½10; 20�. The lines represent the
average value (solid lines) and their 1 standard deviations
(dashed lines) in the time slice range 13 
 t 
 17.

TABLE VI. Results for Zlatt
V ðmud;msÞ, flattS ðq2maxÞ, and

frenS ðq2maxÞ, which are evaluated in the region of ½tmin; tmax� ¼
½13; 17�.
ms mud Zlatt

V ðmud;msÞ flattS ðq2maxÞ frenS ðq2maxÞ
0.08 0.06 0.8144(7) 1.2286(24) 1.0010(15)

0.05 0.8128(8) 1.2310(37) 1.0010(27)

0.04 0.8112(10) 1.2327(58) 1.0005(44)

0.10 0.05 0.8168(7) 1.2240(46) 1.0003(35)

0.04 0.8152(10) 1.2248(65) 0.9990(51)
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q2 ¼ q2max < 0. First of all, we calculate the following
combinations of two projected correlators (20) and (21)
with nonzero three-momentum transfer (jqj � 0):

fB!b
S ðq2Þ ¼ EB �Mb

MB �Mb

�V;B!b
0 � EB �MB

MB �Mb

�V;B!b
S (29)

and then study the q2 dependence of the scalar form factor.
In Fig. 5, we plot the renormalized fSðq2Þ as a function of
four momentum squared q2 in physical units for
ðmud;msÞ ¼ ð0:04; 0:08Þ as a typical example. Either theo-
retically or phenomenologically, the q2 dependence of
fSðq2Þ is not known due to the lack of knowledge of the
second-class form factor f3. Our measured fSðq2Þ up to at
least q2 < 1:0 GeV2 exhibit a monotonic decrease with
increasing q2. This observation is barely consistent with
an expectation that fSðq2Þ is dominated by f1ðq2Þ, which is
supposed to be the dipole form at low q2.

In practice, the lack of the precise knowledge about the
q2 dependence of fSðq2Þ is not a serious issue to determine
fSð0Þ reliably. The simulated value of q2max is not far from
q2 ¼ 0 [57]. Therefore, fSð0Þ can be determined by a very
short interpolation from q2max, where we have very accurate
data of fSðq2maxÞ. This allows us to expect that the choice of
the interpolation form does not affect the interpolated value
fSð0Þ significantly. To demonstrate it, we test the monopole
form

fSðq2Þ ¼ fSð0Þ
1þ �ð1Þ

S q2
(30)

and the quadratic form

fSðq2Þ ¼ fSð0Þð1þ �ð1Þ
S q2 þ �ð2Þ

S q4Þ (31)

for the q2 interpolation of fSðq2Þ to q2 ¼ 0. Indeed, both
functional forms are adopted to evaluate fSð0Þ in a pub-
lished work of the �� ! n transition process [13]. As
shown in Fig. 5, two determinations to evaluate fSð0Þ ¼
f1ð0Þ frommeasured points are indeed consistent with each
other. All obtained values of fSð0Þ ¼ f1ð0Þ from both the
monopole and quadratic form fits are summarized in
Table VII. Although the quadratic fit achieves the slightly
smaller value of 
2=dof � 0:04 than that of the monopole
fit (� 0:23), the highest q2 point, which is not included in
our fits, rather agrees with the monopole fit. We, therefore,
do not use the results from the quadratic fit in the following
discussion.
Although it is hard to make a firm conclusion within the

current statistical uncertainty, our measured values of f1ð0Þ
at the simulated points seem to receive small negative
corrections of the SU(3) breaking. We then introduce the
parameter of flavor SU(3) breaking, which is characterized
by the measured mass difference between the � and �
states at the simulated points as � ¼ ðM� �M�Þ=ðM� þ
M�Þ. Our observed SU(3)-breaking effect on f1ð0Þ, which
corresponds to the deviation from unity, exhibits the qua-
dratic dependence of this SU(3)-breaking parameter � is
consistent with the Ademollo-Gatto theorem as shown in
Fig. 6. Therefore, our results indicate that a sign of the
second-order correction of the SU(3) breaking on f1ð0Þ is
likely negative.

C. Chiral extrapolation of f1ð0Þ
In order to estimate f1ð0Þ at the physical point, we

perform the chiral extrapolation of f1ð0Þ. As described
earlier, f1ð0Þ can be parametrized as

f1ð0Þ ¼ 1þ �f; (32)

where �f represents all SU(3) breaking corrections on
f1ð0Þ. We then introduce the following ratio:

R�fðMK;M�Þ ¼ �f

ðM2
K �M2

�Þ2
; (33)

where the leading symmetry-breaking correction, which is
predicted by the Ademollo-Gatto theorem, is explicitly
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FIG. 5 (color online). Interpolation of fSðq2Þ to q2 ¼ 0 for
ðmud;msÞ ¼ ð0:04; 0:08Þ. Open circles are fSðq2Þ at the simu-
lated q2. The solid (dashed) curve is the fitting result by using the
monopole (quadratic) interpolation form, while the open dia-
mond (square) represents the interpolated value to q2 ¼ 0.

TABLE VII. Results for ½frenS ð0Þ��!� ¼ ½fren1 ð0Þ��!�, which
are evaluated by the q2 extrapolation with the monopole and
quadratic functional form.

ms mud ½fren1 ð0Þ��!� monopole Quadratic

0.08 0.06 1.0004(16) 1.0006(16)

0.05 0.9986(27) 1.0001(28)

0.04 0.9985(44) 0.9989(44)

0.10 0.05 0.9965(35) 0.9972(35)

0.04 0.9938(50) 0.9947(51)

� � � physical point 0.9868(191) 0.9897(192)
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factorized out [13]. As reported in Ref. [13], the remaining
dependence of the SU(3) breaking is hardly observed
within the statistical errors. To examine the quark-mass
dependence, we plot R�f, which is evaluated by the mono-

pole form for the q2 interpolation, as a function of M2
K þ

M2
� in Fig. 7. There is no appreciable dependence of

simulated quark masses within the statistical errors. This
observation is consistent with what we observe in Fig. 6,
where all measured values f1ð0Þ at different simulated
quark masses exhibit quadratic scaling with respect to the
SU(3)-breaking parameter �. We then consider a linear fit
in terms of M2

K þM2
�:

R�fðMK;M�Þ ¼ A0 þ A1 � ðM2
K þM2

�Þ: (34)

A dashed line in Fig. 7 corresponds to the chiral extrapo-
lation using the linear form (34). We obtain the extrapo-
lated value of R�f at the physical point as

R�fðMphys
K ;M

phys
� Þ ¼ �0:22ð24Þ in ðGeVÞ�4 (35)

by employing results from the monopole form for the q2

interpolation. We finally quote

½fren1 ð0Þ��!� ¼ 0:987ð19Þ (36)

at the physical point. By combining with a single estimate

of jVusf
�!�
1 ð0Þj ¼ 0:216ð33Þ from the KTeV experiment

[18], we obtain

jVusj ¼ 0:219ð27Þexpð4Þtheory; (37)

which is consistent with the value obtained from Kl3

decays and the CKM unitary predicted value [1–3].

