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We present a lattice calculation of the electromagnetic form factor of the pion obtained using the tree-

level Symanzik improved gauge action with two flavors of dynamical twisted Wilson quarks. The

simulated pion masses range approximately from 260 to 580 MeV, and the lattice box sizes are chosen

in order to guarantee thatM�L * 4. Accurate results for the form factor are obtained using all-to-all quark

propagators evaluated by a stochastic procedure. The momentum dependence of the pion form factor is

investigated up to values of the squared four-momentum transfer Q2 ’ 0:8 GeV2 and, thanks to the use of

twisted boundary conditions, down to Q2 ’ 0:05 GeV2. Volume and discretization effects on the form

factor appear to be within the statistical errors. Our results for the pion mass, decay constant and form

factor are analyzed using (continuum) chiral perturbation theory at next-to-next-to-leading order. The

extrapolated value of the pion charge radius is hr2iphys ¼ 0:456� 0:030stat � 0:024syst in nice agreement

with the experimental result. The extrapolated values of the pion form factor agree very well with the

experimental data up to Q2 ’ 0:8 GeV2 within uncertainties which become competitive with the

experimental errors for Q2 * 0:3 GeV2. The relevant low-energy constants appearing in the chiral

expansion of the pion form factor are extracted from our lattice data, which come essentially from a

single lattice spacing, adding the experimental value of the pion scalar radius in the fitting procedure. Our

findings are in nice agreement with the available results of chiral perturbation theory analyses of �� �

scattering data as well as with other analyses of our collaboration.
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I. INTRODUCTION

The investigation of the physical properties of the pion,
which is the lightest bound state in quantum chromody-
namics (QCD), can provide crucial information on the way
low-energy dynamics is governed by the quark and gluon
degrees of freedom. In this respect for spacelike values of
the squared four-momentum transfer, Q2 � �q2 � 0, the
electromagnetic (e.m.) form factor of the pion, F�ðQ2Þ,
provides important insights on the distribution of its
charged constituents, namely, valence and sea light quarks.
At momentum transfer below the scale of chiral symmetry
breaking (Q2 & 1 GeV2) the pion form factor represents
therefore an important test of nonperturbative QCD.

The current experimental situation is as follows. For
values of Q2 & 0:2 GeV2 the pion form factor has been
determined quite precisely at CERN SPS [1] by measuring
directly the scattering of high-energy pions off atomic
electrons in a fixed target. At higher values of Q2 the
pion form factor is extracted from cross section measure-
ments of the reaction 1Hðe; e0�þÞn, that is from electron
quasielastic scattering off virtual pions in a proton. The
separation of the longitudinal and transverse response
functions as well as the extrapolation of the observed
scattering from virtual pions to the one corresponding to
on-shell pions have to be carefully considered for estimat-
ing the systematic uncertainties. Using the electroproduc-
tion technique the pion form factor has been determined for

Q2 values in the range 0:4� 9:8 GeV2 at CEA/Cornell [2],
for Q2 ¼ 0:35 and 0:70 GeV2 at DESY [3,4] and, more
recently, for Q2 in the range 0:6� 1:6 GeV2 [5] and for
Q2 ¼ 1:60, 2.15 and 2:45 GeV2 [6] at the Thomas
Jefferson National Acceleration Facility (JLab). A careful
reanalysis of the systematic uncertainties for the data of
Refs. [3–5] has been carried out in Refs. [7,8].
It is well known that at small values of Q2 the pion form

factor can be reproduced qualitatively by a simple mono-
pole ansatz inspired by the vector meson dominance
(VMD) model with the contribution from the lightest
vector meson (M� ’ 0:77 GeV) only. This is not too sur-

prising in view of the fact that in the timelike region the
pion form factor is dominated by the �-meson resonance
[9].
More interesting is the quark mass dependence of the

pion form factor, which can be addressed by QCD simu-
lations on the lattice and by chiral perturbation theory
(ChPT). The latter, which is known at next-to-leading order
(NLO) [10] and next-to-next-to-leading (NNLO) order
[11] for the pion form factor, can be used as a guide to
extrapolate the lattice results from the simulated pion
masses down to the physical point, obtaining at the same
time an estimate of the relevant low-energy constants
(LECs) of the effective theory.
Initial studies of the pion form factor using lattice QCD

date back to the late 1980s [12,13] giving strong support to
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the vector-meson dominance hypothesis at low Q2. Within
the quenched approximation, which neglects the effects of
the sea quarks, several lattice investigations have been
carried out using Wilson [14], Sheikholeslami-Wohlert
[15], twisted Wilson [16] and Ginsparg-Wilson [17] fer-
mions. The effects of the quenched approximation might
be limited because, thanks to charge-conjugation and iso-
spin symmetries, the e.m. pion form factor receives no
contribution from the so-called disconnected diagrams in
which the vector current is attached directly to a nonva-
lence quark (see Ref. [13]). However there are effects from
sea quarks which do not interact directly with the external
current, and they can be taken into account only by per-
forming unquenched gauge simulations.

There are few results for two flavors of dynamical
fermions from the JLQCD [18] and QCDSF/UKQCD
[19] Collaborations adopting Clover fermions and again
from JLQCD [20] using overlap quarks. Finally only two
studies with three flavors of dynamical quarks are available
to date, namely, from Ref. [14], where domain-wall va-
lence quarks and Asqtad sea quarks are mixed, and from
Ref. [21], where the domain-wall formulation is used for
both sea and valence quarks.

As far as the lattice results for the (squared) pion charge
radius at the physical point are concerned, the present
situation is a bit puzzling. Some collaborations [14,18]
have found that their extrapolations underestimate signifi-
cantly (up to ’ 30%) the well-known experimental value
hr2iexp ¼ 0:452� 0:011 fm2 [22], while other collabora-
tions [19–21] have obtained values consistent with experi-
ment within the errors.

The European Twisted-Mass (ETM) Collaboration has
recently produced a large number of gauge configurations
with two flavors of dynamical quarks [23–25] using the
Wilson twisted-mass fermionic action [26] and the tree-
level Symanzik improved (tlSym) gauge action [27]. In
order to obtain (almost) automatic OðaÞ improvement the
Wilson twisted-mass fermions have been tuned to maximal
twists [28]. An intensive, systematic program of calcula-
tions of three-point correlation functions relevant for the
determination of meson form factors both in the light and
in the heavy sectors has then been started. Preliminary
results, concerning the vector and scalar form factors of
the pion, the Isgur-Wise universal function and the tran-
sition form factors relevant in K‘3 and D ! �ðKÞ semi-
leptonic decays have been presented in Ref. [29].

In this paper we concentrate on the e.m. form factor
of the pion, and we present the results of several measure-
ments performed with pion masses in the range from
’ 260 MeV to ’ 580 MeV, using six values of the quark
mass at a lattice spacing of ’ 0:09 fm and two values of the
quark mass at a lattice spacing of ’ 0:07 fm. The lattice
box sizes are chosen in order to guarantee that M�L * 4
for minimizing as much as possible finite size effects.
Thanks to the use of all-to-all propagators evaluated by

the stochastic procedure of Ref. [30] (see also [24]) the
statistical precision of the extracted form factor is quite
impressive. The momentum dependence of the pion form
factor is investigated up to values of the squared four-
momentum transfer Q2 ’ 0:8 GeV2 and, thanks to the
use of twisted boundary conditions (BCs) [31,32], down
to Q2 ’ 0:05 GeV2. The Q2-shape at the simulated pion
masses is well reproduced by a single monopole ansatz
with a pole mass lighter by� 10%� 15% than the lightest
vector-meson mass. Volume and discretization effects on
the form factor are estimated using few simulations at
different volumes and lattice spacings, and they turn out
to be within the statistical errors.
The extrapolation of our results for the pion mass, decay

constant and form factor to the physical point is carried
out using (continuum) ChPT at NNLO [11]. The extrapo-
lated value of the (squared) pion charge radius is hr2iphys ¼
0:456� 0:030stat � 0:024syst, in nice agreement with the

experimental result hr2iexp ¼ 0:452� 0:011 fm2 [22]. The
extrapolated values of the pion form factor agree very well
with the experimental data up to Q2 ’ 0:8 GeV2 within
uncertainties which become competitive with the experi-
mental errors forQ2 * 0:3 GeV2. The relevant low-energy
constants (LECs) appearing in the chiral expansion of the
pion form factor are extracted from our lattice data adding
in the fitting procedure the experimental value of the pion
scalar radius [11]. The latter helps to constrain one of the

LECs ( �‘4), which in turn is beneficial for reducing the

uncertainties of the other LECs. We get: �‘1 ¼ �0:4�
1:3� 0:6, �‘2 ¼ 4:3� 1:1� 0:4, �‘3 ¼ 3:2� 0:8� 0:2,
�‘4 ¼ 4:4� 0:2� 0:1, �‘6 ¼ 14:9� 1:2� 0:7, where the
first error is statistical and the second one systematic.
Our findings are in nice agreement with the results of
ChPT analyses of �� � scattering data [33]. The values

found for �‘3 and �‘4 agree very well both with earlier
ETMC results from Refs. [23,24] and with the recent
ETMC determination of Ref. [34]. This is quite reassuring
because different kinds of systematic uncertainties may
affect the two analyses: the present one being a NNLO
analysis limited mainly to data from a single lattice spac-
ing, and that of Ref. [34] having two values of the lattice
spacing but limited mainly to NLO in ChPT.
The plan of the paper is as follows. In the next section we

briefly discuss the implementation of twisted BCs for the
quark fields. In Sec. III we present the calculation of two-
and three-point correlation functions performed in the
Breit reference frame, where the values of four-momentum
transferQ2 are independent of the simulated pion mass. We
also briefly show the stochastic procedure used for our
unbiased estimate of the all-to-all propagators employed
in this work.
In Sec. IV we first illustrate the very precise results

obtained for the renormalization constant of the vector
current, and then we compare them with other determina-
tions. Our accurate results for the momentum dependence
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of the pion form factor for the various simulated pion
masses are presented, and both volume and discretization
effects are investigated.

In Sec. V, using a single monopole ansatz to fit the
momentum dependence of the form factor, the charge
radius and the curvature are calculated at the simulated
pion masses and analyzed both in terms of the ChPT
expansion at NNLO from Ref. [11] and adopting a simple
polynomial fit.

The mass and momentum dependencies of our lattice
points for the pion form factor are analyzed in Sec. VI
without any model assumption, but using only the func-
tional forms dictated by ChPT at NNLO.

In Sec. VII the final values of the relevant LECs, includ-
ing the estimate of the systematic errors, are presented, and
it is shown that the extrapolated form factor at the physical
point agrees very well with the experimental data in the
whole range of values of Q2 considered. Finally Sec. VIII
is devoted to our conclusions.

II. LATTICE ALL-TO-ALL QUARK
PROPAGATORS WITH TWISTED BOUNDARY

CONDITIONS

In lattice QCD simulations the spatial components of the
hadronic momenta pj (j ¼ 1, 2, 3) are quantized. The

specific quantized values depend on the choice of the
BCs applied to the quark fields. The most common choice
is the use of periodic BCs in the spatial directions

c ðxþ êjLÞ ¼ c ðxÞ; (1)

that leads to

pj ¼ nj
2�

L
; (2)

where the nj’s are integer numbers. Thus the smallest

nonvanishing value of pj is given by 2�=L, which depends

on the spatial size of the (cubic) lattice (V ¼ L3). For
instance a current available lattice may have L ¼ 32a,
where a is the lattice spacing, and a�1 ’ 2:5 GeV leading
to 2�=L ’ 0:5 GeV. Such a value may represent a strong
limitation of the kinematical regions accessible for the
investigation of momentum-dependent quantities, like,
e.g., form factors.

In Ref. [31] it was proposed to use twisted BCs for the
quark fields

~c ðxþ êjLÞ ¼ e2�i�j ~c ðxÞ (3)

which allows to shift the quantized values of pj by an

arbitrary amount equal to 2��j=L, namely

~p j ¼ pj þ �j
2�

L
¼ nj

2�

L
þ �j

2�

L
: (4)

The twisted BCs (3) can be shown [31] to be equivalent
to the introduction of a U(1) background gauge field
coupled to the baryon number and applied to quark fields
satisfying usual periodic BCs (the Aharonov-Bohm effect).
In Ref. [32] the twisted BCs were first implemented in a
lattice QCD simulation of two-point correlation functions
of pseudoscalar mesons. The energy-momentum disper-
sion relation was checked confirming that the momentum
shift 2��j=L is a physical one. In Ref. [35] the twisted BCs

were first applied to the calculation of the vector and scalar
form factors relevant to the K ! � semileptonic decay. It
was shown that the momentum shift produced by the
twisted BCs does not introduce any additional noise and
easily allows to determine the form factors with good
accuracy at quite small values of Q2, which are not acces-
sible when periodic BCs are considered.1

On the lattice, for a given flavor, the all-to-all quark
propagator Sðx; yÞ � hc ðxÞ �c ðyÞi, where h. . .i indicates the
average over gauge field configurations weighted by the
lattice QCD action, satisfies the following equation

X
z

Dðx; zÞSðz; yÞ ¼ �x;y (5)

where Dðx; zÞ is the Dirac operator whose explicit form
depends on the choice of the lattice QCD action.2 In what
follows we work with the fermionic twisted-mass lattice
QCD (tmLQCD) action with two flavors of mass-
degenerate quarks given in Ref. [23], tuned at maximal
twist in the way described in full details in Ref. [24].
Therefore, in the so-called physical basis the operator
Dðx; zÞ is given explicitly by

Dðx; zÞ ¼ Kðx; zÞ þ i�5�3Wðx; zÞ þ am�x;z; (6)

Kðx; zÞ ¼ 1

2

X4
�¼1

��f�x;z�a�̂U�ðxÞ � �x;zþa�̂U
y
�ðzÞg; (7)

Wðx; zÞ ¼ ð4rþ amcritÞ�x;z

� r

2

X4
�¼1

f�x;z�a�̂U�ðxÞ þ �x;zþa�̂U
y
�ðzÞg; (8)

where U�ðxÞ is the gauge link, m is the bare twisted quark

mass, mcrit is the critical value of the untwisted quark mass
(needed to achieve maximal twist), �3 is the third Pauli
matrix acting in flavor space, and r is the Wilson parame-
ter, which is set to r ¼ 1 in our simulations.

1We mention that a new application of twisted BCs to the
evaluation of the vector form factor at zero-momentum transfer
has been proposed in Ref. [21].

2We omit in this section color and Dirac indices for simplicity.

ELECTROMAGNETIC FORM FACTOR OF THE PION FROM . . . PHYSICAL REVIEW D 79, 074506 (2009)

074506-3



We now want to consider the case in which a valence
quark field satisfies the twisted BCs (3) in the spatial
directions and is antiperiodic in time. This is at variance
with what has been done in the production of the ETMC
gauge configurations, which include two sea quarks with
periodic BCs in space and antiperiodic ones in time [24].
However it has been recently shown [36] that for many
physical quantities, which do not involve final state inter-
actions (like, e.g., meson masses, decay constants, semi-
leptonic form factors and e.m. transitions), the use of
different BCs on valence and sea quarks produces finite-
volume effects which remain exponentially small. In this
way there is no need for producing new gauge configura-
tions for each quark momentum, and this is quite relevant
in the case of gauge configurations with dynamical
fermions.

The corresponding quark propagator ~Sðx; yÞ �
h ~c ðxÞ �~c ðyÞi still satisfies Eq. (5) with the same Dirac
operator Dðx; zÞ but with different BCs:

X
z

Dðx; zÞ~Sðz; yÞ ¼ �x;y: (9)

Technically in order to work always with fields satisfying
periodic BCs in space and time we follow Refs. [31,32] by
introducing a new quark field as

c ~�ðxÞ ¼ e�2�i~��x=L ~c ðxÞ (10)

where the four-vector ~� is given by ðL=2T; ~�Þ. In such a

way the new quark propagator S
~�ðx; yÞ � hc ~�ðxÞ �c ~�ðyÞi

satisfies the equation

X
z

D
~�ðx; zÞS~�ðz; yÞ ¼ �x;y (11)

with a modified Dirac operatorD
~�ðx; zÞ but periodic BCs in

both space and time. The new Dirac operator is related to
Eq. (6) by a simple rephasing of the gauge links

U�ðxÞ ! U
~�
�ðxÞ � e2�ia

~��=LU�ðxÞ: (12)

In terms of S
~�ðx; yÞ, related to the quark fields c ~�ðxÞ

with periodic BCs, the all-to-all quark propagator ~Sðx; yÞ,
corresponding to the quark fields ~c ðxÞ with twisted BC’s,
is simply given by

~Sðx; yÞ ¼ e2�i
~��ðx�yÞ=LS~�ðx; yÞ: (13)

III. TWO- AND THREE-POINT CORRELATION
FUNCTIONS

We are interested in the calculation of the vector form
factor of a charged pion defined through the relation

h�þðp0ÞjV̂�ð0Þj�þðpÞi ¼ F�ðq2Þðpþ p0Þ�; (14)

where p (p0) is the initial (final) pion four-momentum,
q2 ¼ ðp� p0Þ2 is the squared four-momentum transfer and

V̂� is a conserved e.m. current on the lattice. Splitting V̂�

into an isovector and an isoscalar part, it is easy to show
that the matrix elements of the isoscalar component be-
tween pion states is vanishing in the continuum limit,
thanks to charge conjugation and isospin symmetries.3

Thus, up to discretization effects we take V̂� at a generic

(Euclidean) space-time point x ¼ ðtx; ~xÞ in the following
form

V̂ �ðxÞ ¼ ZVV�ðxÞ; (15)

V�ðxÞ ¼ 1

2
½ �uðxÞ��uðxÞ � �dðxÞ��dðxÞ� (16)

with ZV being the renormalization constant of the isovector
part of the vector current at maximal twist (cf. Ref. [28]).
The insertion of the current (16) generates two types of

Feynmann diagrams, the so-called connected and discon-
nected diagrams.4 In the former the external current is
attached to the valence quarks, whereas in the latter the
current interacts with the sea quarks. However, in the
continuum limit the vanishing of the pion-to-pion matrix
element of the isoscalar current ( �u��uþ �d��d) implies

that the connected diagrams stemming from the u- and
d-quark terms of the current (16) are equal in absolute
value and opposite in sign, while their disconnected coun-
terparts are vanishing for each quark flavor. Thus, in
tmLQCD the disconnected diagrams for the e.m. pion
form factor represent a pure discretization effect, which
turns out to be of order Oða2Þ (see later on). Therefore, up
to discretization effects, it is enough to consider only the
connected insertion of one single flavor of Eq. (16).
From Eq. (14) the pion form factor can be extracted from

both the time and the spatial components of the vector
current. However for reasons which will become clear
during this section, we work in the Breit reference frame
where ~p0 ¼ � ~p, so that the spatial components of the
vector current are vanishing identically. Therefore we limit
ourselves to consider the following two- and three-point
correlation functions

C�ðt; ~pÞ ¼ X
x;z

hO�ðxÞOy
�ðzÞi�t;tx�tze

�i ~p�ð ~x�~zÞ; (17)

C��
0 ðt; t0; ~p; ~p0Þ ¼ X

x;y;z

hO�ðyÞV0ðxÞOy
�ðzÞi�t;tx�tz�t0;ty�tz

� e�i ~p�ð ~x�~zÞþi ~p0�ð ~x� ~yÞ; (18)

where V0ðxÞ ¼ �uðxÞ�0uðxÞ and Oy
�ðzÞ ¼ �uðzÞ�5dðzÞ is the

3Note that in tmLQCD the charge-conjugation symmetry is
preserved, while the isospin one is broken at finite lattice
spacings.

4The terms ‘‘connected’’ and ‘‘disconnected’’ refer to fermi-
onic lines only.
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operator interpolating the �þ mesons. Note that, since we
want to use all-to-all propagators, in Eqs. (17) and (18)
there is an additional sum over the space-time lattice
volume, which helps in improving the signal quality with
respect to the case of a fixed-point source (z ¼ 0).

Using the completeness relation and taking t and (t0 � t)
large enough, one gets

C�ðt; ~pÞ !
t!1

Z�

2E�ð ~pÞ e
�E�ð ~pÞt; (19)

C��
0 ðt; t0; ~p; ~p0Þ !

t!1
ðt0�tÞ!1

Z�

2E�ð ~pÞ2E�ð ~p0Þ
1

ZV

	 h�þðp0ÞjV̂0j�þðpÞie�E�ð ~pÞt

	 e�E�ð ~p0Þðt0�tÞ; (20)

where, up to discretization effects, E�ð ~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

� þ j ~pj2p
and

ffiffiffiffiffiffi
Z�

p ¼ h0jO�ð0Þj�þi is independent on the meson
momentum ~p. Note that in tmLQCD at maximal twist
the value of the coupling constant Z� determines the
pion decay constant f� [28] without the need of the knowl-
edge of any renormalization constant, namely

f� ¼ 2m

ffiffiffiffiffiffi
Z�

p
M2

�

; (21)

where m is the bare twisted quark mass.
Taking advantage of the choice of the Breit frame where

~p0 ¼ � ~p, it follows

C��
0 ðt; t0; ~p;� ~pÞ
C�ðt0; ~pÞ !

t!1
ðt0�tÞ!1

1

ZV

h�þðp0ÞjV̂0j�þðpÞi
2E�ð ~pÞ

¼ 1

ZV

F�ðq2Þ; (22)

where

q2 � ½E�ð ~pÞ � E�ð ~p0Þ�2 � j ~p� ~p0j2 !
~p0¼� ~p

� 4j ~pj2 (23)

is independent of the simulated pion mass.
The vector renormalization constant can be obtained

from Eq. (22) by using the absolute normalization of the
pion form factor at q2 ¼ 0, namely F�ðq2 ¼ 0Þ ¼ 1,
which implies

ZV !
t!1

ðt0�tÞ!1

C�ðt0; ~0Þ
C��
0 ðt; t0; ~0; ~0Þ : (24)

Combining Eqs. (22) and (24) one gets

R0ðt; t0;q2Þ � C��
0 ðt; t0; ~p;� ~pÞ
C��
0 ðt; t0; ~0; ~0Þ

C�ðt0; ~0Þ
C�ðt0; ~pÞ !

t!1
ðt0�tÞ!1

F�ðq2Þ

(25)

which means that the pion form factor can be obtained
directly from the plateau of the double ratio given by the

left-hand side of Eq. (25) at large time distances. Note that
in this way the normalization condition F�ðq2 ¼ 0Þ ¼ 1 is
fulfilled at all quark masses, lattice volumes and spacings.
The (mass-dependent) renormalization constant ZV can

be obtained alternatively using the three-point correlation
function calculated in a frame in which the initial and final
pions have the same momentum ~p, i.e., from the plateau of
the ratio C�ðt0; ~pÞ=C��

0 ðt; t0; ~p; ~pÞ at large time distances.

In this way the pion form factor can be extracted from the
plateau of a ratio of three-point correlation functions only,
i.e., from C��

0 ðt; t0; ~p;� ~pÞ=C��
0 ðt; t0; ~p; ~pÞ. Such an alter-

native approach has been tested in Ref. [21] and shown to
have a statistical precision similar to the one based on
Eq. (25).

In terms of the all-to-all quark propagators SuðdÞðx; zÞ,
where the flavor labels u and d correspond to �3 ¼ �1 in
Eq. (6), the two-point function C�ðt; ~pÞ of the charged pion
becomes

C�ðt; ~pÞ ¼ X
x;z

hTr½Suðx; zÞ�5Sdðz; xÞ�5�i�t;tx�tze
�i ~p�ð ~x�~zÞ:

(26)

For the tmLQCD action the �5-hermiticity property

Sdðz; xÞ ¼ �5S
y
u ðx; zÞ�5 (27)

holds with the dagger operator acting in the (suppressed)
color and Dirac spaces.
As for the three-point correlation function

C��
0 ðtx; ty; ~p;� ~pÞ, according to the discussion on the dis-

connected diagrams made before Eq. (18), up to discreti-
zation effects one gets

C��
0 ðt; t0; ~p;� ~pÞ ¼ X

x;z

hTr½Suðx; zÞ�5
��duðz; x; t0;� ~pÞ�0�i

	 ��t;tx�tze
�2i ~p�ð ~x�~zÞ; (28)

where ��duðz; x; t0;� ~pÞ ¼ �5½�duðx; z; t0;� ~pÞ�y�5 and

�duðx; z; t0; ~pÞ ¼
X
y

Sdðx; yÞ�5Suðy; zÞe�i ~p�ð~z� ~yÞ�t0;ty�tz :

(29)

The sequential propagator �duðx; z; t0; ~pÞ satisfies the
equationX

y

Ddðx; yÞ�duðy; z; t0; ~pÞ ¼ �5Suðx; zÞ�t0;tx�tze
i ~p�ð ~x�~zÞ:

(30)

As it has been shown in Ref. [28], the calculation of
correlation functions of parity symmetric operators is au-
tomatically OðaÞ improved at maximal twist. Thus for
nonvanishing values of the spatial momenta theOðaÞ terms
can be eliminated by appropriate averaging of the correla-
tion functions over initial and final momenta of opposite
sign. Using the symmetry of correlation functions under
the spatial inversion and the simultaneous exchange of u
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and d quarks (which is fulfilled only after gauge averaging
at maximal twist in the physical basis) as well as the
charge-conjugation symmetry and the �5-hermiticity prop-
erty, one gets that: i) the correlators (26) and (28) are real,
and ii) C�ðt0; ~pÞ ¼ C�ðt0;� ~pÞ and C��

0 ðt; t0; ~p;� ~pÞ ¼
C��
0 ðt; t0;� ~p; ~pÞ. Thus discretization effects in both

C�ðt0; ~pÞ and C��
0 ðt; t0; ~p;� ~pÞ start automatically at order

Oða2Þ.5
Let us now consider the case of quark fields with twisted

BCs. Equations (26)–(30) hold as well by simply replacing
the propagators S and � with the corresponding twisted

ones, ~S and ~�, and by taking into account the change of the
quantized momenta, namely pj ! ~pj [see Eq. (4)]. The

two- and three-point correlators can be expressed in terms
of quark propagators satisfying periodic BCs, e.g., in terms

of S
~� [see Eq. (13)]. We now write down the explicit

formulae for sake of completeness.
In order to work in the Breit frame we consider three

choices of the twisting four-vector ~�, namely ~� ¼ ~�� ¼
ðL=2T;� ~�Þ and ~� ¼ ~�0 ¼ ðL=2T; ~0Þ for various values of
~�. Writing ~p in the generic form ~p ¼ 2� ~�=L, we get

C�

�
t;
2�

L
~�

�
¼ X

x;z

hTr½S~�þ
u ðx; zÞ�5S

~�0
d ðz; xÞ�5�i�t;tx�tz ;

(31)

C��
0

�
t; t0;

2�

L
~�;� 2�

L
~�

�

¼ X
x;z

hTr½S~�þ
u ðx; zÞ�5

��
~�0;~��
du ðz; x; t0Þ�0�i�t;tx�tz ; (32)

where thanks to the �5-hermiticity property one has

��
~�0;~��
du ðz; x; t0Þ ¼ �5½�~��;~�0

du �yðx; z; t0Þ�5 (33)

and the sequential propagator �
~��;~�0
du ðx; z; t0Þ satisfies the

modified Dirac equationX
y

D
~��
d ðx; yÞ�~��;~�0

du ðy; z; t0Þ ¼ �5S
~�0
u ðx; zÞ�t0;tx�tz : (34)

Note that, because of Eq. (13), no exponential factors
appear in the right-hand side of Eqs. (31)–(34), and the

dependence on the vector ~� is totally embedded in the

twisted quark propagators S
~�þ and �

~��;~�0 .

A. Stochastic procedures

The next point to be addressed is the evaluation of the

all-to-all propagator S
~�ðx; zÞ, which is the solution of the

modified Dirac equation (11). Restoring color and spin

indices, denoted by Latin and Greek letters, respectively,
one hasX

y

½D~�ðx; yÞ�ab�	½S~�ðy; zÞ�bc	� ¼ �x;z�a;c��;�: (35)

The computation of exact all-to-all quark propagators is a
formidable task well beyond present computational capa-
bilities, because it involves a huge number of inversions of
the Dirac equation for all possible locations of the source in
space and time. Consequently most of the lattice compu-
tations of connected two- and three-point correlation func-
tions are until now carried out using the point-to-all
propagator by fixing the source at some space-time point,
referred to as the origin. To get the expressions of our two-
and three-point correlators in terms of point-to-all propa-
gators it is enough to limit the sum over the variable z to
z ¼ 0 everywhere in Eqs. (31)–(34). The basic advantage
of the all-to-all propagator with respect to the point-to-all
one relies on the fact that the former contains all the
information on the gauge configuration, which in turn
means that the calculation of two- and three-point func-
tions using all-to-all propagators is expected to have much
less gauge noise.
An efficient way to estimate the all-to-all propagator is

based on stochastic techniques with the help of variance
reduction methods to better separate the signal from the
noise (see Ref. [37] and references therein). In recent years
new stochastic methods have been developed, like the
dilution method of Ref. [38] and the so-called ‘‘one-end-
trick’’ of Ref. [30]. The latter, already applied by the ETM
Collaboration to the calculation of neutral meson masses
(see Refs. [24,39]), allows to achieve a great reduction of
the noise-to-signal ratio, and it will be applied in this work
to the calculation of three-point correlation functions (see
also Refs. [29,40]).
The starting point of all stochastic approaches is to

consider random sources 
a
r ðxÞ, which, for reasons that

will become clear later on, we take independent of both the

spin variable and the twisting vector ~� (i.e., of the quark
momentum). The index r (r ¼ 1; . . .N) enumerates the
generated random sources, which must satisfy the follow-
ing constraint:

lim
N!1

1

N

XN
r¼1


a
r ðxÞ½
b

r ðyÞ�
 ¼ �a;b�x;y: (36)

In this work we adopt for the sources a random choice of
�1 values. Then one introduces the ‘‘�-propagator’’

½�~�
r ðxÞ�a�	 ¼ X

y

½S~�ðx; yÞ�ab�	
b
r ðyÞ; (37)

which is solution of the equationX
y

½D~�ðx; yÞ�ab�	½�~�
r ðyÞ�b	� ¼ 
a

r ðxÞ��;�; (38)

where the sum over repeated color or spin indices is under-

5This result holds as well in all reference frames and it
explains the findings shown in Fig. 12 of Ref. [16], where the
correlation functions with opposite momenta have been calcu-
lated explicitly and found to be identical within statistical errors.
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stood. As explained in detail in Ref. [24], the quantity

ð1=NÞPN
r¼1½�~�

r ðxÞ�a�	½
b
r ðyÞ�
 is an unbiased estimator of

the all-to-all propagator ½S~�ðx; yÞ�ab�	. However, while the

signal is of order Oð1Þ, the noise is of the order
ffiffiffiffiffiffiffiffiffiffi
V=N

p
(where V is the space-time volume) and therefore a huge
number of random sources and inversions of Eq. (38)
would be required.