V. DETERMINATION OF g1ð0Þ=f1ð0Þ
A. Ratio ~g1ðq2Þ=fSðq2Þ at q2 ¼ q2max

Let us consider the ratio of �A;B!b
L and �V;B!b

0 , which

are both accessible at zero three-momentum transfer jqj ¼
0 in the axial-vector and vector channels, respectively.
From this ratio at jqj ¼ 0, we can evaluate the value of
~g1ðq2Þ=fSðq2Þ at q2 ¼ q2max,

~gB!b
1 ðq2maxÞ

fB!b
S ðq2maxÞ

¼ �A;B!b
L ðq ¼ 0Þ

�V;B!b
0 ðq ¼ 0Þ ; (38)

where q2max ¼ �ðMB �MbÞ2. We note that this ratio is
exactly equal to g1ð0Þ=f1ð0Þ in the flavor SU(3) symmetric
limit, which corresponds to that of n ! p. In Fig. 8, we
plot the ratio as a function of the current insertion time
slice. Good plateau behaviors of ~g1ðq2maxÞ=fSðq2maxÞ are
observed in the middle of the region between the source
and sink points. Results of ~g1ðq2maxÞ=fSðq2maxÞ, which are
summarized in Table VIII, are averaged over the appro-
priate time slice range 14 
 t 
 16.
In our exploratory study [40], we proposed the following

double ratio:

RD ¼ �A;�!�
L ðq ¼ 0Þ ��V;n!p

0 ðq ¼ 0Þ
�V;�!�

0 ðq ¼ 0Þ ��A;n!p
L ðq ¼ 0Þ

¼
�
g�!�
1 ðq2maxÞ � �g�!�

2 ðq2maxÞ
f�!�
1 ðq2maxÞ � �f�!�

3 ðq2maxÞ
���

gn!p
1 ð0Þ

fn!p
1 ð0Þ

�
; (39)
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FIG. 7 (color online). Chiral extrapolation of R�f. Open
circles (diamonds) are calculated with ms ¼ 0:08 (0.10). The
extrapolated point at the physical point is represented by a filled
square.
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FIG. 6 (color online). The deviation from unity on f1ð0Þ in-
creases as the SU(3) breaking � increases. All measured values
of f1ð0Þ exhibit quadratic scaling with respect to the SU(3)-
breaking parameter, which is suggested by the Ademollo-Gatto
theorem. The dashed (quadratic) curve is a guide to the eye. The
physical point is represented by a filled square.
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where � ¼ M��M�

M�þM�
. Since this double ratio is exactly equal

to unity in the flavor SU(3) symmetric limit, the deviation
form unity exposes flavor SU(3)-breaking effects in the
� ! � decay. As shown in Fig. 9, the double ratio exhibits
good plateau behavior slightly above unity in the time slice
range 13 
 t 
 17. The deviation from unity becomes
large as increasing the size of the flavor SU(3) breaking,
which is characterized by the size of � as listed in
Table VIII.

The observed deviation indeed contains three types of
the SU(3) breaking effect, similar to what we explained for
fSðq2maxÞ. Here, we note that g1ð0Þ=f1ð0Þ receives the first-
order corrections since the axial-vector form factors are not
protected by the Ademollo-Gatto theorem. Therefore, we
expect that the flavor SU(3)-breaking observed in the
double ratio could be dominated by the leading
symmetry-breaking correction on ½g1ð0Þ=f1ð0Þ��!�. The
reasons are as follows: (1) The q2 dependence of form
factors at q2 ¼ q2max, which is proportional to �2, can be

involved in the second-order corrections as f�!�
1 ðq2maxÞ ¼

f�!�
1 ð0Þ þOð�2Þ and g�!�

1 ðq2maxÞ ¼ g�!�
1 ð0Þ þOð�2Þ.

(2) The nonzero value of the second-class form factors f3
and g2 starts from the first-order corrections. These con-
tributions in ~g1 and fS are involved in the second-order
corrections as well. As a result, the double ratio is ex-
pressed by

RD ¼ ½g1ð0Þ=f1ð0Þ��!�

½g1ð0Þ=f1ð0Þ�n!p

þOð�2Þ; (40)

where the first term is responsible for the leading first-order
correction. The deviation from unity observed in the
double ratio may be able to exhibit the size of the leading
SU(3)-breaking correction on g1ð0Þ=f1ð0Þ for small � [58].
As listed in Table VIII, the observed size of flavor SU(3)
breaking effects is indeed comparable to the size of the
leading orderOð�Þ [40] and glows linearly with increasing
the parameter �.
We simply perform the linear fit in two mass combina-

tions M2
K þM2

� and M2
K �M2

� on RD as

RD ¼ B0 þ B1 � ðM2
K þM2

�Þ þ B2 � ðM2
K �M2

�Þ: (41)

We then obtain RD ¼ 1:022ð31Þ at the physical point. A
sign of the observed corrections to ½g1ð0Þ=f1ð0Þ��!�

seems to be opposite to model predictions from the
center-of-mass correction approach [29] and the 1=Nc

expansion approach [26]. However, we recall that the
observed corrections less than a few percents are too small
to justify neglect of the second-order corrections in our
analysis since the natural size of the flavor SU(3) breaking
is around 10% [59]. To make a firm conclusion, we have to
remove systematic uncertainties induced by neglecting

TABLE VIII. Results for ~g1ðq2maxÞ=fSðq2maxÞ, which are eval-
uated in the region of ½tmin; tmax� ¼ ½14; 16�. The double ration
RD and the SU(3) breaking parameter � are also listed.

ms mud ~g1ðq2maxÞ=fSðq2maxÞ RD � ¼ M��M�

M�þM�

0.08 0.06 1.221(13) 1.0042(28) 0.0095(3)

0.05 1.219(15) 1.0061(55) 0.0142(5)

0.04 1.218(17) 1.0099(103) 0.0190(7)

0.10 0.05 1.225(13) 1.0114(75) 0.0236(7)

0.04 1.223(15) 1.0151(126) 0.0283(10)

physical point � � � 1.0217(309) 0.04996
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FIG. 9 (color online). The double ratio RD as a function of the
current insertion time slice. A source-sink location of three-point
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both the recoil corrections and the presence of the second-
class form factors.

B. Results for ~g1ð0Þ=f1ð0Þ and g1ð0Þ=f1ð0Þ
The recoil corrections are removed by taking the limit of

considered form factors to q2 ¼ 0. Similar to the case of
fSðq2Þ, the value of ~g1ð0Þ=fSð0Þ can be evaluated by the q2
interpolation of ~g1ðq2Þ=fSðq2Þ to q2 ¼ 0. The form factor
~gB!b
1 ðq2Þ at q2 > 0 can be calculated by the projected

correlator (23) with zero longitudinal momentum (qz ¼
0) but nonzero transverse momentum (qx or qy � 0) [60]:

~g B!b
1 ðq2Þ ¼ �A;B!b

L ðqz ¼ 0Þ: (42)

One can calculate the ratio of ~g1ðq2Þ=fSðq2Þ with Eqs. (28)
and (42). In Fig. 10, we plot the ratio of ~g1ðq2Þ=fSðq2Þ as a
function of q2. We consider two types of the interpolation
form, the monopole and quadratic forms, the same as in the
case of fSðq2Þ. The highest q2 data point is not included in
our fits. All obtained values of ~g1ð0Þ=fSð0Þ ¼ ~g1ð0Þ=f1ð0Þ
from both the monopole and quadratic form fits are sum-
marized in Table IX. Again we observe that two determi-
nations to evaluate ~g1ð0Þ=fSð0Þ from measured points are
fairly consistent with each other. Therefore, we do not use
the results from the quadratic fit in the following discus-
sion, the same in the case of fSð0Þ.

Next, we perform a linear fit in two mass combinations
M2

K þM2
� andM2

K �M2
� for the values of ~g1ð0Þ=f1ð0Þ and

then obtain ½~g1ð0Þ=f1ð0Þ��!� ¼ 1:205ð27Þ at the physical
point. It may be compared with its SU(3)-symmetric value

of 1.191(49), which corresponds to the chiral extrapolated
value of ½g1ð0Þ=f1ð0Þ�n!p to the physical point by using

the simple linear fitting form in terms ofM2
�. These results

give ½~g1ð0Þ=f1ð0Þ��!� ¼ 1:016ð31Þ � ½g1ð0Þ=f1ð0Þ�n!p.

After the q2 dependence is taken into account, the
deviation from unity is now reduced by 0.6% from the
double ratio RD. If the conventional assumption g2ð0Þ ¼ 0
is adopted here similar to usual experimental analyses, the
flavor SU(3) breaking found in g1ð0Þ=f1ð0Þ tends to be tiny.
Although it does not conflict with the Cabibbo theory, the
following alternative interpretation is still not ruled out. It
is possible that a relatively small first-order correction on
g1ð0Þ is accidently canceled out in the form ~g1 ¼ g1 � �g2
by an opposite contribution stemming from the large and
positive value of g2ð0Þ such as g2ð0Þ=g1ð0Þ � 1. As we will
discuss in the next section, this is indeed the case.
Therefore, we have to subtract the contribution of the
second-class form factor properly in order to estimate the
true size of the first-order correction on g1ð0Þ=f1ð0Þ.
A complete analysis requires information of the g2 form

factor. The individual form factors in Eqs. (2) and (3) can
be determined at finite jqj. Then, the value of the ratio of
g2ðq2Þ=g1ðq2Þ at zero momentum transfer are obtained by
an appropriate q2 extrapolation. We finally obtain
g2ð0Þ=g1ð0Þ ¼ 0:677ð177Þ at the physical point. See the
next section for details.
After the subtraction of the g2ð0Þ contribution, we obtain

½g1ð0Þ=f1ð0Þ��!� ¼ 1:248ð29Þ at the physical point. It
implies that the relatively large and positive value of
g2ð0Þ=g1ð0Þ has induced a shift of the value of
~g1ð0Þ=f1ð0Þ toward the exact SU(3)-symmetric value.
Finally, we obtain

�
g1ð0Þ
f1ð0Þ

�
�!�

¼ 1:051ð35Þ �
�
g1ð0Þ
f1ð0Þ

�
n!p

(43)

at the physical point. The deviation from unity is increased
by 3.5% in comparison with the unsubtracted case.
Although the size of the SU(3)-breaking corrections on
g1ð0Þ=f1ð0Þ is still relatively smaller than the expected size
evaluated from the mass splitting among the octet baryons
(� 10%), the similar size of the flavor SU(3) breaking in
the �þ ! n decay was also reported in Ref. [13].
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FIG. 10 (color online). Interpolation of ~g1ðq2Þ=fSðq2Þ to q2 ¼
0 for ðmud;msÞ ¼ ð0:04; 0:08Þ. Open circles are ~g1ðq2Þ=fSðq2Þ at
the simulated q2. The solid (dashed) curve is the fitting result by
using the monopole (quadratic) interpolation form, while the
open diamond (square) represents the interpolated value to q2 ¼
0.

TABLE IX. Results for ~g1ð0Þ=f1ð0Þ, which are evaluated by
the q2 extrapolation with the monopole and quadratic functional
form.

ms mud ~g1ð0Þ=f1ð0Þ monopole Quadratic

0.08 0.06 1.220(13) 1.220(13)

0.05 1.217(15) 1.217(15)

0.04 1.215(17) 1.215(17)

0.10 0.05 1.222(13) 1.222(13)

0.04 1.220(15) 1.220(15)

� � � physical point 1.205(27) 1.206(27)
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In Fig. 11, we summarize our result and the experimen-
tal values combined with predictions from the center-of-
mass correction approach [29] and the 1=Nc expansion
approach [26]. Although the experimental data is not yet
sufficiently precise to determine either the size, or the sign,
of the SU(3)-breaking corrections, our result suggests that
the symmetry-breaking correction is likely small but posi-
tive. It is worth mentioning that the sign of our observed
corrections is opposite to the model predictions, but in
agreement with that of the �þ ! n decay measured in
quenched lattice QCD [13].

VI. RESULTS FOR OTHER FORM FACTORS

A. Computational method

The kinematics of jqj2 ¼ 0 allows only a particular
combination of the projection operator (P ) and the
Lorentz index of the currents (�) in either vector or
axial-vector channels [15]. However, in the case if spatial
momentum transfer q is nonzero, all three-point correla-
tion functions defined in Sec. III C are calculable.
Therefore, three form factors at finite jqj can be obtained
individually by solving simultaneous linear equations. For
the vector channel, the simultaneous linear equations are
given by

1 � EB�MB

MBþMb
� EB�Mb

MBþMb

1 � EB�Mb

MBþMb
� EBþMB

MBþMb

1 1 0

0
B@

1
CA

fB!b
1 ðq2Þ

fB!b
2 ðq2Þ

fB!b
3 ðq2Þ

0
B@

1
CA ¼

�V;B!b
0

�V;B!b
S

�V;B!b
T

0
B@

1
CA:

(44)

One gets each form factor by inverting the above equations
[61] as

fB!b
1 ðq2Þ ¼ MB þMb

2Mb

�
�V;B!b

0 � EB �Mb

EB þMB

�V;B!b
S

� M2
B þM2

b � 2EBMb

ðMB þMbÞðEB þMBÞ�
V;B!b
T

�
; (45)

fB!b
2 ðq2Þ ¼ MB þMb

2Mb

�
��V;B!b

0 þ EB �Mb

EB þMB

�V;B!b
S

þMB þMb

EB þMB

�V;B!b
T

�
; (46)

fB!b
3 ðq2Þ ¼ MB þMb

2Mb

�
�V;B!b

0 � EB þMb

EB þMB

�V;B!b
S

�MB �Mb

EB þMB

�V;B!b
T

�
: (47)

Similarly, three-point correlation functions of the axial-
vector part are also described by the following simulta-
neous linear equations,

1 �MB�Mb

MBþMb
0

0 Mb

MBþMb

Mb

MBþMb

1 � EBþMB

MBþMb
� EB�Mb

MBþMb

0
BB@

1
CCA

gB!b
1 ðq2Þ

gB!b
2 ðq2Þ

gB!b
3 ðq2Þ

0
B@

1
CA

¼
�A;B!b

L ðqz ¼ 0Þ
�A;B!b

T

�A;B!b
0

0
B@

1
CA (48)

and then each individual form factor is given by inverting
the above equation as

gB!b
1 ðq2Þ ¼ MB þMb

2Mb

�
�A;B!b

L ðqz ¼ 0Þ

�MB �Mb

MB þMb

�
�A;B!b

0 þ EB �Mb

Mb

�A;B!b
T

	�
;