The ‘‘one-end-trick’’ is based on the observation that the
product of two ‘‘�-propagators’’ is an unbiased estimator
of the product of two all-to-all propagators summed over
the intermediate space-time points. In this case, however,

the signal is of order V, while the noise is of order V=
ffiffiffiffi
N

p
,

so that it is even sufficient to employ one random source
per gauge configuration, as we do in this work.

Choosing the random source 
r
aðxÞ to be nonvanishing

only for a randomly chosen time slice, located at tr,
6 the

two-point correlation function (31) can be estimated as

C�

�
t;
2�

L
~�

�
¼ X

~x;tx

h½�~�þ
u;rð ~x; txÞ�a�	f½�

~�0
u;rð ~x; txÞ�a	�g
�t;tx�tri

(39)

where we notice that the two �’s have the same flavor.

Looking at the above equation the�-propagator ½�~�
r ðxÞ�a�	

plays a role quite similar to the one of the point-to-all

propagator ½S~�ðx; 0Þ�ab�	 with only one color index being

the other one carried by the random source. This means
that the time needed for the calculation of the
�-propagator is 1=3 of that required for the point-to-all

propagator. Note also that both �
~�þ
r ðxÞ and �

~�0
r ðxÞ are

solutions of Eq. (38) with the same random source 
rðxÞ.
This is essential to properly get the right-hand side of
Eq. (39). Moreover the independence of the random source
from spin indices allows to evaluate two-point correlation
functions with interpolating fields of the form ( �q�q0) for
any Dirac matrix �.

The stochastic estimate of the three-point correlation
function (32) requires the introduction of the sequential
‘‘�-propagator’’

½�~��;~�0
du;r ðx; t0Þ�a�	 ¼ X

y

½�~��;~�0
du;r ðx; y; t0Þ�ab�	
b

r ðyÞ; (40)

which is a solution of the equation

X
y

½D~��
d ðx; yÞ�ab�	½�

~��;~�0
du;r ðy; t0Þ�b	�

¼ ½�5���½�~�0
u;rðxÞ�a���t0;tx�tr : (41)

One gets

C��
0

�
t; t0;

2�

L
~�;� 2�

L
~�

�

¼ X
~x;tx

h½�~�þ
u;rð ~x; txÞ�a�	f½�

~��;~�0
du;r ð ~x; tx; t0Þ�a	�g


� ½�5�0����t;tx�tri: (42)

Note that: i) the quark propagators required in Eqs. (39)
and (42) are those of one single flavor, while the other
quark flavor appears only in the modified Dirac operator of
Eq. (41), and ii) for each value of the quark momentum
injected via the twisted BCs a new inversion of the Dirac
operator is required.

IV. THE CHARGED PION FORM FACTOR

As already mentioned in the Introduction, the ETM
Collaboration has started an intensive, systematic program
of calculations of three-point correlation functions relevant
for the determination of meson form factors at low, inter-
mediate and heavy quark masses. In this work we concen-
trate on the results obtained for the vector form factor of
the pion.
In Table I we collect the simulation setup for all the runs

carried out at 	 ¼ 3:9 and for the two runs performed at a
finer lattice spacing (	 ¼ 4:05). Approximate values of the
(charged) pion mass M� in physical units as well as of the
quantity M�L, which governs finite-volume effects in the
so-called p-regime of ChPT, are reported for each run.
The gauge configurations used for the measurements are

selected from the trajectories produced by the ETM
Collaboration (see Refs. [23–25]) at various values of the
sea (bare) quark mass, amsea. We have chosen 1 configu-
ration out of at least 20 (equilibrated) trajectories in all
cases except for the run at the lightest pion mass (1 out of
10).
Volume effects can be checked through the runs R2a and

R2b (see later Sec. IVD), while lattice artifacts can be
studied by means of the runs R2b and R2c at a pion mass
around 300 MeV and of the runs R5a and R5b for M� ’
480 MeV (see later Sec. IVE).
In this work at each value of the (bare) quark mass,

am ¼ amsea, the statistical errors are evaluated with the
jackknife procedure, while a bootstrap sampling will be
applied in order to combine the jackknives for different
quark masses (see later Sec. V).

A. Vector renormalization constant ZV

In tmLQCD tuned at maximal twist the constant ZV

renormalizes both the isovector part of the (local) e.m.
current [see Eq. (16)] and the isovector off-diagonal com-
ponents of the (local) axial current, e.g., A�ðxÞ ¼
�dðxÞ���5uðxÞ. Therefore the renormalization constant ZV

can be calculated in two ways. The first one is from
Eq. (24), which makes use of two- and three-point corre-
lation functions and is equivalent to fix the absolute nor-

6The random choice of the time slice at tr is mainly motivated
by the reduction of autocorrelations observed for fermionic
quantities using the ETM gauge ensembles (see Ref. [24]).
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malization of the pion form factor, F�ð0Þ ¼ 1. The second
way is from the nonsinglet axial Ward Identity (WI),
which, up to discretization effects, in tmLQCD at maximal
twist reads as [28]

ZV@�A�ðxÞ ¼ 2amP5ðxÞ (43)

where am is the bare quark mass and P5ðxÞ ¼ �dðxÞ�5uðxÞ
is the bare pseudoscalar density. The presence of bare
operators in the right-hand side of Eq. (43) is due to the
fact that at maximal twist the mass renormalization con-
stant is equal to the inverse of the pseudoscalar renormal-
ization constant, i.e., Zm ¼ Z�1

P . At zero momentum it
follows

ZV ¼ 2am
C�ðt; ~0Þ
@tA

�ðt; ~0Þ (44)

with A�ðt; ~0Þ ¼ P
x;zhA0ðxÞP5ðzÞi�t;tx�tz .

The results obtained for the ratio given by the right-hand
side of Eq. (24), evaluated for all the runs at 	 ¼ 3:9 and

V � T ¼ 243 � 48a4, are shown in Fig. 1(a). The time dis-
tance t0 between the time slices of the source and the sink is
fixed at t0 ¼ T=2, so that the three-point correlation func-
tion (18) becomes antisymmetric with respect to t ¼ T=2,
and it can be appropriately averaged to reduce the statisti-
cal fluctuations. Moreover for finite time extension T the
two-point correlation function C�ðt; ~pÞ is symmetric with
respect to t ¼ T=2, so that a second exponential

e�E�ð ~pÞðT�tÞ appears in Eq. (19) and a factor 1=2 has to
be applied to the right-hand side of Eq. (24).
From the plateau region denoted by the vertical dotted

lines in Fig. 1(a) an estimate of the renormalization con-
stant ZV can be obtained at each value of the bare quark
mass. The results are reported in Fig. 1(b) and compared
with the corresponding results obtained from theWI using
Eq. (44) (see Ref. [41]). Both methods exhibit an extremely
high statistical precision of the order of 0.3%.
The quark mass dependence visible in Fig. 1(b) is a pure

discretization effect and is different between the two meth-
ods. It appears to be linear in both cases, which is not in
contradiction with the OðaÞ improvement, since terms

FIG. 1 (color online). (a) Ratio of two-point and three-point correlation functions given by the right-hand side of Eq. (24), evaluated
for t0 ¼ T=2 at 	 ¼ 3:9 and V � T ¼ 243 � 48a4, versus the (Euclidean) time t in lattice units. (b) The vector renormalization constant
ZV as obtained at different values of the bare quark mass in lattice units. Open dots correspond to the values extracted from the plateau
region denoted by the vertical dotted lines in (a). Open squares are the results obtained from the WI using Eq. (44) in Ref. [41]. The
solid and dashed lines are simple linear interpolations of the lattice points and the full markers denote the corresponding values at the
chiral point.

TABLE I. Setup of the lattice simulations for the various runs considered in this work.

	 a (fm) Run Refs. [24,25] amsea V � T=a4 M� (MeV) M�L No. gauge config.

3.9 ’ 0:09 R1 B7 0.0030 323 � 64 ’ 260 ’ 3:7 240

R2a B6 0.0040 323 � 64 ’ 300 ’ 4:2 240

R2b B1a;b;c 0.0040 243 � 48 ’ 300 ’ 3:2 480

R3 B2 0.0064 243 � 48 ’ 380 ’ 4:0 240

R4 B3a;b 0.0085 243 � 48 ’ 440 ’ 4:7 240

R5a B4 0.0100 243 � 48 ’ 480 ’ 5:1 240

R6 B5a;b 0.0150 243 � 48 ’ 580 ’ 6:1 240

4.05 ’ 0:07 R2c C1 0.0030 323 � 64 ’ 300 ’ 3:4 240

R5b C3 0.0080 323 � 64 ’ 480 ’ 5:4 240
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proportional to a2m�QCD may be dominant with respect to

terms proportional to a2m2.
The extrapolations to the chiral limit should therefore

coincide, providing the value of the renormalization con-
stant ZV , which is indeed defined in such a limit. From
Fig. 1(b) it can be seen that the values obtained by a simple
linear fit at the chiral point coincide nicely within quite
small statistical errors, namely ZV ¼ 0:61088ð14Þ from
Eq. (24) and ZV ¼ 0:61076ð19Þ from the WI [Eq. (44)].

B. Momentum dependence of the two-point correlation
function

The two-point correlation function (39) has been calcu-

lated for various values of the twisting angle ~� chosen

always in the symmetric form ~� ¼ ð�; �; �Þ with � ¼
f0:0; 0:11; 0:19; 0:27; 0:35; 0:44g. The time behavior of the
effective mass (or logarithmic slope) aMeffðtÞ, defined as

aMeffðtÞ � log

�
C�ðt; 2� ~�=LÞ

C�ðtþ a; 2� ~�=LÞ
�
; (45)

is shown in Fig. 2 for two (representative) values of M� at
	 ¼ 3:9 and V � T ¼ 243 � 48a4.
It can be seen that the statistical precision is remarkably

high and it allows to extract quite precisely the energy
E�ð ~pÞ [see Eq. (19)] corresponding to the pion ground
state, which starts to dominate from t=a ¼ 10.
The values obtained for the pion energy E�ð ~pÞ are

shown in Fig. 3 as a function of the pion momentum given

FIG. 2 (color online). Effective mass of the pion (45) versus the (Euclidean) time distance in lattice units forM� ’ 300 MeV (a) and

M� ’ 440 MeV (b) at 	 ¼ 3:9 and V � T ¼ 243 � 48a4. The twisting angle ~� is chosen in the symmetric form ~� ¼ ð�; �; �Þ. The dots,
squares, diamonds, triangles, the full dots and the full squares correspond to � ¼ f0:0; 0:11; 0:19; 0:27; 0:35; 0:44g, respectively. The
dashed vertical line is drawn at t=a ¼ 10, where the ground state starts to dominate.

FIG. 3 (color online). Squared pion energy E2
�ð ~pÞ in lattice units, obtained from the time plateaux of the effective mass shown in

Fig. 2 (by choosing the time interval 10 � t=a � 21), versus the squared pion momentum p2 � 3ð2��=LÞ2 in lattice units, for M� ’
300 MeV (a) and M� ’ 440 MeV (b) at 	 ¼ 3:9 and V � T ¼ 243 � 48a4. The solid line is the continuumlike dispersion relation
E2
�ð ~pÞ ¼ M2

�ðLÞ þ j ~pj2, while the dashed line in (a), which can be hardly distinguished from the solid one, represents the modified
dispersion relation (46) predicted by partially twisted and partially quenched ChPT at NLO elaborated in Ref. [42].
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by ~p � 2� ~�=L, always at 	 ¼ 3:9 and V � T ¼
243 � 48a4. The lattice points appear to be in remarkable
agreement with the continuumlike dispersion relation

E�ð ~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

�ðLÞ þ j ~pj2p
, where M�ðLÞ is the charged

pion mass at finite volume. We have also checked that,
assuming the continuum dispersion relation for the energy,
all the two-point correlation functions of moving pions can
be simultaneously fitted very well together with the one at
rest using a single momentum-independent matrix element
Z� [see Eq. (19)]. These findings clearly indicate that, at
least for t=a � 10, where the ground state dominates, and
for the pion momenta considered in this study, the discre-
tization effects on the two-point correlation functions

C�ðt; 2� ~�=LÞ are almost the same as those affecting the

correlator at rest C�ðt; ~0Þ, which were investigated in
Ref. [25] and found to be small.

The use of twisted BCs is expected to produce finite-
volume corrections to the continuumlike dispersion rela-
tion. Such corrections have been investigated in Ref. [42]
using partially quenched ChPT at NLO. In the case of
charged pion and adopting twisted BCs for one flavor
only, the pion momentum ~p acquires an additive correction

term ~K, namely

E2
�ð ~pÞ ¼ M2

�ðLÞ þ ð ~pþ ~KÞ2 (46)

where the components of the vector ~K are given by (i �
j � k)

Ki ¼ � 1ffiffiffiffi
�

p
f2�L

3

Z 1

0
d�

1ffiffiffi
�

p e��ðM�L=2�Þ2 ��ð�; �iÞ�ð�; �jÞ

	�ð�; �kÞ (47)

with �ð�; �Þ and ��ð�; �Þ being the elliptic Jacobi function

and its derivative. Explicitly one has �ð�; �Þ �P1
n¼�1 e��ðnþ�Þ2 and ��ð�; �Þ ¼ P1

n¼�1ðnþ �Þe��ðnþ�Þ2 .
We have evaluated Eq. (47) for the run R2b, which has

the smallest value of M�L (see Table I). The results are
reported in Fig. 3(a) (dashed line), and they clearly indicate
the smallness of the volume corrections to the pion mo-
mentum and therefore to the continuum dispersion relation
expected at NLO. Thus finite size effects may be limited
mainly to the pion mass and thus expected to be small (see
Refs. [23,24]). This is confirmed by the lattice results
shown in Fig. 4, where the pion energies obtained in case
of the runs R2a and R2b, which differ only for the lattice
size, are compared.