(49)

gB!b
2 ðq2Þ ¼ MB þMb

2Mb

�
�A;B!b

L ðqz ¼ 0Þ

��A;B!b
0 � EB �Mb

Mb

�A;B!b
T

�
; (50)

gB!b
3 ðq2Þ ¼ MB þMb

2Mb

�
��A;B!b

L ðqz ¼ 0Þ

þ�A;B!b
0 þ EB þMb

Mb

�A;B!b
T

�
: (51)

Here we remark that as described previously, we utilize all
possible permutations of the lattice momentum including
both positive and negative directions and adopt four non-
zero values of three-momentum transfer q ¼ 2�

L n (n2 ¼ 1,

2, 3, 4). Here, it should be reminded that the z direction is
chosen as the polarized direction in this study. This fact
makes the analysis of the axial-vector channel more com-
plex than the vector channel. Indeed, the longitudinal
momentum (qz) dependence explicitly enters in �A

L.
Accordingly, there are two types of kinematics, qz � 0
and qz ¼ 0 in the three-momentum transfer, except for
the case of n2 ¼ 3 where qz is always nonzero. In other

words, �A;B!b
L ðqz ¼ 0Þ at n2 ¼ 3 cannot be calculated
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FIG. 11 (color online). Comparison among model predictions,
experimental data (KTeV-Fermilab) and our lattice result for the
ratio of ½g1ð0Þ=f1ð0Þ��!� and its SU(3) counterpart
½g1ð0Þ=f1ð0Þ�n!p.

SHOICHI SASAKI AND TAKESHI YAMAZAKI PHYSICAL REVIEW D 79, 074508 (2009)

074508-14



directly. However, instead, we may evaluate �A;B!b
L ðqz ¼

0Þ at n2 ¼ 3 from the longitudinal correlator �A;B!b
L and

the transverse correlator �A;B!b
T by using a relation

�A;B!b
L ðqz ¼ 0Þ ¼ �A;B!b

L ðqz � 0Þ

þ q2z
MbðEB þMBÞ�

A;B!b
T ; (52)

which is easily read off from Eq. (19). Note that �A
Lðqz �

0Þ are always calculable at finite jqj.

B. Second-class form factors: f3ðq2Þ and g2ðq2Þ
1. Subtraction method

Figure 12 shows the ratios of f3ðq2Þ=f1ðq2Þ (left panel)
and g2ðq2Þ=g1ðq2Þ (right panel) as a function of four mo-
mentum squared q2 for ðmud;msÞ ¼ ð0:04; 0:08Þ. Open
circles represent the values measured for � ! � at the
simulated q2. Although we observe non-negligible values
of the second-class form factors, it is still questionable
whether nonzero signals correspond to a pure effect from
the flavor SU(3) breaking. Indeed, the same analysis for the
case of the exact SU(3) limit (n ! p), yields comparable
values of the second-class form factors to those of� ! �.
Lower and upper triangle symbols correspond to the cases
of n ! p with mud ¼ 0:04 and 0.08. The lighter mud

calculations yield central values closer to those of � !
� with larger statistical uncertainties, while results from
the heaviermud calculations are marginally consistent with
zero values for both f3 and g2 form factors within 1-–2
standard deviation. Although it seems that observed non-
zero values of the second-class form factors suffer much
from large statistical fluctuations, we are also concerned
about another possibility.

For the case of the f3 form factor, a nonvanishing
contribution even in the exact SU(3) limit stems from a
subtle difference of �V

S and �V
0 correlators, which is pos-

sibly due to the discretization error [62]. Although there is
no such clear correspondence in the case of the g2 form
factor, the discretization error may equally cause a system-
atic uncertainty on the determination of the g2 form factors
as well.
To control both statistical fluctuations and systematic

uncertainties, we subtract the measured values of the
second-class form factors in the SU(3) limit calculation
from those of � ! � as

½fsub3 ðq2Þ��!� ¼ ½f3ðq2Þ��!� �M� þM�

2MN

½f3ðq2Þ�n!p;

(53)

½gsub2 ðq2Þ��!� ¼ ½g2ðq2Þ��!� �M� þM�

2MN

½g2ðq2Þ�n!p;

(54)

where a factor ðM� þM�Þ=ð2MNÞ is accounted for the
mass difference between the � ! � and n ! p decays,
which is determined by simulated masses [64].
Although the q2 value for the � ! � transition differs

from that of the n ! p transitions at the same three-
momentum transfer, the above subtraction is simply per-
formed at every given three momentum q. There are
choices to set a reference value of the subtraction, since
the second-class form factors for the n ! p transition are
supposed to vanish with any value of mud. However, as
mentioned above, the lighter mud calculations provide
larger statistical uncertainties on the second-class form
factors than those of � ! �. In Eqs. (53) and (54), we
adopt the single reference values of ½f3ðq2Þ�n!p and
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FIG. 12 (color online). The subtraction method exposes nonzero values of the second-class form factors with better statistical
precision.
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½g2ðq2Þ�n!p evaluated at mud ¼ 0:06. Our chosen value of

mud corresponds to the heaviest mud mass in all combina-
tions of ðmud;msÞ for the � ! � calculation in this study.

Results from the subtraction method are also plotted in
Fig. 12 as filled circle symbols. It is clearly observed that
statistical errors are significantly reduced after such sub-
traction due to a strong correlation between those two form
factors, while center values are slightly shifted to zero.
Nonvanishing signals of both f3 and g2 form factors turn
out to be more pronounced. The subtraction method can
expose the real SU(3)-breaking effect with better statistical
precision.

2. Extrapolation to zero four momentum squared

We next examine the q2 dependence of the ratios
fsub3 ðq2Þ=f1ðq2Þ and gsub2 ðq2Þ=g1ðq2Þ. In Fig. 13, we show

the case of ðmud;msÞ ¼ ð0:04; 0:08Þ as typical examples.
One can easily observe that both ratios do not yield any
strong q2 dependence at least in our simulated range of

0.25 to 0:93 GeV2. It is worth mentioning that there is no
theoretical prediction of the q2 dependence of the second-
class form factors. Therefore, we simply adopt the linear or
quadratic extrapolation with respect to q2 to estimate
f3ð0Þ=f1ð0Þ and g2ð0Þ=g1ð0Þ. All evaluated values of
f3ð0Þ=f1ð0Þ and g2ð0Þ=g1ð0Þ from two functional forms
are summarized in Table X. The extrapolated values from
both determinations agree well with each other within their
errors. As a result, the extrapolated values are not signifi-
cantly affected by the specific fitting form adopted for
describing the q2 dependence of form factors.

3. Chiral extrapolation

In this subsection, we show the results of f3ð0Þ=f1ð0Þ
and g2ð0Þ=g1ð0Þ obtained by two types of the chiral ex-
trapolation. In the first method, which we call method A,
we take into account the fact that the second-class form
factors f3 and g2 vanish in the exact SU(3) symmetry limit
and nonzero values are induced by the first-order correc-
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FIG. 13 (color online). The ratios f3ðq2Þ=f1ðq2Þ (left panel) and g2ðq2Þ=g1ðq2Þ (right panel) as functions of q2 as in the case of
ðmud;msÞ ¼ ð0:04; 0:08Þ. The solid and dashed lines represent linear and quadratic fits for the three lowest q2 data, respectively.

TABLE X. Results for ½f3ð0Þ=f1ð0Þ��!� and ½g2ð0Þ=g1ð0Þ��!�, both of which are evaluated by the q2 extrapolation with the linear
and quadratic functional form.

½f3ð0Þ=f1ð0Þ��!� ½g2ð0Þ=g1ð0Þ��!�

ms mud Linear Quadratic Linear Quadratic

0.08 0.06 0.028(13) 0.011(22) �0:017ð26Þ 0.027(52)

0.05 0.045(13) 0.037(22) 0.048(26) 0.069(49)

0.04 0.064(20) 0.067(36) 0.131(38) 0.124(76)

0.10 0.05 0.062(22) 0.040(35) 0.030(43) 0.088(83)

0.04 0.078(26) 0.066(42) 0.107(49) 0.143(92)

(From method A) physical point 0.137(94) 0.241(173) 0.677(177) 0.414(372)

(From method B) physical point 0.147(60) 0.193(110) 0.450(114) 0.344(232)
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tions. We then introduce the following ratios for both
f3ð0Þ=f1ð0Þ and g2ð0Þ=g1ð0Þ:

Rf3=f1ðMK;M�Þ ¼ f3ð0Þ=f1ð0Þ
M2

K �M2
�

; (55)

Rg2=g1ðMK;M�Þ ¼ g2ð0Þ=g1ð0Þ
M2

K �M2
�

; (56)

where the leading first-order corrections of the flavor
SU(3) breaking are explicitly factorized out. In Fig. 14,
we show the quark-mass dependences of Rf3=f1 and Rg2=g1

as functions ofM2
K þM2

�. The ratio Rf3=f1 reveals the mild

dependence of M2
K þM2

�, while rather strong dependence
of M2

K þM2
� appears in the ratio Rg2=g1 . In either case,

obtained data is well described by the linear fitting form
[65]:

Rf3=f1ðMK;M�Þ or Rg2=g1ðMK;M�Þ ¼ A0 þ A1

� ðM2
K þM2

�Þ:
(57)

Here, the values of f3ð0Þ and g2ð0Þ given by the simplest
linear fit in q2 are used for calculating f3ð0Þ=f1ð0Þ and
g2ð0Þ=g1ð0Þ. We then get the extrapolated values of Rf3=f1

and Rg2=g1 at the physical meson masses as

Rf3=f1ðMphys
K ;Mphys

� Þ ¼ 0:61ð42Þ in ðGeVÞ�2; (58)

Rg2=g1ðMphys
K ;Mphys

� Þ ¼ 3:02ð89Þ in ðGeVÞ�2; (59)

which finally provide the values f3ð0Þ=f1ð0Þ ¼ 0:137ð94Þ
and g2ð0Þ=g1ð0Þ ¼ 0:677ð177Þ.

In an alternative method indicated by method B, we may
perform a linear fit in two mass combinations M2

K þM2
�

and M2
K �M2

�

f3ð0Þ=f1ð0Þ or g2ð0Þ=g1ð0Þ ¼ B0 þ B1 � ðM2
K þM2

�Þ
þ B2 � ðM2

K �M2
�Þ:

(60)

We then obtain f3ð0Þ=f1ð0Þ ¼ 0:147ð60Þ and
g2ð0Þ=g1ð0Þ ¼ 0:450ð110Þ. Both method A and B provide
consistent results. Although the errors in the latter ap-
proach are relatively smaller than that of the former, the
former leads to a much smaller value of 
2=dof than the
latter. Therefore, we quote the values obtained from
method A for our final values at the physical point:

�
f3ð0Þ
f1ð0Þ

�
�!�

¼ 0:137� 0:094; (61)

�
g2ð0Þ
g1ð0Þ

�
�!�

¼ 0:677� 0:177; (62)

which show firm evidence for nonzero second-class form
factors in the �0 ! �þ beta decay. It should be reminded
that the KTeV experiment reported no evidence for a non-
zero second-class form factor g2 [18], measuring
g2ð0Þ=f1ð0Þ ¼ �0:89� 1:05, which corresponds to
g2ð0Þ=g1ð0Þ ’ �0:73� 0:89 [66].

C. Weak-magnetism form factor f2ðq2Þ
In Fig. 15, we show the weak-magnetism form factors

fB!b
2 ðq2Þ for � ! � (left panel) and n ! p (right panel)

at ðmud;msÞ ¼ ð0:04; 0:08Þ as functions of four-momentum
squared q2. The form factors plotted here are scaled by the
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FIG. 14 (color online). Chiral extrapolation of Rf3=f1 (left panel) and Rg2=g1 (right panel). Symbols are defined as in Fig. 6.
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renormalization factor ZV determined in Sec IV. To deter-
mine fren2 ð0Þ, we adopt two functional forms for the q2

dependence of fren2 ðq2Þ: the dipole form

fren2 ðq2Þ ¼ fren2 ð0Þ
ð1þ �ð1Þ

2 q2Þ2 ; (63)

and the quadratic form

fren2 ðq2Þ ¼ fren2 ð0Þð1þ �ð1Þ
2 q2 þ �ð2Þ

2 q4Þ: (64)

The former functional form is phenomenologically
adopted in the nucleon’s electromagnetic form factors,
which are related to the weak nucleon form factors under
the CVC hypothesis on the weak processes.

Figure 15 shows that both functional forms are equally
fitted to data of fren2 ðq2Þ in either case of � ! � or n ! p
decay processes. However, there appears to be a sensitivity
of the choice of the fitting form in extrapolated values at
q2 ¼ 0. This is simply because our simulated q2 points are
not close enough to q2 ¼ 0. In Ref. [16], we have studied
the q2 dependence of the weak nucleon form factors at low
q2 down to about 0:1 GeV2, which is accessible with the
spatial extent L ¼ 24. Indeed, in our previous study, the
weak-magnetism form factor for n ! p is observed to be
well described by the dipole form [16]. To make this point
clear, in the right panel of Fig. 15, we also include results
from the larger volume (L ¼ 24) for a comparison. The
steep raising behavior of L ¼ 24 data as q2 decreases
clearly favors the dipole form. We, therefore, do not use
the results from the quadratic fit in the following discus-

sion. All extrapolated values with both determinations are
summarized in Table XI. As for the n ! p transition, the
extrapolated values of f2ð0Þ by using the dipole fit are
summarized in Table XII, together with other relevant
quantities.
We also perform the chiral extrapolation of fren2 ð0Þ

through a linear fit in two mass combinations M2
K þM2

�

and M2
K �M2

�, the same as Eq. (60). We obtain
½fren2 ð0Þ��!� ¼ 3:30� 0:24 by employing the result
from the dipole form for the q2 extrapolation. Finally, we
compare the ratio ½f2ð0Þ=f1ð0Þ��!� to its SU(3) counter-
part ½f2ð0Þ=f1ð0Þ�n!p and then observe an order of 16%

breaking effect as

�
f2ð0Þ
f1ð0Þ

�
�!�

¼ 1:16ð11Þ �
�
f2ð0Þ
f1ð0Þ

�
n!p

; (65)

which implies the violation of the exact SU(3) relation. It is
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FIG. 15 (color online). The renormalized weak-magnetism form factor f2ðq2Þ as functions of four-momentum squared q2 for �0 !
�þ (left panel) and n ! p (right panel) at ðmud;msÞ ¼ ð0:04; 0:08Þ. For the q2 extrapolation, we apply two types of fitting form. The
solid (dashed curve) is the fitting result by using the dipole (quadratic) form, while the open diamond (square) represents the
extrapolated value to q2 ¼ 0. The highest q2 data point is not included in our fits. In the right panel, results from the larger volume
(L ¼ 24) [16] are also included as open triangles for a comparison.