C. Momentum dependence of the pion form factor

The advantage of calculating the pion form factor using
all-to-all propagators, evaluated by the one-end-trick pro-
cedure with twisted BCs, with respect to the standard
procedure based on point-to-all propagators with fixed
sources and (spatially) periodic BCs, is illustrated in
Fig. 5. From the run R2b we choose a different number of

FIG. 4 (color online). Squared pion energy E2
�ð ~pÞ in lattice

units at M� ’ 300 MeV and 	 ¼ 3:9 for the two runs R2a and
R2b, performed at the volumes V � T ¼ 243 � 48a4 (dots) and V �
T ¼ 323 � 64a4 (squares). The values of the twisting angle � are
chosen in such a way that �=L has the same values in the two
runs. The solid and dashed lines represent the continuumlike
dispersion relation E2

�ð ~pÞ ¼ M2
�ðLÞ þ j ~pj2.

FIG. 5 (color online). Pion form factor F�ðq2Þ versus q2 in
lattice units for a simulated pion mass of ’ 300 MeV. The full
dots are the results obtained using twisted BCs in the Breit frame
and the one-end-trick procedure for calculating the all-to-all
propagators for an ensemble of 80 gauge configurations taken
from the run R2b. The open squares correspond to the results of
the standard procedure based on point-to-all propagators with
fixed sources for 120 gauge configurations of the run R2b. In this
case spatially periodic BCs are applied in the frame where the
final pion is at rest ( ~p0 ¼ 0) and the momentum of the initial pion
is given by ~p ¼ 2�=Lfð1; 0; 0Þ; ð1; 1; 0Þ; ð1; 1; 1Þ; ð2; 0; 0Þg. At the
two smallest values of q2 and for the ensemble of gauge
configurations considered, only the stochastic procedure pro-
vides time plateaux of enough good quality to allow the extrac-
tion of the pion form factor.

R. FREZZOTTI, V. LUBICZ, AND S. SIMULA PHYSICAL REVIEW D 79, 074506 (2009)

074506-10



gauge configurations for the stochastic and nonstochastic
procedures in order to get the same total computational
time.7

Despite the more limited ensemble of gauge configura-
tions the stochastic approach provides a much better pre-
cision at the two lowest values of q2 (a factor between �2
and �3). It also allows a very good determination of the
form factor at the two highest values of q2 considered in
this study, where the procedure based on point-to-all
propagators fails to give reliable signals even in the pres-
ence of a larger ensemble of gauge configurations.

As discussed in the previous section, the pion form
factor F�ðq2Þ can be determined from the plateau of the
ratio R0ðt; t0;q2Þ, defined by Eq. (25), at large time dis-
tances. The quality of the time plateaux is illustrated in
Fig. 6, while the momentum dependence of the extracted

pion form factor F�ðq2Þ is shown in Fig. 7 for various
values of M� at 	 ¼ 3:9 and V � T ¼ 243 � 48a4. We have
checked that different choices of the time interval for the
plateau region lead to values of F�ðq2Þ, which are largely
consistent within the statistical precision. The values of the
pion form factor obtained for all the simulations of Table I
are reported in the Appendix.
In the whole range of values of both q2 and the quark

mass, considered in this work, our lattice data can be fitted
very nicely using a simple pole ansatz

FðpoleÞ
� ðq2Þ ¼ 1

1� q2=M2
pole

; (48)

as it is shown in Fig. 7. For comparison we also show the
predictions of the vector meson dominance model, in
which the parameter Mpole is fixed at the value of the

lightest vector-meson mass (MVMD) taken from Ref. [43].
The values obtained forMpole by fitting our lattice points at

	 ¼ 3:9 are given in Table II.
From Fig. 7 it can be seen that the VMD prediction,

which considers the contribution of the lowest vector reso-

FIG. 6 (color online). Ratio R0ðt; t0; q2Þ, defined by Eq. (25), at t0 ¼ T=2 versus the time distance t in lattice units, for M� ’
300 MeV (a), M� ’ 380 MeV (b), M� ’ 440 MeV (c), M� ’ 480 MeV (d) at 	 ¼ 3:9 and V � T ¼ 243 � 48a4. The full dots, open
squares, full diamonds, open diamonds and full squares correspond to a2q2 ¼ �0:01, �0:03, �0:06, �0:10 and �0:16, respectively.
The dashed vertical lines identify the region 10 � t=a � 14, where both the initial and the final pion ground states are isolated, so that
the pion form factor F�ðq2Þ can be extracted.

7Let us recall that the one-end-trick requires less computa-
tional time for a single inversion of the Dirac operator (a factor
of about 1=3), but for each quark momentum a new inversion is
needed by the use of twisted BCs.
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nance only, is not exactly fulfilled, since Mpole turns out to

be systematically lower than MVMD. However such a com-
parison might be plagued by systematic uncertainties af-
fecting the lattice determination of the lightest vector-
meson mass particularly at the lowest values of the pion
mass (see Ref. [43]). Nevertheless, a simple extrapolation
of Mpole to the physical point, based on a polynomial fit in

terms of quark masses (see later Sec. VC), yields the value

Mphys
pole ¼ 0:713� 0:044 GeV, which is lower than the

VMD prediction Mphys
VMD ¼ M� ¼ 0:776 GeV from PDG

[22].
Note also that, defining the squared pole radius in terms

of Eq. (48) as

r2pole � 6=M2
pole ¼ 6

�
dFpole

� ðq2Þ
dq2

�
q2¼0

; (49)

the VMD model leads at the physical point to r2pole ¼
6=M2

� ’ 0:388 fm2, which underestimates by ’ 15% the

(quite precise) experimental value of the squared pion
charge radius, hr2iexp ¼ 0:452� 0:011 fm2 [22]. On the

contrary the value Mphys
pole ¼ 0:713� 0:044 GeV implies

r2pole ¼ 0:459� 0:057 fm2 in nice agreement with the ex-

perimental charge radius.

D. Finite size effects

We have investigated the effects of the finite spatial
extension L of our lattice boxes by comparing the results

FIG. 7 (color online). Pion form factor F�ðq2Þ, extracted from the plateau region 10 � t=a � 14 of the ratio R0ðt; T=2;q2Þ (see
Fig. 6), versus the squared 4-momentum transfer q2 in lattice units, for M� ’ 300 MeV (a), M� ’ 380 MeV (b), M� ’ 440 MeV (c),
M� ’ 480 MeV (d) at 	 ¼ 3:9 and V � T ¼ 243 � 48a4. The solid line is the pole behavior (48) with the parameter Mpole fitted to the

lattice points, while the dashed line is the VMD prediction with Mpole fixed at the value of the lightest vector-meson mass taken from

Ref. [43].

TABLE II. Values of the fit parameter Mploe appearing in Eq.
(48) obtained at 	 ¼ 3:9 in lattice units.

Run M� (MeV) V � T=a4 aMpole

R1 ’ 260 323 � 64 0:359� 0:016
R2a ’ 300 323 � 64 0:363� 0:011
R2b ’ 300 243 � 48 0:379� 0:010
R3 ’ 380 243 � 48 0:399� 0:014
R4 ’ 440 243 � 48 0:420� 0:012
R5a ’ 480 243 � 48 0:419� 0:011
R6 ’ 580 243 � 48 0:440� 0:005
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of runs R2a and R2b. In our simulations the latter has the
smallest value of the quantity M�L, which governs finite
size effects (FSE) in the p-regime. The physical extension
of the two boxes is L ’ 2:8 fm and L ’ 2:1 fm, respec-
tively. The values of the angle � are chosen differently at
the two volumes in order to keep the values of q2 fixed.

The results for the pion form factor are shown in Fig. 8,
while a direct comparison of the results for the pion mass
and decay constant as well as for the squared pole radius,
r2pole, is illustrated in Table III.

It can clearly be seen that FSE effects are larger on the
pion form factor (or, equivalently, on the pole radius) with
respect to the case of the pion mass and decay constant.
They indeed amount to ’ 8% on r2pole in contrast to a� 2%

effect in the case of M� and f�. However we notice that
FSE effects on r2pole are comparable to our statistical pre-

cision ( ’ 6%), while they are much larger in the case of
M� and f� (0:2� 0:6%). Thus it is mandatory to include
volume corrections to our results at least on the pion mass
and decay constant.

On the theoretical side FSE on M� and f� have been
studied with ChPT at NLO in Ref. [44] and using a re-
summed asymptotic formula in Ref. [45], where both
leading and subleading exponential terms are taken into

account and the chiral expansion is applied to the �� �
forward scattering amplitude. When the leading chiral
representation of the latter is considered, the resummed
approach coincides with the NLO result of Ref. [44]. Vice
versa at NNLO the resummation technique includes only a
part of the two-loop effects as well as of higher-loop
effects. Recently the resummed approach has been posi-
tively checked against a full NNLO calculation of the pion
mass in Ref. [46], showing that the missing two-loop
contributions are actually negligible.
The volume corrections predicted by the resummed

approach have been already considered in the analysis of
the ETMC results for M� and f� carried out in Refs. [23–
25].
On the contrary, until now, the theoretical investigation

of FSE on the pion form factor is limited to the application
of ChPT at NLO only. The case of periodic BCs is consid-
ered in Ref. [47], while twisted BCs are studied in
Refs. [42,48] adopting two different reference frames,
namely, the rest frame of the final meson [42] and the
Breit one [48].
The sign of the volume effects on the pion form factor

depends crucially on the absolute value and the spatial

direction of the twisting vector ~�. The sign of FSE on the
charge radius turns out to be opposite between the cases of
periodic (Ref. [47]) and twisted (Refs. [42,48]) BCs. When
periodic BCs are used the extraction of the charge radius
requires the use of the smallest available momentum,
which is equal to 2�=L. Such a restriction is absent with
twisted BCs, and therefore volume effects are different.
Moreover the volume corrections depend on the refer-

ence frame: in the rest frame, besides the usual term related
to the difference between the infinite volume loop integral
and the sum over quantized momenta, there are two further
contributions [42] arising from isospin and hypercubic
invariance breakings generated by flavor-dependent
twisted BCs. These two terms are vanishing in the Breit
frame as shown in Ref. [48].
Only the results of Ref. [48], in which both the twisted

BCs and the Breit reference frame are considered, can be
directly applied to our data. Thus one gets

F�ðq2;LÞ � F�ðq2;1Þ

¼ 1

f2�

�Z 1

0
dxI1=2

�
ð1� 2xÞ 2�

~�

L
;M2

� � xð1� xÞq2
�

� I1=2

�
2� ~�

L
;M2

�

��
(50)

with q2 ¼ �4ð2� ~�=LÞ2 and

I1=2

�
2� ~�

L
;M2

�

�
¼ 1

2�3=2L2

Z 1

0
d�

1ffiffiffi
�

p e��ððM�L=2�Þ2Þ

	
�Y3
i¼1

�ð�; �iÞ �
�
�

�

�
3=2

�
(51)

FIG. 8 (color online). Pion form factor F�ðq2Þ obtained for the
runs R2a (open squares) and R2b (full dots), which correspond to
different lattice boxes of size L ’ 2:8 fm and L ’ 2:1 fm, re-
spectively. The solid and dashed lines are the results of the pole
fit (48).

TABLE III. Values of the pion mass and decay constant from
the high-statistics work of Ref. [24] and of the squared pole
radius [see Eq. (49)] in lattice units for the runs R2a and R2b.

Run L (fm) aM� af� r2pole=a
2

R2a ’ 2:8 0.13377 (24) 0.06625 (16) 45:5� 2:8
R2b ’ 2:1 0.13623 (65) 0.06459 (37) 41:7� 2:3
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where �ð�; �Þ is defined after Eq. (47). The NLO volume
corrections on the pion form factor expected for our run
R2b do not exceed half of the statistical error, and they are
even smaller in the case of the run R2a at the largest
volume. The FSEs predicted by Eqs. (50) and (51) are
quite small and have the same sign for all the choices of

the twisting angle ~� made in this work. The NLO correc-
tions go to the right direction decreasing slightly the dif-
ferences between the pion form factor obtained at the two
box sizes.

As for the squared pole radius, the shift with the lattice
volume reported in Table III has the same sign expected
from the volume correction (50). However the FSE calcu-
lated at NLO for the run R2b corresponds to an increase of
’ 3% only, that is almost a factor of 3 less than the
observed FSE ( ’ 8%). This suggests that higher-order
chiral effects might be relevant on the pion form factor
still for M�L ’ 3, although our statistical precision
( ’ 6%) does not exclude FSEs on r2pole as small as the

ones predicted at NLO by Eq. (50).
In the case of our runs R1 and R2a, which correspond to

M�L ’ 4, the NLO volume corrections on r2pole are ex-

pected to be ’ 1%. After multiplying such a value by a
factor � 3 in order to take into account conservatively
higher-loop effects, the expected FSE remains well below
the statistical precision.

Therefore in this work we decide to analyze our form
factor data using only simulations with M�L * 4, which
means in practice that the run R2b is excluded from our
analyses of the pion form factor. On the contrary in case of
the pion mass and decay constant we keep the run R2b in
the set of fitted data, but the FSEs, calculated through the
resummed asymptotic formula of Ref. [45] at the NNLO
accuracy for the �� � forward scattering amplitude, will
be taken into account (see Secs. V and VI).

E. Discretization effects

We have investigated the impact of lattice artifacts on
the pion form factor by considering the runs R2c and R5b at
the finer spacing a ’ 0:07 fm (see Table I). These runs
correspond to pion masses equal to M� ’ 300 MeV and
M� ’ 480 MeV, respectively, which are very similar to
those of the runs R2b and R5a at a ’ 0:09 fm, while the
physical lattice size is almost kept fixed (L ’ 2:1 fm). Our
results are shown in Fig. 9 in terms of the Sommer pa-
rameter r0 instead of the lattice spacing a. The ratio r0=a
has been determined in the chiral limit at the two lattice
spacings in Ref. [25], obtaining r0=a ¼ 5:22� 0:02 at
	 ¼ 3:9 and r0=a ¼ 6:61� 0:03 at 	 ¼ 4:05.
It can clearly be seen that the size of discretization

effects is comparable to the statistical error at both pion
masses. At the lowest pion mass there is a slight mismatch
between the values of M�r0 corresponding to the runs R2b

and R2c. Using the ChPT formulae at NNLO evaluated in
Ref. [11], which will be used in the next sections, and
adopting for the relevant LECs the values given in
Ref. [33], we have estimated the correction due to the
pion mass difference and applied it to the results of the
run R2c (see dotted line in Fig. 9). The correction is small,
but reduces the impact of discretization effects, which now
in terms of r2pole do not exceed ’ 5% at both pion masses.

A more complete investigation of the scaling properties
of the pion form factor, which requires the study of its mass
dependence at two additional values of the lattice spacing,
is needed and it is in progress.
In the next sections continuum ChPT will be applied to

the chiral extrapolation of the results of the runs R1, R2a,
R3, R4, R5a and R6, which correspond to a single lattice
spacing (a ’ 0:09 fm) and to a pion mass range between
’ 260 MeV and ’ 580 MeV with M�L * 4. The impact
of lattice artifacts will be estimated by substituting the

FIG. 9 (color online). Results of the pion form factor F�ðq2Þ versus q2 in units of the Sommer parameter r0, obtained for the runs R2b

(full dots) and R2c (open squares) at M� ’ 300 MeV in (a), and for the runs R5a (full dots) and R5b (open squares) at M� ’ 480 MeV
in (b). The physical lattice size is the same in both runs (L ’ 2:1 fm). The solid and dashed lines are the results of the pole fit (48),
while the dotted line in (a) corrects the dashed one for the pion mass difference (see text).
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results of the runs R2a and R5a with those of the runs R2c

and R5b, respectively.

V. SLOPE AND CURVATURE OF THE PION FORM
FACTOR

The slope s and the curvature c of the pion form factor
are defined from the expansion in q2

F�ðq2Þ ¼ 1þ sq2 þ cq4 þOðq6Þ: (52)

In terms of the pole ansatz (48) the slope is given by

spole ¼ 1

M2
pole

¼ r2pole

6
; (53)

while the curvature is constrained to be

cpole ¼ s2pole ¼
1

M4
pole

¼
�r2pole

6

�
2
: (54)

We have therefore compared the slope and curvature ob-
tained from the pole ansatz (48) with those of a simple
cubic fit in q2

FðcubÞ
� ðq2Þ ¼ 1þ scubq

2 þ ccubq
4 þ dcubq

6: (55)

The results obtained by including in the fitting procedure
the form factor corresponding to the four highest, negative
values of q2 are shown in Fig. 10 (see also Table IV).8 It
can be seen that the two determinations of the slope are in
very good agreement, and the results for the curvature are
consistent within the statistical errors, which turn out to be
lower in the case of the pole fit.
In what follows we take as our best estimates the values

of the slope and the curvature coming from the pole ansatz.
The former ones, expressed in physical units using the
value a ¼ 0:087 fm from Ref. [23], are collected in the
third column of Table IVand shown in Fig. 11, where they
are compared with the available results of other lattice
collaborations that employ OðaÞ-improved lattice actions
and unquenched gauge configurations. It can be seen that
all the determinations of the pion charge radius exhibit a
quite similar mass dependence, indicating that lattice arti-
facts are presumably under control. The results labeled as
‘‘QCDSF/UKQCD’’ in Fig. 11 do not correspond to the
original ones reported in Ref. [19]. There the lattice spac-
ing, instead of the Sommer parameter r0, was assumed to
depend on the sea quark mass, and such a procedure
reintroduces non-negligible lattice artifacts. The
‘‘QCDSF/UKQCD’’ results shown in Fig. 11 are obtained
after properly extrapolating the ratio r0=a to the chiral
limit.9

FIG. 10 (color online). The slope s (dots) and the curvature c
(squares) of the pion form factor [see Eq. (52)] versus the
squared pion mass in lattice units, for the runs R1, R2a, R3,
R4, R5a and R6. Open dots and squares correspond to the results
of the pole fit given by Eqs. (53) and (54), respectively. Full
markers are the results obtained with the cubic fit (55).

TABLE IV. Values of the pion mass, charge radius and curvature, determined from the pole (53) and (54) and cubic (55) fits, for the
various ETMC runs. Physical units are used taking for the lattice spacing the value a ¼ 0:087 fm from Ref. [23]. The uncertainties are
statistical ( jackknife) errors.

Run M� (MeV) r2pole � 6spole (fm
2) cpole (10

�3 fm4) r2cub � 6scub (fm2) ccub (10�3 fm4)

R1 265 0:352� 0:030 3:44� 0:59 0:364� 0:028 4:20� 1:12
R2a 304 0:345� 0:021 3:30� 0:40 0:333� 0:020 2:45� 0:82
R3 383 0:285� 0:019 2:25� 0:31 0:278� 0:023 1:85� 0:54
R4 441 0:258� 0:015 1:85� 0:22 0:249� 0:021 1:36� 0:49
R5a 477 0:259� 0:014 1:87� 0:20 0:254� 0:018 1:45� 0:44
R6 584 0:234� 0:006 1:53� 0:07 0:225� 0:010 1:14� 0:26

8The lattice points at the lowest, negative value of q2 are the noisiest data (see Fig. 7 and also Fig. 6 for the corresponding time
plateaux). The inclusion of these data in the fitting procedure does not change significantly the determination of the various parameters
appearing in Eqs. (53) and (55).

9We thank J. Zanotti for providing us with the extrapolated values of r0=a at the chiral point.
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A. ChPT formulae at NNLO

In Ref. [11] the pion form factor, as well as the pion
mass and decay constant, have been calculated in contin-
uum SU(2) ChPT at NNLO in infinite volume using a

modified minimal subtraction (MS) scheme to regulate
the infinities. Using the quark mass m̂ as the expansion
parameter, one has

M2
� ¼ 2Bm̂þ ½M2

��NLO þ ½M2
��NNLO þOðm̂4Þ; (56)

½M2
��NLO ¼ 2Bm̂ � 2x2

�
2‘r3 þ

1

2
Lð�Þ

�
; (57)

½M2
��NNLO ¼ 2Bm̂ � 4x22

�
1

N

�
‘r1 þ 2‘r2 �

13

3
Lð�Þ

�

þ 163

96

1

N2
� 7

2
k1 � 2k2 þ 4‘r3ð‘r4 � ‘r3Þ

� 9

4
k3 þ 1

4
k4 þ rrM þ�M

�
�M ��F þ 1

2N

��
;

(58)

f� ¼ Fþ ½f��NLO þ ½f��NNLO þOðm̂3Þ; (59)

½f��NLO ¼ 2Fx2½‘r4 � Lð�Þ�; (60)

½f��NNLO ¼ 4Fx22

�
1

N

�
� 1

2
‘r1 � ‘r2 þ

29

12
Lð�Þ

�
� 13

192

1

N2

þ 7

4
k1 þ k2 þ 2‘r4ð‘r4 � ‘r3Þ �

5

4
k4 þ rrF

þ 1

2
�Fð�M ��FÞ � 1

N
�M

�
; (61)

hr2i ¼ ½hr2i�NLO þ ½hr2i�NNLO þOðm̂2Þ; (62)

½hr2i�NLO ¼ � 2

F2

�
6‘r6 þ Lð�Þ þ 1

N

�
; (63)

½hr2i�NNLO ¼ 4
x2
F2

�
1

N

�
�2‘r4 þ

31

6
Lð�Þ þ 13

192
� 181

48N

�

� 3k1 þ 3

2
k2 � 1

2
k4 þ 3k6 � 12‘r4‘

r
6 þ 6rr1

þ �F

�
6‘r6 þ Lð�Þ þ 1

N

�
� 1

N
�M

�
; (64)

c ¼ ½c�NLO þ ½c�NNLO þOðm̂Þ; (65)

½c�NLO ¼ 2

60NF4x2
; (66)

½c�NNLO ¼ 4

F4

�
1

N

�
� 13

540
Lð�Þ þ 1

720
� 8429

25920N

�
þ 1

12
k1

� 1

24
k2 þ 1

24
k6

þ 1

3N

�
‘r1 �

1

2
‘r2 þ

1

10
‘r4 þ

1

2
‘r6

�
þ rr2

� 1

60N
ð�M þ�FÞ

�
; (67)

where 2Bm̂ is the celebrated GMOR term, F is the pion
decay constant in the chiral limit (f� is normalized such
that f� � 130 MeV at the physical point) and

N � ð4�Þ2; x2 � 2Bm̂

F2
; Lð�Þ � 1

N
log

�
2Bm̂

�2

�
;

ki � ½4‘ri � �iLð�Þ�Lð�Þ; �M � 2‘r3 þ
1

2
Lð�Þ;

�F � 2½‘r4 � Lð�Þ�: (68)

The constants ‘ri are the finite part of the coupling
constants appearing in the Oðp4Þ Lagrangian after the

application of the MS procedure, and their values depend
on the renormalization scale � through the anomalous
dimensions �i as�

2d‘ri =d�
2 ¼ ��i=2N. The coefficients

�i are calculated in Ref. [10], and those relevant in this
work are given by: �1 ¼ 1=3, �2 ¼ 2=3, �3 ¼ �1=2,
�4 ¼ 2, �6 ¼ �1=3. The four constants rrM, r

r
F, r

r
1, r

r
2

denote the contributions of the Oðp6Þ Lagrangian after

MS subtraction. Though the values of all the above con-
stants depend on �, at each order in the chiral expansion
the physical observables are independent (as they should
be) of the value of the renormalization scale �.
At LO only two chiral parameters appear, namely B

(related to the chiral condensate) and F. At NLO three
further LECs, ‘r3, ‘

r
4 and ‘

r
6, are present. At NNLO the total

number of LECs increases up to 11 due to the inclusion of
‘r1, ‘

r
2, r

r
M, r

r
F, r

r
1 and rr2.

FIG. 11 (color online). The squared pion charge radius versus
the squared pion mass. Open dots: this work (see third column of
Table IV). Open squares: results from Ref. [19] corrected as
explained in the text. Open diamonds, full triangles, full dia-
monds correspond to Refs. [14,20,21], respectively. The full dot
represents the experimental value of the squared pion charge
radius hr2iexp ¼ 0:452� 0:011 fm2 from PDG [22].
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We notice that the NNLO terms for the charge radius
(64) and the curvature (67) do not depend upon the LECs
‘r1 and ‘r2 separately, but only through the linear combina-
tion (‘r1 � ‘r2=2). However different linear combinations of
‘r1 and ‘

r
2 appear in the NNLO terms of both the pion mass

(58) and decay constant (61). Therefore the LECs ‘r1 and ‘
r
2

can be determined by a simultaneous analysis of the charge
radius (and/or the curvature) together with the pion mass
and decay constant.

In what follows the Oðp4Þ constants ‘ri will be substi-

tuted by scale-invariant quantities, �‘i, defined via the rela-
tions

‘ri �
�i

2N
½ �‘i þ NLð�Þ�: (69)

The new quantities, which depend (logarithmically) on the

quark mass, can be expressed as �‘i ¼ logð�2
i =2Bm̂Þ, and

their values are commonly given at the physical point.
We notice that in Ref. [11] the quark mass is not actually

used as the expansion parameter. Instead of it the physical
pion mass and decay constant are adopted. In order to
recover the formulae of Ref. [11] it is enough to replace
in Eqs. (56)–(68) x2 with M2

�=f
2
�, Lð�Þ with ð1=NÞ �

logðM2
�=�

2Þ and to set �M ¼ �F ¼ 0 wherever they ap-
pear explicitly.
As explained in Sec. IVD we apply to the pion mass and

decay constant the corrections for FSE computed in
Ref. [45]. Using again the quark mass m̂ as the expansion
parameter, one gets

M�ðLÞ �M�

M�

¼ 2x2
N

X1
n¼1

mðnÞ
�n

�
K1ð�nÞ � 2x2

N

�
K1ð�nÞ

�
� 55

18
þ 4 �‘1 þ 8

3
�‘2 � 5

2
�‘3 � 2 �‘4

�
þ K2ð�nÞ

�n

�
112

9
� 8

3
�‘1 � 32

3
�‘2

�

þ 13

3
g0K1ð�nÞ � 1

3
ð40g0 þ 32g1 þ 26g2ÞK2ð�nÞ

�n

þ N

2
½�M�nK0ð�nÞ þ 2�FK1ð�nÞ�

��
þOðm̂3Þ; (70)

f�ðLÞ � f�
f�

¼ �2
2x2
N

X1
n¼1

mðnÞ
�n

�
2K1ð�nÞ � 2x2

N

�
K1ð�nÞ

�
� 7

9
þ 2 �‘1 þ 4

3
�‘2 � 3 �‘4

�
þ K2ð�nÞ

�n

�
112

9
� 8

3
�‘1 � 32

3
�‘2

�

þ 1

6
ð8g0 � 13g1ÞK1ð�nÞ � 1

3
ð40g0 � 12g1 � 8g2 � 13g3ÞK2ð�nÞ

�n

þ N½�M�nK0ð�nÞ þ 2�FK1ð�nÞ�
��

þOðm̂3Þ; (71)

where K0;1;2 are modified Bessel functions, the values of
the multiplicities mðnÞ are given in Ref. [45] and

�n �
ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffi
2Bm̂

p
L; g0 � 2� �

2
; g1 � �

4
� 1

2
;

g2 � 1

2
� �

8
; g3 � 3�

16
� 1

2
: (72)

Notice that in Eqs. (70) and (71) no further LEC is intro-
duced with respect to Eqs. (56)–(61).

In order to recover the formulae of Ref. [45], where the
physical pion mass and decay constant are adopted as
expansion parameters, it is enough to replace in Eqs. (70)
and (71) x2 withM

2
�=f

2
�, �n with

ffiffiffi
n

p
M�L and to set�M ¼

�F ¼ 0.

B. Chiral fits

Let us now apply Eqs. (56)–(67) to the analyses of the
quark mass dependence of our results. As explained in the
previous section the set of lattice data chosen for the fitting
procedure is given by the results of the runsR1,R2a, R3,R4,
R5a and R6 for four quantities: the pion mass and decay
constant, the charge radius and the curvature of the pion
form factor. In case of the pion mass and decay constant
also the results of the run R2b are considered and the FSE
corrections given by Eqs. (70) and (71) are applied.

Since each run corresponds to an independent ensemble
of gauge configurations a bootstrap procedure is applied in
order to combine all the jackknives in different ways (1000
samples are used in practice). The statistical uncertainties,
which are reported hereafter, are therefore bootstrap errors.
In order to fix the lattice spacing and the up/down quark

mass the experimental values of the pion mass and decay

constant (Mphys
� ¼ 134:98 MeV and fphys� ¼ 130:7�

0:4 MeV from Ref. [22]) are used.10 We determine first
the value of the bare quark mass am�, at which the pion
assumes its physical mass, by requiring that the ratio
M�=f� from Eqs. (56) and (59) takes the experimental
value 134:98=130:7 ’ 1:033. Second, using the physical

value f
phys
� the lattice spacing a is determined. The value of

the renormalized light-quark mass in the MS scheme,

mMSð2 GeVÞ, is obtained from am� by considering the
determination of the nonperturbative (multiplicative) re-
normalization constant Zm ¼ 1=ZP, evaluated using the
RI-MOM scheme in Ref. [41], and the matching factor

with theMS scheme, which is known up to four loops [51].