TABLE XI. Results for renormalized ½f2ð0Þ��!� is evaluated
by the q2 extrapolation with the dipole and quadratic functional
form.

ms mud ½fren2 ð0Þ��!� dipole Quadratic

0.08 0.06 3.64(11) 3.25(12)

0.05 3.60(13) 3.20(14)

0.04 3.54(15) 3.14(16)

0.10 0.05 3.63(11) 3.23(12)

0.04 3.57(13) 3.17(14)

� � � physical point 3.30(24) 2.92(25)
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worth mentioning that ½f2ð0Þ=f1ð0Þ��!� tends to be bigger
than ½f2ð0Þ=f1ð0Þ�n!p, while the f2ð0Þ=f1ð0Þ values eval-
uated from both the generalized CVC hypothesis [12] and
Sirlin’s formula [31] yield opposite results as previously
shown in Table II. In addition, the observed size of the
deviation from unity in Eq. (65) may also be compared
with the Cabibbo-model prediction as ðM� þ
M�Þ=ð2MNÞ ¼ 1:338 [9], which corresponds to a factor
accounted for the mass difference between the� ! � and
n ! p decays. We again observe a 15% deviation from the
Cabibbo model.

D. Induced pseudoscalar form factor g3ðq2Þ
We next show the q2 dependence of the ratio of the

induced pseudoscalar form factor g3ðq2Þ and the axial-
vector form factor g1ðq2Þ at ðmud;msÞ ¼ ð0:04; 0:08Þ in
Fig. 16. It is phenomenologically known that the q2 de-
pendence of g3ðq2Þ in the low q2 region are well fitted by
the pion-pole dominance (PPD) form, g3ðq2Þ ¼

4M2
Ng1ðq2Þ=ðq2 þM2

�Þ [67–69]. As shown in Ref. [16],
the PPD form provides a good description of the q2 de-
pendence of the nucleon’s induced pseudoscalar form fac-
tor measured in quenched DWF simulations at least at low
q2. On the other hand, there is no direct experimental
information in the case of g3ðq2Þ for any other hyperon
decays.
Under the partial conserved axial-vector current hy-

pothesis [70], an extension of PPD to �S ¼ 1 decays
predicts that the induced pseudoscalar form factor for the
hyperon beta decays, such as the � ! � decay, the K
meson pole, instead of the pion pole. In the generalized
PPD form, the ratio of g3ðq2Þ=g1ðq2Þ for the � ! � tran-
sition is given by a simple monopole form

�
g3ðq2Þ
g1ðq2Þ

�
PPD

�!�
¼ ðM� þM�Þ2

q2 þM2
K

(66)

where a monopole mass corresponds to the Kaon mass.
In Fig. 16, we include the predicted q2 dependence

(dotted curve) evaluated by the generalized PPD form
with simulated baryon masses ðMN;M�;M�Þ and meson
masses ðM�;MKÞ. Three larger q2 data points are quite
close to predicted curves in either� ! � or n ! p, while
the lowest q2 data points are underestimated in comparison
with the PPD prediction. To extrapolate the value of
g3ðq2Þ=g1ðq2Þ to zero four-momentum transfer, we first
adopt the monopole form, which is inspired by the PPD
form. In Fig. 16, the dashed curves are fitting results by the

monopole form with two parameters �ð0Þ
3 and �ð1Þ

3 ,

g3ðq2Þ
g1ðq2Þ

¼ �ð0Þ
3

1þ �ð1Þ
3 q2

(67)

TABLE XII. Summary for the n ! p transition process. The
values of f2ð0Þ=f1ð0Þ determined by the dipole form for the q2

extrapolation, while the values g3ð0Þ=g1ð0Þ are evaluated by the
pion-pole fit.

mud g1ð0Þ=f1ð0Þ f2ð0Þ=f1ð0Þ g3ð0Þ=g1ð0Þ
0.10 1.240(12) 3.80(8) 12.06(32)

0.08 1.226(11) 3.71(10) 13.52(38)

0.06 1.214(14) 3.57(13) 15.35(49)

0.05 1.209(18) 3.47(17) 16.73(59)

0.04 1.202(24) 3.35(24) 18.68(79)

physical point 1.191(49) 3.18(29) 151.0(6.9)
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FIG. 16 (color online). The ratio g3ðq2Þ=g1ðq2Þ as functions of four-momentum squared q2 for �0 ! �þ (left panel) and n ! p
(right panel) at ðmud;msÞ ¼ ð0:04; 0:08Þ. Symbols are defined as in Fig. 15. The highest q2 data point is not included in our fits.
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where 1=
ffiffiffiffiffiffiffiffi
�ð1Þ
3

q
corresponds to a monopole mass. The ob-

tained values of g3ð0Þ=g1ð0Þ are significantly smaller than
those of the PPD prediction as ðM� þM�Þ2=M2

K for the

� ! � transition and 4M2
N=M

2
K for the n ! p transition.

The resulting monopole masses are also bigger than the
expected Kaon and pion masses. This substantial deviation
from the PPD form is mainly caused by an unexpected
reduction of the lowest q2 data points.

In Ref. [16], we have reported that the lowest q2 point in
the nucleon’s induced pseudoscalar form factor at L ¼ 16,
which is now utilized in our current calculations, may
suffer from the finite volume effect. Indeed, the q2 depen-
dence of the results obtained from the larger lattice (L ¼
24) was well fitted by the pion-pole structure. In this
context, we may have an alternative way to evaluate the
value of g3ð0Þ=g1ð0Þ by a one-parameter fit in the mono-
pole form with the monopole mass constrained by simu-
latedMK orM�. We simply refer to such a fit as the ‘‘kaon-
pole fit’’ or the ‘‘pion-pole fit,’’ respectively. All extrapo-
lated values of g3ðq2Þ=g1ðq2Þ to zero four-momentum
transfer with both determinations of monopole and kaon-
pole fits are listed in Table XIII.