10In order to account for the e.m. isospin breaking effects which
are not introduced in the lattice simulations, we use the experi-
mental value of the neutral pion mass in accord with
Refs. [49,50].
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We start with a ChPT analysis at NLO including our
lattice data only for the pion mass and decay constant up to
M� ’ 500 MeV in order to compare with the ETMC NLO
analyses of Refs. [23,24,34]. The main differences are:
i) the use of a single lattice spacing (a ’ 0:09 fm) both
in the present work and in Refs. [23,24], while the results
obtained from two lattice spacings (a ’ 0:07 and 0.09 fm)
are taken into account in Ref. [34]; ii) a better statistical
accuracy of the data forM� and f� in Refs. [23,24,34] due
to the use of all the (correlated) trajectories produced by
the ETM Collaboration with respect to the present work in
which only a subset of 240 (uncorrelated) trajectories are

employed; iii) the presence of the results of the run R1 at
M� ’ 260 MeV in the present work and in Ref. [34] at
variance with Refs. [23,24].
Following Ref. [24] the FSE correction can be evaluated

beyond NLO using Eqs. (70) and (71) and adopting for the

unknown LECs �‘1 and �‘2 the central values given in
Ref. [33]. The values obtained for the fitting parameters
(the LECs of the chiral Lagrangian) are given in the second
column of Table V, while the best fit at NLO, including the
FSE corrections given by Eqs. (70) and (71), is shown in
Fig. 12 by the dashed lines.

TABLE V. Values of the chiral parameters, the lattice spacing and the renormalized quark

mass m̂ ¼ mMSð2 GeVÞ at the physical point for various ChPT analyses (see text). For
consistency with m̂, the parameter B is given in the MS scheme at a scale equal to 2 GeV.
The values of the parameters rrM, r

r
F, r

r
1 and r

r
2 are given at the �-meson mass scale. In the case of

the NLO analysis the parameters ‘1 and ‘2 are used only for evaluating FSEs, while the
parameter ‘6 is fixed by the experimental value of the pion charge radius. The latter is not
included in the NNLO analyses. The uncertainties are statistical (bootstrap) errors only.

Parameter NLO NNLO NNLOþ hr2iexpS

2B (GeV) 5:21� 0:05 5:19� 0:42 4:89� 0:08
F (MeV) 121:7� 1:1 121� 10 122:5� 0:9
�‘3 3:48� 0:12 5:0� 4:0 3:1� 0:7
�‘4 4:67� 0:06 5:2� 1:8 4:39� 0:14
�‘6 14:59� 0:03 14:9� 2:2 15:9� 1:3
�‘1 �0:4 [33] 0:3� 3:4 �1:3� 1:4
�‘2 4.3 [33] 5:3� 1:1 5:1� 1:1
rrM � 104 � � � �0:1� 1:1 �0:60� 0:29
rrF � 104 � � � �0:5� 1:5 �0:15� 0:14
rr1 � 104 � � � �0:95� 0:15 �0:92� 0:15
rr2 � 104 � � � 0:70� 0:17 0:77� 0:04
a (fm) 0:0861� 0:0007 0:0863� 0:0047 0:0884� 0:0006
m̂phys (MeV) 3:60� 0:08 3:6� 0:6 3:81� 0:08

2=d:o:f: 0.72 0.91 0.88

FIG. 12 (color online). The ratio of the squared pion mass to the renormalized quark mass m̂ ¼ mMSð2 GeVÞ (a) and the pion decay
constant (b) versus m̂ in physical units. The points at the highest value of m̂ are not included in the analysis. The dots are the ETMC
results, corrected by the FSE effects given by Eqs. (70) and (71), and the squares represent the experimental value for each quantity
from Ref. [22]. The dashed lines correspond to the region selected at 1� level by the ChPT analysis at NLO [see Eqs. (56), (57), (59),
and (60)]. The values of the fitting parameters are listed in the second column of Table V.
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It can be seen that the values of all the chiral parameters,

in particular, of the LECs �‘3 and �‘4, as well as the values of
the lattice spacing a and the light-quark mass m̂phys, are
consistent with the findings of Refs. [23,24,34]. Note also

that the statistical precision of the extracted values of �‘3
and �‘4 is very similar in this work and in Refs. [23,24,34].

The theoretical evaluation of FSE effects given by
Eqs. (70) and (71) appears to work quite well. Indeed after
applying the FSE corrections, the pion masses and decay
constants corresponding to the runs R2a (at L ¼ 32a) and
R2b (at L ¼ 24a) become consistent within 1 standard
deviation, as shown in Table VI.

We have checked that the full exclusion of the run R2b

from our analyses does not have any significant impact on
the chiral fits as well as on the values obtained for the chiral
parameters. Therefore, since the runs R2a and R2b are
compatible once theoretical FSEs are included through
Eqs. (70) and (71), in what follows we shall not show the
results of the run R2b in the figures (i.e., we show only
lattice data having M�L * 4) and we will always apply to

the pion mass and decay constant the FSE corrections
given by Eqs. (70) and (71).
The quality of the NLO fit shown in Fig. 12 is quite

remarkable, leaving apparently little room for higher-order
corrections even at the highest pion mass ( ’ 580 MeV),
though the latter point is not included in the fitting proce-
dure. However we now show that the same does not hold
for the charge radius and the curvature of the pion form
factor.
The NLO prediction for the charge radius [see Eq. (63)]

depends in practice only on one LEC, �‘6, being F fixed by
the analysis of the pion decay constant with a precision of
the level of ’ 1% (see the second column of Table V). Note
also that both the derivative of ½hr2i�NLO with respect to the
quark mass and the curvature ½c�NLO (see Eq. (66)) are

independent of �‘6 and therefore basically parameter-free.

The value of the LEC �‘6 can be determined from the
experimental value of the squared charge radius, hr2iexp ¼
0:452� 0:011 fm2 [22], since the latter is expected to be

dominated by the NLO term (63). This leads to �‘6 ¼
14:59� 0:03 (see the second column of Table V). The
corresponding NLO predictions for the charge radius and
the curvature are shown in Fig. 13 by the dashed lines.
They significantly overestimate our lattice data for the
charge radius and largely underestimate those for the
curvature.
Alternatively we have excluded the experimental

value of the charge radius and included in the fitting
procedure the lattice data of the charge radius for pion
masses up to ’ 500 MeV (i.e., for m̂ & 0:05 GeV) obtain-

ing �‘6 ¼ 11:6� 0:3 (with 
2=d:o:f: ’ 1:2). The corre-
sponding NLO predictions are shown in Fig. 13 by the
dotted lines. At the physical point the charge radius is

TABLE VI. Values of the quantities aM�ðL ¼
24aÞ=aM�ðL ¼ 32aÞ � 1 and af�ðL ¼ 24aÞ=af�ðL ¼ 32aÞ �
1 from the runs R2a and R2b at a pion mass of ’ 300 MeV. The
lattice results correspond to the values given in Table III. The
theoretical results are those corresponding to Eqs. (70) and (71)
using for the relevant LECs the values reported in the second
column of Table V.

Lattice

(%)

Theoretical

(%)

aM�ðL ¼ 24aÞ=aM�ðL ¼ 32aÞ � 1 þ1:8ð5Þ þ1:2
af�ðL ¼ 24aÞ=af�ðL ¼ 32aÞ � 1 �2:5ð6Þ �2:5

FIG. 13 (color online). The squared charge radius (a) and the curvature (b) of the pion form factor versus the renormalized quark
mass m̂ in physical units. The dots are our lattice results and the square represents the experimental value of the squared charge radius
[22]. The dashed and dotted lines represent the region selected at 1� level by the ChPT predictions at NLO given by Eqs. (63) and (66).
In the case of the dashed lines the value of the LEC �‘6 is fixed by the experimental charge radius, while in the case of the dotted lines it
is obtained by including in the fitting procedure our lattice data of the charge radius for pion masses up to ’ 500 MeV (i.e., for
m̂ & 0:05 GeV).
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hr2iphys ¼ 0:352� 0:008 fm2 in clear contradiction with
the experimental value.11

Moreover, since the curvature is independent on �‘6, any
NLO fit is unable to provide enough large values of the
curvature consistent with the relation (54), i.e., with the
pole behavior of the pion form factor observed in
Sec. IVC. Such a finding suggests that an NLO analysis
of the pion form factor is applicable only to quite low
values of jq2j (see later Sec. VI).

Thus, both the NLO results shown in Fig. 13 and the
smallness of the systematic effects due to finite volumes
and lattice spacings, estimated in Secs. IVD and IVE
indicate that the quark mass dependences of our lattice

data for both the charge radius and the curvature require
taking into account chiral effects beyond the NLO.
The results of the fit performed using ChPT at NNLO

[i.e. based on Eqs. (56)–(67)] are shown in Fig. 14, while
the values of the fitting parameters are listed in the third
column of Table V with the renormalization scale � fixed
at the physical �-meson mass. Notice that the experimental
value of the pion charge radius is not included in the fitting
procedure.
As already found in Ref. [24], the inclusion of NNLO

effects leads to quite large uncertainties in the values of all

the LECs, in particular, both for the LECs �‘3 and �‘4
appearing at NLO and NNLO, and for the LECs �‘1 and
�‘2 appearing only at NNLO. Nevertheless the uncertainties
in the chiral fits shown in Fig. 14 are of the order of the
statistical errors in the mass range of the lattice points. This
means that the large uncertainties reported in the third
column of Table V are strongly correlated; the effect of
the variation of one fitting parameter can be always com-
pensated by those generated by the variations of the other

FIG. 14 (color online). The ratio M2
�=m̂ (a), the pion decay constant (b), the charge radius (c) and the curvature (d) of the pion form

factor versus the renormalized quark mass m̂ in physical units. The dots are our lattice results and the squares represent the
corresponding experimental values from PDG [22]. The dashed lines correspond to the region selected at 1� level by the ChPT fit at
NNLO based on Eqs. (56)–(67). The values of the fitting parameters are listed in the third column of Table V. The experimental value
of the pion charge radius is not included in the fitting procedure.

11If only the lattice data of the charge radius for the two lowest
pion masses (M� & 300 MeV) are considered, the value of �‘6
becomes 12:8� 0:5 (with 
2=d:o:f: ’ 0:65) and the predicted
charge radius at the physical point is hr2iphys ¼ 0:393�
0:017 fm2, which still deviates from the experimental value by
3 standard deviations.
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parameters. However when we extrapolate the chiral pre-
dictions for the pion mass and decay constant outside the
mass range of the lattice data towards the chiral point we
end up with rather large uncertainties as shown in Fig. 14.

Such a situation is clearly unsatisfactory both for a
precise extraction of the LECs and for the extrapolation
to the physical point. The inclusion of the experimental
values of the pion charge radius and curvature in the set of
fitted data can obviously reduce the uncertainties in the
extraction of the chiral parameters, but in this way the
predictive power of the chiral fits is lost.

Thus we look for an observable which should be:
i) unrelated to the vector form factor of the pion,
ii) known experimentally and iii) whose chiral expansion

at NLO contains one of the LECs, let us say �‘3 or �‘4. In this
way the experimental value of such an observable, ex-
pected to be dominated by the NLO contribution, can
constrain sufficiently the range of the variability of one
of the LECs. In turn this could be beneficial to reduce the
uncertainties of all our fitting parameters.

A possible, appropriate choice is the squared radius hr2iS
of the pion ‘‘scalar’’ form factor, defined as

hr2iS �¼ 6

FS
�ð0Þ

�
dFS

�ðq2Þ
dq2

�
q2¼0

; (73)

where

FS
�ðq2Þ ¼ h�þðp0Þj �uuþ �ddj�þðpÞi: (74)

Indeed, on one hand side the experimental value of the pion
scalar radius is known quite accurately from the analysis of
�� � scattering data (see Ref. [33]), which gives

hr2iexpS ¼ 0:61� 0:04 fm2: (75)

On the other hand side the chiral expansion of hr2iS,
calculated at NNLO in Ref. [11], reads as

hr2iS ¼ ½hr2iS�NLO þ ½hr2iS�NNLO þOðm̂2Þ; (76)

½hr2iS�NLO ¼ 2

F2

�
6‘r4 � 6Lð�Þ � 13

2N

�
; (77)

½hr2iS�NNLO ¼ 4
x2
F2

�
1

N

�
88‘r1 þ 36‘r2 þ 5‘r3 � 13‘r4

þ 145

36
Lð�Þ � 23

192
þ 869

108N

�
þ 31k1

þ 17k2 � 6k4 þ 12‘r4ð‘r4 � 2‘r3Þ þ 6rrS

��F

�
3�F � 13

2N

�
� 6

N
�M

�
: (78)

It can be seen that the LEC �‘4, which also governs the NLO
correction to the pion decay constant [see Eq. (60)], ap-
pears in Eq. (77).

As already stressed, the experimental value hr2iexpS is

expected to be dominated by the NLO contribution (77).

Using the values of the relevant LECs of the second
column of Table V one gets ½hr2iS�NLO ¼ 0:716�
0:014 fm2, which overestimates the experimental value
(75) by almost 3 standard deviations. Thus we want to
use the NNLO calculation of hr2iS, also for consistency
with the use of Eqs. (56)–(67) for the other observables. In
order to do that we need to set the value of the parameter rrS
appearing in Eq. (78). In Ref. [11] an estimate of rrS at the
�-meson mass scale has been obtained using a resonance
model, namely rrS � �0:3 � 10�4. We have checked that

using the above value or putting the parameter rrS equal to

zero does not produce any significant difference in our
chiral fits. This is not surprising since the effects of a
nonvanishing value of rrS are expected to be relevant at

large quark masses only. Thus in what follows the value
rrS ¼ 0 is assumed.