The solid curves in Fig. 16 are given by the kaon- and
pion-pole fits. For a justification of this analysis, see the
right panel of Fig. 16. In this figure, four data points (open
triangles) obtained from the larger lattice (L ¼ 24) are
additionally included. One can easily see that these data
points quite follow the solid curve, which is determined by
the pion-pole fit of the lowest three q2 data points obtained
from the lattice size of L ¼ 16. It is found that resulting
values of g3ð0Þ=g1ð0Þ are still slightly smaller than the PPD
values in either case of � ! � or n ! p. The similar
quenching was observed in our previous detailed study of
the nucleon’s induced pseudoscalar form factor using the
larger lattice (L ¼ 24) [16]. It is worth mentioning that the
size of this quenching for � ! � is similar to that of n !
p. Therefore, ratios of ½g3ð0Þ=g1ð0Þ��!� and
½g3ð0Þ=g1ð0Þ�n!p exhibit remarkable consistency with the

PPD prediction as shown in Table XIV. Even if we adopt
the monopole form for the q2 extrapolation, the resulting
ratios still barely agree with the PPD values. Our results
strongly suggest that the following relation is well fulfilled
at least in the simulated region

�
g3ð0Þ
g1ð0Þ

�
�!�

�
�
M� þM�

2MN

�
2 M2

�

M2
K

�
g3ð0Þ
g1ð0Þ

�
n!p

: (68)

As for the chiral extrapolation of g3ð0Þ=g1ð0Þ, the linear
fit in two mass combinationsM2

K þM2
� andM2

K �M2
� (the

same as method B in Sec. VI B 3) was utilized in Ref. [13].
However, this extrapolation does not take into account the
expected large quark-mass dependence of g3ð0Þ=g1ð0Þ in
the vicinity of the chiral limit like a divergent 1=M2

� term
for n ! p or a 1=M2

K term for � ! �. This implies that
the extrapolated values should be considerably underesti-
mated especially for the case of n ! p. For the ratio of
½g3ð0Þ=g1ð0Þ��!� and ½g3ð0Þ=g1ð0Þ�n!p at the physical

point, the naive chiral extrapolation indeed yields a large
value of 0.67(16) for the monopole fit or 0.52(4) for the
kaon(pion)-pole fit, which should be compared with the
PPD value ofM2

KðM� þM�Þ2=ð4M2
NM

2
�Þ ¼ 0:1430 at the

physical point. This result is clearly contradicted with the
finding expressed by Eq. (68) fulfilled in the simulated
region.
The simple linear fit in two mass combinations M2

K þ
M2

� and M2
K �M2

� is instead applied to the ratio of
g3ð0Þ=g1ð0Þ and its PPD value, which has a very mild
quark-mass dependence in either case of � ! � or n !
p. The value of ½g3ð0Þ=g1ð0Þ��!� at the physical point is
evaluated from the extrapolated value of this ratio with a
multiplicative factor of the physical PPD value. We obtain
½g3ð0Þ=g1ð0Þ��!� ¼ 21:58ð98Þ and ½g3ð0Þ=g1ð0Þ�n!p ¼
151:0ð6:9Þ at the physical point for the kaon(pion)-pole
fit. The ratio of those values, which are determined to be
0.1429(2), correctly reproduces the PPD value. This deter-
mination is rather phenomenological. However, it is hard to
perform the chiral extrapolation of g3ð0Þ=g1ð0Þ without
any assumption within our limited data sets. Thus, instead
of quoting any final value, we would like to stress that the
expected relation between ½g3ð0Þ=g1ð0Þ��!� and
½g3ð0Þ=g1ð0Þ�n!p as in Eq. (68) is confirmed in our

simulations.

VII. SUMMARY

In this paper, we have studied flavor SU(3)-breaking
effects in the hyperon semileptonic decay, �0 ! �þl ��l

TABLE XIV. Comparison of measured ratios of
½g3ð0Þ=g1ð0Þ��!� and ½g3ð0Þ=g1ð0Þ�n!p to their PPD value

given by M2
KðM� þM�Þ2=ð4M2

NM
2
�Þ.

ms mud From

monopole fit

From

kaon(pion)-pole fit

PPD

value

0.08 0.06 0.957(17) 0.938(6) 0.930(1)

0.05 0.925(33) 0.891(10) 0.878(2)

0.04 0.882(58) 0.827(15) 0.811(3)

0.10 0.05 0.881(43) 0.834(14) 0.819(4)

0.04 0.836(68) 0.768(18) 0.751(5)

TABLE XIII. Ratio ½g3ð0Þ=g1ð0Þ��!� is evaluated by the q2

extrapolation with the monopole and kaon-pole form.

ms mud ½g3ð0Þ=g1ð0Þ��!� monopole Kaon pole

0.08 0.06 12.08(87) 14.40(42)

0.05 12.36(98) 14.90(46)

0.04 12.63(1.15) 15.44(52)

0.10 0.05 11.77(86) 13.95(42)

0.04 11.97(1.00) 14.34(47)

physical point 16.73(2.51) 21.58(98)
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using quenched DWF simulations with the lattice size
L3 � T ¼ 163 � 32. The spatial extent La � 2:4 fm was
large enough to calculate all six form factors describing the
beta-decay matrix element without a serious finite volume
effect on the axial-vector coupling g1ð0Þ. From phenome-
nological point of view, the significance of this subject is
twofold: (1) to extract the element Vus of the Cabibbo-
Kobayashi-Maskawa mixing matrix from the �S ¼ 1 de-
cay process, and (2) to provide vital information to analysis
of the strange quark fraction of the proton spin with the
polarized deep inelastic scattering data. Our particular
choice of the �0 ! �þ decay process is highly sensitive
to the flavor SU(3) breaking, since this decay process is
nothing but the direct analogue of neutron beta-decay
under the exchange of the down quark with the strange
quark. The SU(3)-breaking pattern observed in this study is
summarized in Table XV.

The vector form factor at zero four-momentum transfer,
f1ð0Þ is protected by the Ademollo-Gatto theorem against
corrections at first-order in symmetry-breaking. However,
a sign of the second-order correction is somewhat contro-
versial among various theoretical studies at present. Our
estimate of renormalized ½f1ð0Þ��!� at the physical point
from quenched lattice QCD simulation is 0.989(19), which
indicates that the second-order correction on f1ð0Þ is likely
negative. This leads to the closer value of jVusj to the value
obtained from Kl3 decays. Although both the 1=Nc expan-
sion analysis and the full one-loop Oðp4Þ calculation in
HBChPT favor positive corrections, our observed tendency
for the SU(3) breaking correction agrees with predictions
of quark models and CBChPT up to complete Oðp4Þ.

The leading correction of the flavor SU(3) breaking to
g1ð0Þ starts at first order in symmetry breaking. Although
sizable breaking corrections, which is the order of 10%
estimated from the mass splitting in the octet baryons, is
expected, we found relatively small and positive correction
to g1ð0Þ=f1ð0Þ as ½g1ð0Þ=f1ð0Þ��!� ¼ 1:051ð33Þ �
½g1ð0Þ=f1ð0Þ�n!p in contrast to the model predictions

where large and negative correction is preferable.