Including the experimental value hr2iexpS in the ensemble

of fitted data and Eqs. (76)–(78) in the fitting procedure, we
obtain the results shown in Fig. 15 with the values of the
fitting parameters reported in the fourth column of Table V.
Let us recall that the experimental value of the pion charge
radius is not included in the fitting procedure.
Our expectation about the reduction of the uncertainties

of the fitting parameters is fully confirmed. Thanks to the
introduction of the experimental value hr2iexpS the value of
�‘4 is determined quite accurately, and this is beneficial for
reducing the uncertainties of all the other LECs (compare
the third and the fourth columns of Table V).
Note that with respect to the NLO analysis the values of

both the parameter B and the lattice spacing, obtained in
the NNLO analysis which includes hr2iexpS , change beyond

the corresponding statistical errors. On the contrary the

values of the LECs F, �‘3, �‘4 and �‘6 do not change
significantly.
Since our data used for the curvature rely on the as-

sumption of the monopole behavior (see Eq. (54)), we have
checked that the values of the LECs, extracted by including
the curvature data obtained from the cubic fit (55), change
only slightly within the statistical errors with respect to the
ones reported in the fourth column of Table V.
The values of the charge radius and the curvature pre-

dicted at the physical point by the chiral fit shown in
Fig. 15 are hr2iphys ¼ 0:456� 0:030 fm2 and cphys ¼
ð5:11� 0:47Þ � 10�3 fm4. We perform a rough estimate
of the systematic errors due to finite-volume and discreti-
zation effects. First we substitute the run R2a with the run
R2b and fit the new set of data; the changes in the central
values of the chiral parameters provide an estimate of the
finite-volume effects. Second, we further substitute the
runs R2b and R5a with the runs R2c and R5b at the finer
lattice spacing, respectively, obtaining an estimate of dis-
cretization effects. Adding all the systematic uncertainties
in quadrature, our final results are

hr2iphys ¼ 0:456� 0:030� 0:024 fm2; (79)
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cphys ¼ ð5:11� 0:47� 0:41Þ � 10�3 fm4; (80)

where the first error is statistical and the second one
systematic. We recall that the findings (79) and (80) are
not completely independent, because they are based on an
ensemble of fitted data which satisfy Eq. (54).

The results for the pion charge radius at the physical
point obtained by various lattice collaborations performing
unquenched calculations are compared in Table VII and in
Fig. 16.

Our finding (79) agrees very well with the experimental
value hr2iexp ¼ 0:452� 0:011 fm2 [22]. It is also consis-
tent within the errors with the results of the JLQCD (Nf ¼
2), QCDSF/UKQCD (Nf ¼ 2) and UKQCD/RBC (Nf ¼
2þ 1) Collaborations, while the difference with the result
of the LHP (Nf ¼ 2þ 1) Collaboration is equal to � 2

standard deviations.
We stress that the use of twisted BCs and the inclusion of

the NNLO terms in the ChPT analyses are two important
features considered in this work. Note that twisted BCs are

FIG. 15 (color online). As in Fig. 14, but including the experimental value of the pion scalar radius from Ref. [33] in the fitting
procedure. The resulting values of the fitting parameters are listed in the fourth column of Table V.

TABLE VII. Results for the pion charge radius extrapolated at the physical point by various lattice collaborations performing
unquenched calculations. The uncertainty of the ETM result corresponds to the statistical and the systematic errors, given by Eq. (79),
added in quadrature.

Collaboration Nf Action V � T=a4 a (fm) M� (MeV) hr2iphys (fm2)

ETM [this work] 2 tlSymþ tmW 323 � 64 �0:09 � 260 0:456� 0:038
JLQCD [20] 2 Iwþ overlap 163 � 32 �0:12 � 290 0:404� 0:031
JLQCD [18] 2 plaqþ Clover 203 � 48 �0:09 � 550 0:396� 0:010
QCDSF/UKQCD [19] 2 plaqþ Clover 243 � 48 �0:08 � 400 0:441� 0:019
UKQCD/RBC [21] 2þ 1 DWF 163 � 32 �0:12 � 330 0:418� 0:031
LHP [14] 2þ 1 AsqtadþDWF 203 � 64 �0:12 � 320 0:310� 0:046
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used only in Ref. [21], and a NNLO ChPT analysis is
carried out only in Ref. [20].

The ETMC result (79) has been obtained by fitting the
lattice data for values of the (squared) four-momentum
transfer Q2 ¼ �q2 up to 0:5 GeV2 using the pole ansatz
(48) or equivalently the monopole functional form

FðmonopoleÞ
� ðQ2Þ ¼ 1

1þ hr2i
6 Q2

: (81)

An interesting question is at which value of Q2 the pre-
dictions based on Eq. (81) start to deviate from the experi-
mental data. Recently, thanks to the CEBAF facility at
JLab, the pion form factor has been measured quite accu-
rately up to a few GeV2. The comparison with the mono-
pole prediction (81), using for the (squared) pion charge
radius either the ETMC result (79) or its experimental
value from PDG [22], is illustrated in Fig. 17.
It can clearly be seen that there is no hint of a deviation

of the experimental data from the monopole ansatz up to
Q2 � 2� 3 GeV2.
New experimental data up to Q2 ’ 6 GeV2, expected to

be taken after the completion of the JLab upgrade to
12 GeV [52], may shed light on the range of validity of
the monopole ansatz.

C. Polynomial fit

We want to discuss briefly an alternative fit to our lattice
data based on a simple polynomial form, which does not
have any logarithmic term; namely

M2
� ¼ 2 �B m̂ �½1þ C1m̂þ C2m̂

2�; (82)

f� ¼ �F � ½1þD1m̂þD2m̂
2�; (83)

hr2i ¼ 6=ðM0 þ E1m̂þ E2m̂
2Þ2: (84)

The results of such a fit, applied to our lattice data
having M�L * 4 without applying any FSE correction,
are illustrated in Figs. 18 and 19.
Among the fitting parameters we obtain 2 �B ¼ 4:79�

0:08 GeV and �F ¼ 126� 2 MeV, while the lattice
spacing turns out to be a ¼ 0:0889� 0:0010 fm, and the
(renormalized) up/down quark mass is m̂phys ¼
3:8� 0:1 MeV.
It can clearly be seen that the quality of the polynomial

fit is quite similar to the one of the ChPT fit shown in
Fig. 15, and therefore we have to conclude that our lattice
results do not show clear-cut evidence of chiral logs.

VI. CHIRAL FITS OF THE PION FORM FACTOR

In this section we present the ChPT analysis of our
results for the pion form factor including its momentum
dependence. The ChPT expansion of F�ðq2Þ has been
calculated in Ref. [11] at NNLO, obtaining

F�ðq2Þ ¼ 1þ ½F�ðq2Þ�1-loop þ ½F�ðq2Þ�2-loops þOðm̂3Þ;
(85)

½F�ðq2Þ�1-loop ¼ 2x2

�
1

6
ðw� 4Þ �JðwÞ

� w

�
‘r6 þ

1

6
Lð�Þ þ 1

18N

��
; (86)

FIG. 16. Results for the pion charge radius extrapolated at the
physical point by various lattice collaborations performing un-
quenched calculations (see Table VII). The vertical dashed lines
show the experimental value hr2iexp ¼ 0:452� 0:011 fm2 [22].

FIG. 17 (color online). Pion form factor times Q2 ¼ �q2,
Q2F�ðQ2Þ, versus Q2 in physical units. The dots, squares and
diamonds are experimental data from Refs. [1,3–8], respectively.
The dashed and solid lines correspond to the regions selected at
1� level by the predictions of the monopole form (81) using
hr2i ¼ hr2iexp ¼ 0:452� 0:011 fm2 [22] and hr2i ¼ hr2iphys ¼
0:456� 0:038 fm2, respectively.
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½F�ðq2Þ�2-loops ¼ 4x22

�
PVðwÞ þUVðwÞ ��M

�JðwÞ

� �F

�
1

6
ðw� 4Þ �JðwÞ

� w

�
‘r6 þ

1

6
Lð�Þ þ 1

18N

���
; (87)

where w � q2=2Bm̂. The polynomial part PVðwÞ is given
by

PVðwÞ ¼ w

�
� 1

2
k1 þ 1

4
k2 � 1

12
k4 þ 1

2
k6 þ rr1

þ 1

N

�
23

36
Lð�Þ þ 5

576
þ 37

864N

�

� ‘r4

�
2‘r6 þ

1

9N

��
þ w2

�
1

12
k1 � 1

24
k2 þ 1

24
k6

þ rr2 þ
1

9N

�
‘r1 �

1

2
‘r2 þ

1

2
‘r6 �

1

12
Lð�Þ

� 1

384
� 47

192N

��
; (88)

while the dispersive part UVðwÞ reads as

UVðwÞ ¼ �JðwÞ
�
� 1

3
wðw� 4Þ

�
‘r1 �

1

2
‘r2 þ

1

2
‘r6

�

þ 1

3
‘r4ðw� 4Þ � 1

36
Lð�Þðw2 þ 8w� 48Þ

þ 1

108N
ð7w2 � 97wþ 81Þ

�
þ 1

9
H1ðwÞ

þ 1

9
H2ðwÞ

�
1

8
w2 � wþ 4

�
þ 1

6
H3ðwÞ

�
w� 1

3

�

� 5

3
H4ðwÞ; (89)

where

�JðwÞ ¼ zhðzÞ þ 2

N
; (90)

H1ðwÞ ¼ zh2ðzÞ; (91)

H2ðwÞ ¼ z2h2ðzÞ � 4

N2
; (92)

FIG. 19 (color online). The charge radius of the pion form
factor versus the renormalized quark mass m̂ in physical units.
The dots are the ETMC results and the squares represent the
experimental value of the pion charge radius [22], which is not
included in the fitting procedure. The dotted lines correspond to
the region selected at 1� level by the polynomial fit (84).

FIG. 18 (color online). The ratioM2
�=m̂ (a) and the pion decay constant (b) versus renormalized quark mass m̂ in physical units. The

dots are the ETMC results, uncorrected for FSE effects, and the squares represent the experimental value for each quantity from PDG
[22]. The dotted lines correspond to the region selected at 1� level by the polynomial fits of the squared pion mass (82) and decay
constant (83).
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H3ðwÞ ¼ N
z

w
h3ðzÞ þ �2

Nw
hðzÞ � �2

2N2
; (93)

H4ðwÞ ¼ 1

wz

�
1

2
H1ðwÞ þ 1

3
H3ðwÞ þ 1

N
�JðwÞ þ �2 � 6

12N2
w

�
;

(94)

with z � 1� 4=w and

hðzÞ ¼ 1

N
ffiffiffi
z

p log

ffiffiffi
z

p � 1ffiffiffi
z

p þ 1
: (95)

Using the above formulae it is possible to test the
momentum dependence of the pion form factor predicted
by ChPT at NNLO. Such a dependence is analytical up to
the inelastic threshold q2thr ¼ 4M2

�. Thus, in the chiral

limit, terms of the form q2 logð�q2Þ appear in the pion
form factor, which becomes a nonanalytic function of q2.
This is the origin of the divergency of both the charge
radius and the curvature in the chiral limit [see Eqs. (62)–
(67)].

It is easy to check that an expansion of Eqs. (85)–(87) in
powers of q2 leads to the result: F�ðq2Þ ¼ 1þ hr2iq2=6þ
cq4 þOðq6Þ, with hr2i and c given by Eqs. (62)–(67),
respectively. Thus by using Eqs. (85)–(87) it is possible
to take into account (at least partially) the effects of order
Oðq6Þ in the momentum dependence of the pion form
factor.
Note that the NNLO terms (87)–(89) do not depend

upon the LECs ‘r1 and ‘r2 separately, but only through the

linear combination (‘r1 � ‘r2=2). Since different linear

combinations of ‘r1 and ‘r2 appear in the NNLO terms of

both the pion mass (58) and decay constant (61), the LECs
‘r1 and ‘r2 can be determined by a simultaneous analysis of

the form factor together with the pion mass and decay
constant.
As already discussed in Sec. VB, at NLO the pion form

factor depends on one LEC, �‘6, which governs only the
linear term in q2. The ChPT predictions at NLO

corresponding, respectively, to �‘6 ¼ 14:59� 0:03 and
�‘6 ¼ 11:6� 0:3 (with 2B ¼ 5:21� 0:05 GeV and

FIG. 20 (color online). Pion form factor F�ðQ2Þ versus the squared 4-momentum transferQ2 � �q2 in physical units, for the run R1

atM� ’ 260 MeV (a), the run R2a atM� ’ 300 MeV (b), the run R3 atM� ’ 380 MeV (c) and the run R4 atM� ’ 440 MeV (d). For
the lattice spacing the value a ¼ 0:0861 fm is adopted from the second column of Table V. The solid line is the pole behavior (48) with
the parameterMpole fitted to the lattice points. The dashed and dotted lines are the regions selected at 1� level by the ChPT predictions

at NLO corresponding, respectively, to �‘6 ¼ 14:59� 0:03 and �‘6 ¼ 11:6� 0:3 with 2B ¼ 5:21� 0:05 GeV and F ¼ 121:7�
1:1 MeV (see text).
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F ¼ 121:7� 1:1 MeV), reported already in Fig. 13 in the
case of the pion charge radius and curvature, are shown in
Fig. 20 for various values of the pion mass. We recall that

the value �‘6 ¼ 14:59� 0:03 is fixed by the reproduction of

the experimental charge radius, while the value �‘6 ¼
11:6� 0:3 is obtained by fitting our lattice data of the
charge radius for pion masses up to ’ 500 MeV. It can
be seen that:

(i) the momentum dependence predicted by ChPT at
NLO is almost linear at variance with the pole be-
havior (48) observed in our lattice data [see also
Fig. 13(b)];

(ii) using �‘6 ¼ 11:6� 0:3 the NLO approximation ap-
pears to work up to Q2 � �q2 � 0:15 GeV2 and
for pion masses below � 300 MeV. With such a

value of �‘6 the NLO formula (63) yields hr2iphys ¼
0:352� 0:008 fm2, which underestimates signifi-
cantly the experimental charge radius (see
Sec. VB). A slight improvement can be achieved
by using directly the NLO formula (86) to fit our
lattice data for the pion form factor at the lowest
Q2-value ( ’ 0:05 GeV2) and for the two lowest
pion masses (M� ’ 260 and ’ 300 MeV). We ob-

tain �‘6 ¼ 12:2� 0:5 corresponding to hr2iphys ¼
0:373� 0:017 fm2, which still deviates from the
experimental value by 4 standard deviations;

(iii) using �‘6 ¼ 14:59� 0:03, which instead reprodu-
ces the experimental value of the pion charge ra-
dius, the range of applicability of the NLO
approximation reduces to values of Q2 at least not
larger than� 0:03 GeV2 and to pion masses below

� 300 MeV, which are not covered by our present
lattice data (Q2 * 0:05 GeV2). We notice that
within the above restricted range of values of Q2

and pion masses the deviation of the pion form
factor from unity becomes smaller than a few per-
cent, and therefore a particular attention should be
paid to the statistical precision as well as to the
systematic uncertainties related to cutoff and finite
size effects.

From Fig. 20 it is clear that the description of our lattice
data requires the inclusion of higher-order ChPT effects,
which should be much larger than the finite-volume cor-
rections and the scaling violations observed in Figs. 8 and 9
for the values ofQ2 andM� considered in our calculations.
We have therefore performed a simultaneous NNLO fit

of the lattice data of the runsR1,R2a,R3, R4,R5a andR6 for
the quantities M�, f� and F�ðQ2Þ, including all values of
Q2 � �q2 from ’ 0:05 GeV2 up to ’ 0:8 GeV2. As in the
previous section, the constraint (75) on the pion scalar
radius is included in the fitting procedure in order to reduce
the uncertainties in the extracted values of the chiral pa-
rameters. The latter are given in the second column of
Table VIII. The nice quality of the NNLO fit is illustrated
in Figs. 21 and 22. The corresponding value of the pion
charge radius, calculated at the physical point using
Eqs. (62)–(65), is hr2iphys ¼ 0:438� 0:029 fm2, in nice
agreement with the finding (79), which, we recall, is based
on the use of the pole ansatz (48) that describes very well
the momentum dependence of our lattice data (see Figs. 7
and 20).
The comparison of the results shown in the fourth col-

umn of Table V and those in the second column of

TABLE VIII. Values of the chiral parameters, the lattice spacing and the renormalized light-

quark mass m̂ ¼ mMSð2 GeVÞ at the physical point, obtained from the simultaneous ChPT
analysis of the pion mass, decay constant and form factor made at NNLO using Eqs. (56)–(61)
and (85)–(87), including also the constraint (75) on the pion scalar radius. The second, third and
fourth columns correspond to different Q2-ranges of the lattice data of the form factor
considered in the fitting procedure. The values of the parameters rrM, r

r
F, r

r
1 and rr2 are given

at the �-meson mass scale. The uncertainties are statistical (bootstrap) errors only.

Parameter Q2 � 0:8 GeV2 Q2 � 0:5 GeV2 Q2 � 0:3 GeV2

2B (GeV) 4:89� 0:10 4:91� 0:07 4:90� 0:09
F (MeV) 122:6� 1:1 122:5� 0:8 122:5� 1:0
�‘3 3:14� 1:03 3:24� 0:53 3:19� 0:81
�‘4 4:37� 0:27 4:41� 0:10 4:39� 0:19
�‘6 15:0� 0:9 14:8� 1:1 14:8� 1:5
�‘1 �0:54� 1:01 �0:31� 1:12 �0:28� 1:91
�‘2 4:40� 0:78 4:29� 1:00 4:23� 1:52
rrM � 104 �0:48� 0:30 �0:43� 0:23 �0:44� 0:37
rrF � 104 0:11� 0:19 0:08� 0:10 0:08� 0:20
rr1 � 104 �0:98� 0:12 �0:94� 0:13 �0:90� 0:14
rr2 � 104 0:43� 0:03 0:46� 0:03 0:52� 0:05
a (fm) 0:0883� 0:0006 0:0883� 0:0006 0:0883� 0:0007
m̂phys (MeV) 3:80� 0:09 3:79� 0:07 3:79� 0:09

2=d:o:f: 29=34 19=28 13=22

R. FREZZOTTI, V. LUBICZ, AND S. SIMULA PHYSICAL REVIEW D 79, 074506 (2009)

074506-26



Table VIII clearly indicates that within the statistical un-
certainties the extracted values of the chiral parameters are
quite stable against chiral effects of orderOðq6Þ in the pion

form factor with the only exception of the parameter rr2,
which instead exhibit a rather large variation. The latter
will be included in the systematic error (see later Table IX),
providing the dominant source of uncertainty for the pa-
rameter rr2.
We recall that, at variance with the results reported in

Table V, the ones shown in Table VIII are obtained without
the assumption of the pole ansatz (48) for the momentum
dependence of the form factor, but using only the func-
tional forms (85)–(89) predicted by ChPT at NNLO.
Effects from higher orders in the chiral expansion are

expected to become more and more important as the value
of Q2 increases. In order to check their relevance in our

FIG. 21 (color online). The ratio of the squared pion mass to the renormalized quark mass m̂ (a) and the pion decay constant
(b) versus m̂ in physical units. The dots are the ETMC results and the squares represent the experimental value for each quantity from
Ref. [22]. The dashed lines correspond to the region selected at 1� level by the NNLO ChPT analysis of the ETMC results for the pion
mass, decay constant and e.m. form factor. The experimental value of the pion scalar radius (75) is added to the fitting procedure
employing Eqs. (76)–(78). The values of the fitting parameters are listed in the second column of Table VIII.

FIG. 22 (color online). ETMC results for the pion e.m. form
factor versus the renormalized quark mass m̂ at various values of
Q2ð� �q2Þ. The various lines correspond to the regions selected
at 1� level by the ChPT fit at NNLO based on Eqs. (85)–(87)
with the fitting parameters given in the second column of
Table VIII. The experimental value of the pion scalar radius
(75) is added to the fitting procedure using Eqs. (76)–(78).

TABLE IX. Values of the LECs obtained from the NNLO
ChPT analyses of the previous section and compared with
available estimates arising either from NNLO ChPT analyses
of �� � scattering data [33] or from VMD models [11]. The
values of the parameters rrM, r

r
F, r

r
1 and rr2 are given at the

�-meson mass scale. In the second column the first error is
statistical and the second one systematic.

LEC ETMC (NNLO) (this work) Nonlattice estimates

2B (GeV) 4:90� 0:09� 0:20 � � �
F (MeV) 122:5� 1:0� 1:0 � � �
‘1 �0:4� 1:3� 0:6 �0:4� 0:6 [33]
�‘2 4:3� 1:1� 0:4 4:3� 0:1 [33]
�‘3 3:2� 0:8� 0:2 2:9� 2:4 [33]
�‘4 4:4� 0:2� 0:1 4:4� 0:2 [33]
�‘6 14:9� 1:2� 0:7 � � �
rrM � 104 �0:45� 0:30� 0:10 � � �
rrF � 104 0:08� 0:16� 0:05 � � �
rr1 � 104 �0:94� 0:13� 0:10 �2:0 [11]

rr2 � 104 0:46� 0:03� 0:31 2.1 [11]
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analysis we repeat the NNLO fit by limiting the range
of values of Q2, i.e., by including only lattice data with
Q2 � 0:5 GeV2 (see third column of Table VIII) andQ2 �
0:3 GeV2 (see fourth column of Table VIII). It can clearly
be seen that, within the statistical precision, the extracted
values of all the chiral parameters are only slightly sensi-
tive to the Q2-range used and therefore to higher-order
effects.

Before closing this section we mention that in
Refs. [24,33,34] a different definition of the LECs at
NNLO is adopted, namely, the constants rrM and rrF are
replaced by the constants kM and kF. Using the results of
the second column of Table VIII we obtain kM ¼ �0:6�
1:6 and kF ¼ 1:2� 1:5.

VII. FINAL RESULTS FOR THE LEC’S

In this section we provide the final estimates of the LECs
from the present work. Our results, including both the
statistical and the systematic uncertainties, are collected
in the second column of Table IX. They have been eval-
uated by averaging the three central values reported in
Table VIII, using the quoted errors as the weights.

As in the case of the charge radius and curvature, dis-
cussed in the previous section, we estimate the systematic
errors due to both finite-volume and discretization effects.
First we substitute the run R2a with the run R2b and fit the
new set of data; the changes in the central values of the
chiral parameters provide an estimate of the finite-volume
effects. Second, we further substitute the runs R2b and R5a

with the runs R2c and R5b at the finer lattice spacing,
respectively, obtaining an estimate of discretization effects.
All the systematic errors, which include also the spread of
the central values of Table VIII, are finally added in
quadrature.

In Table IX our estimates of the chiral parameters are
compared with available results from NNLO ChPT analy-
ses of �� � scattering data from Ref. [33], and with
estimates obtained using VMD models in Ref. [11]. Our

values for the LECs �‘1, �‘2, �‘3 and �‘4 agree nicely with
those extracted in Ref. [33]. The uncertainties obtained in

this work for the LEC �‘4 are quite similar to the one from

Ref. [33], while �‘1 and �‘2 are determined more precisely in

Ref. [33] and �‘3 in the present work.
On the contrary the estimates of the counter-terms rr1 and

rr2 obtained in Ref. [11] adopting VMD models turn out to
be much larger than our values by a factor � 2� 3.

The results obtained for the lattice spacing, a ¼
0:0883� 0:0006 fm, and the renormalized up/down quark
mass, m̂phys ¼ 3:79� 0:08� 0:15 MeV, are consistent
within the errors with the findings of Refs. [23,50] obtained
at the same value of 	ð¼ 3:9Þ. The values 2B ¼ 4:90�
0:09� 0:20 GeV and F ¼ 122:5� 1:0� 1:0 MeV corre-
spond to a light-quark condensate equal to

hq �qiMSð2 GeVÞ ¼ ð�264� 3� 5 MeVÞ3; (96)

moreover, the ratio fphys� =F is equal to

fphys� =F ¼ 1:067� 0:009� 0:009: (97)

The findings (96) and (97) are in agreement with the
corresponding values obtained by the scaling analysis of
Ref. [34].
Using for the LECs the values given in Table IX we have

calculated the values of the pion form factor at the physical
point for the various values of Q2 considered in this work.
Our results, including both statistical and systematic un-
certainties, are collected in Table X and shown in Fig. 23,
where they are also compared with available experimental
data from Refs. [1,3–8].
It can be seen that our values are fully consistent with the

experimental data in the whole range of values of Q2

considered in this study. The agreement is particularly
remarkable at low values of Q2 (Q2 & 0:15 GeV2), where
the experimental data are very precise, as well as at larger

TABLE X. Values of the pion form factor F
phys
� ðQ2Þ, extrapo-

lated to the physical point using for the LECs the results of
Table IX, for various values of Q2. The first error is statistical
and the second one systematic.

Q2ðGeV2Þ F
phys
� ðQ2Þ

0.050 0:914� 0:005� 0:003
0.148 0:774� 0:013� 0:008
0.299 0:618� 0:019� 0:013
0.503 0:487� 0:022� 0:017
0.794 0:437� 0:030� 0:026

FIG. 23 (color online). Pion form factor F�ðQ2Þ versus Q2 ¼
�q2 in physical units. The full dots are the NNLO ChPT results
of Table X, obtained at the physical point using for the LECs the
values given in Table IX. The uncertainties of the ETMC results,
illustrated also by the dashed lines, represent the statistical and
the systematic errors of Table X added in quadrature. The open
dots, squares and diamonds are experimental data from
Refs. [1,3–8], respectively.
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values of Q2 (Q2 * 0:3 GeV2), where the uncertainties of
our results become competitive with the experimental
errors.

VIII. CONCLUSIONS

We have presented a lattice calculation of the electro-
magnetic form factor of the pion obtained using the tree-
level Symanzik improved gauge action with two flavors of
dynamical twisted Wilson quarks.

The simulated pion masses range from ’ 260 to ’
580 MeV, and the lattice box sizes are chosen in order to
guarantee that M�L * 4.

Accurate results for the form factor are obtained using
all-to-all quark propagators evaluated with the stochastic
procedure of Ref. [30].

The momentum dependence of the pion form factor is
investigated up to values of the squared four-momentum
transfer Q2 ’ 0:8 GeV2 and, thanks to the use of twisted
boundary conditions, down to Q2 ’ 0:05 GeV2. The
Q2-dependence at the simulated pion masses is well repro-
duced by a single monopole ansatz with a pole mass lighter
by � 10%� 15% than the lightest vector-meson mass.

Volume and discretization effects on the form factor
have been directly evaluated performing simulations at
different volumes and lattice spacings, and they turn out
to be within the statistical errors. A more complete inves-
tigation of the scaling properties of the pion form factor,
based on the study of its mass dependence at two additional
values of the lattice spacing, is however desirable. The
corresponding measurements are in progress.

The extrapolation of our results for the pion mass, decay
constant and form factor to the physical point has been
carried out using (continuum) ChPT at NNLO [11]. The
extrapolated value of the (squared) pion charge radius is
hr2iphys ¼ 0:456� 0:030stat � 0:024syst in nice agreement

with the experimental result hr2iexp ¼ 0:452� 0:011 fm2

[22]. The extrapolated values of the pion form factor agree
very well with the experimental data up to Q2 ’ 0:8 GeV2

within uncertainties which become competitive with the
experimental errors for Q2 * 0:3 GeV2.

The relevant low-energy constants appearing in the chi-
ral expansion of the pion form factor are extracted from our
lattice data adding only the experimental value of the pion

scalar radius [11] in the fitting procedure. We get: �‘1 ¼
�0:4� 1:3� 0:6, �‘2 ¼ 4:3� 1:1� 0:4, �‘3 ¼ 3:2�
0:8� 0:2, �‘4 ¼ 4:4� 0:2� 0:1, �‘6 ¼ 14:9� 1:2� 0:7,
where the first error is statistical and the second one
systematic. Our findings are in nice agreement with the
results of the NNLO ChPT analysis of �� � scattering

data of Ref. [33]. The values found for the LECs �‘3 and �‘4
are consistent with the corresponding results of the ETMC
analysis of Ref. [34]. This is quite reassuring because
different kinds of systematic uncertainties may affect the

two analyses: the present one being a NNLO analysis
limited mainly to data from a single lattice spacing, and
that of Ref. [34] having two values of the lattice spacing
but limited mainly to an NLO analysis.
It is the aim of our collaboration to reduce as much as

possible all the uncertainties of the extracted low-energy
constants in the next future. To this end, data at more values
of the lattice spacing and calculations of other physical
quantities, like, e.g., the pion scattering lengths, will be
considered. This may allow to avoid any input from experi-
ments obtaining a first principle computation of the low-
energy constants.
In this respect a very interesting strategy is to include

lattice data for the scalar form factor of the pion, because
almost the same low-energy constants enter the chiral
expansion of both vector and scalar form factors [11]. In
this way the use of the experimental value of the pion
scalar radius in the fitting procedure can be avoided.
However the lattice calculation of the scalar form factor
requires the evaluation of both connected and disconnected
diagrams. While the former have been already calculated
on the ETMC gauge configurations, a precise evaluation of
the latter is in progress. The results will be reported else-
where.
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APPENDIX

In Tables XI and XIIof this appendix we provide the
values of the pion form factor F�ðQ2Þ obtained for all the
simulations (see Table I) and for the various values of the
squared four-momentum transfer Q2 � �q2 considered in
this work.

TABLE XI. Values of the pion form factor F�ðQ2Þ for various
values of Q2 � �q2 (in physical units) in the case of the runs R1

and R2a performed at 	 ¼ 3:9 and at the lattice volume V � T ¼
323 � 64a4. The uncertainties are statistical ( jacknife) errors.

Q2 (GeV2) R1 R2a

0.050 0.9269 (5) 0.930 (4)

0.148 0.819 (14) 0.818 (11)

0.299 0.683 (30) 0.672 (23)

0.503 0.485 (47) 0.514 (41)

0.794 0.242 (95) 0.439 (96)
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