Unfortunately, the first and single experiment of the �0 !
�þ decay done by the KTeV Collaboration is not yet
sufficiently precise to determine either the size, or the
sign, of the SU(3) breaking correction to g1ð0Þ=f1ð0Þ.
The advantages of lattice QCD studies of the hyperon

beta decay are further demonstrated in determinations of
the other beta-decay form factors, while it is difficult to
determine each form factor separately in experiments.
Especially, information of the second-class form factors
g2 is required since linear combinations of g1ð0Þ and g2ð0Þ
are actually measured in the experiments from the Dalitz
plot that reflects the electron-neutrino angular correlation
[21]. Furthermore, the nonzero value of the weak electric-
ity form factor g2 as well as that of the induced scalar form
factor f3 is the direct evidence of the SU(3) breaking effect
in the hyperon beta decays. We obtain the ratios of
½g2ð0Þ=g1ð0Þ��!� ¼ 0:68ð18Þ and ½f3ð0Þ=f1ð0Þ��!� ¼
0:14ð9Þ. Although both values are roughly comparable to
the expected size of the leading first-order corrections of
the flavor SU(3) breaking, the former is much larger than
the latter.
A remarkable observation is that a relatively small first-

order correction to g1ð0Þ is accidentally compensated for
flavor SU(3)-breaking effects on ~g1ð0Þ with an opposite
contribution due to the relatively large and positive value of
g2ð0Þ. This may suggest why the conventional analysis of
the hyperon beta decays based on the Cabibbo hypothesis
works well, though the effects due to the SU(3) breaking
observed in the octet baryon masses and magnetic mo-
ments are expected to considerably affect the axial-vector
part of the weak matrix elements.
We have also found that the weak magnetism f2ð0Þ

receives positive corrections of order 16% for the flavor
SU(3) breaking, measuring ½f2ð0Þ=f1ð0Þ��!� ¼
1:16ð10Þ � ½f2ð0Þ=f1ð0Þ�n!p. Our result is not in agree-

ment with either the generalized CVC hypothesis or the
Cabibbo-model prediction. On the other hand, as for the
induced pseudoscalar form factor g3, the generalized PPD
form, which is extended even in �S ¼ 1 decays under the
strong assumption of the partial conserved axial-vector
current, provides a good prediction of the ratio of
½g3ð0Þ=g1ð0Þ��!� and ½g3ð0Þ=g1ð0Þ�n!p at the physical

point as M2
KðM� þM�Þ2=ð4M2

NM
2
�Þ ¼ 0:1430. This indi-

cates that the large SU(3)-breaking effects on g3ð0Þ=g1ð0Þ
are attributed to the kaon(pion)-pole structure of the g3
form factor.
In this study, we have focused only on the specific beta-

decay process, �0 ! �þ. However, if the flavor SU(3)-
breaking pattern observed here would commonly appear in
other beta-decay processes, our results call for non-
negligible SU(3)-breaking effects in all hyperon beta de-
cays. We also believe that the quenched approximation is
not problematic for the determination of flavor SU(3)-
breaking effects in the hyperon beta decays in similar to
what was observed in calculations of Kl3 decays [1–3].

TABLE XV. Summary of the SU(3)-breaking pattern observed
in the �0 ! �þ decay. Here, �SUð3Þ is defined as ð½X��!� �
½X�n!pÞ=½X�n!p for each quantity X. We also evaluate the scaled

values of �SUð3Þ by the expected size of the leading-order

corrections.

X �SUð3Þ �SUð3Þ=ð2�Þn n

f1ð0Þ �0:013ð19Þ �1:3ð1:9Þ 2

f2ð0Þ þ0:16ð11Þ þ1:6ð1:1Þ 1

f3ð0Þ=f1ð0Þ þ0:137ð94Þ a þ1:4ð9Þ 1

g1ð0Þ=f1ð0Þ þ0:051ð35Þ þ0:51ð35Þ 1

g2ð0Þ=g1ð0Þ þ0:677ð177Þ a þ6:8ð1:8Þ 1

aBecause f3ð0Þ ¼ 0 and g2ð0Þ ¼ 0 for n ! p,
½f3ð0Þ=f1ð0Þ��!�, and ½g2ð0Þ=g1ð0Þ��!� are instead quoted,
respectively.
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Nevertheless, the simulation with dynamical 2þ 1 flavor
quarks is an important future direction to be explored for
full knowledge of the SU(3)-breaking pattern in the hy-
peron beta decays. Especially, in order to settle the signs of
the leading-order correction on f1ð0Þ, f2ð0Þ, and
g1ð0Þ=f1ð0Þ, more extensive lattice study is required. We
plan to extend the present calculation to include other
relevant hyperon beta-decay processes such as �� ! n
and � ! p using dynamical Nf ¼ 2þ 1 flavor DWF lat-

tice configurations generated by the RBC and UKQCD
Collaborations [72,73]. Such planning is now underway
[63].
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APPENDIX A: SCALAR FUNCTION fS

Let us consider the matrix element of the divergence of
the vector current:

hbðp0Þj@�V�ð0ÞjBðpÞi

¼ �ubðp0Þ½iðp6 �p6 0ÞfB!b
1 ðq2Þ� q2

MBþMb

fB!b
3 ðq2Þ�uBðpÞ

¼
�
ðMb�MBÞfB!b

1 ðq2Þ� q2

MBþMb

fB!b
3 ðq2Þ

�

� �ubðp0ÞuBðpÞ: (A1)

Here, we have used the Dirac equation for both initial (B)
and final (b) baryon states, ðip6 þMBÞuBðpÞ ¼ �ubðp0Þ �
ðip6 0 þMbÞ ¼ 0 to get from the first line to the second line.

Combined with Eq. (4), one finds the following relation

hbðp0Þj@�V�ð0ÞjBðpÞi ¼ ðMb

�MBÞfB!b
S ðq2Þ �ubðp0ÞuBðpÞ;

(A2)

where an overall factor Mb �MB on the right-hand side is
responsible for the current conservation when the flavor
SU(3) symmetry is exact (Mb ¼ MB).

APPENDIX B: OTHER PARAMETRIZATION OF
THE BARYON WEAK MATRIX ELEMENT

Instead of the standard parametrization of Eqs. (2) and
(3), the following equivalent form [74] is more useful to
derive all of Eqs. (15)–(19), which are considered at the
rest flame of the final (b) state (p0 ¼ 0):

O V
�ðqÞ ¼ ��

~fB!b
1 ðq2Þ þ ip�

~fB!b
2 ðq2Þ

MB þMb

þ iq�
~fB!b
3 ðq2Þ

MB þMb

;

(B1)

O A
�ðqÞ ¼ ���5~g

B!b
1 ðq2Þ þ ip��5

~gB!b
2 ðq2Þ

MB þMb

þ iq��5

~gB!b
3 ðq2Þ

MB þMb

: (B2)

The two sets of form factors are connected by

~fB!b
1 ðq2Þ ¼ fB!b

1 ðq2Þ þ fB!b
2 ðq2Þ;

~gB!b
1 ðq2Þ ¼ gB!b

1 ðq2Þ �MB �Mb

MB þMb

gB!b
2 ðq2Þ;

~fB!b
2 ðq2Þ ¼ 2fB!b

2 ðq2Þ;
~gB!b
2 ðq2Þ ¼ 2gB!b

2 ðq2Þ;
~fB!b
3 ðq2Þ ¼ fB!b

3 ðq2Þ � fB!b
2 ðq2Þ;

~gB!b
3 ðq2Þ ¼ gB!b

3 ðq2Þ � gB!b
2 ðq2Þ: (B3)

One can easily check the above relations using the Gordon
identity.
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