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We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in

QCD at high temperature. We present results obtained from lattice calculations performed with an

improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up

and down quark masses and a physical value for the strange quark mass. We compare these results, with an

ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that

fluctuations and correlations are well described by the former already for temperatures about 1.5 times the

transition temperature. At low temperature qualitative features of the lattice results are quite well

described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive

to the light pions, however, show deviations from a resonance gas in the vicinity of the transition

temperature.
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I. INTRODUCTION

Fluctuations of conserved charges, like baryon number,
electric charge, and strangeness, are generally considered
to be sensitive indicators for the structure of (subsets of) a
thermal medium produced in heavy ion collisions [1]. In
fact, if at nonvanishing baryon number a critical point
exists in the QCD phase diagram, this will be signaled by
divergent fluctuations of e.g. the baryon number density
[2].

Under conditions met in current experiments at the
Relativistic Heavy Ion Collider (RHIC) as well as in the
upcoming heavy ion experiments at the LHC, the net
baryon number is small and QCD at vanishing chemical
potential provides a good approximation. In this region the
transition from the low temperature hadronic to the high
temperature plasma regime is continuous and fluctuations
are not expected to lead to any singular behavior.
Nonetheless, they provide direct insight into the structure
of the thermal medium, the relevant degrees of freedom,
and their correlations. Furthermore, enhanced fluctuations
provide hints for nearby singularities in the QCD phase
diagram related to the chiral limit at vanishing net baryon
number as well as for a possible critical point at physical
values of the quark masses at nonvanishing net baryon
number density [3].

Away from criticality, i.e. under conditions met at RHIC
and LHC, indications for the existence of such critical

points can only show up in higher order derivatives of
the QCD partition function with respect to temperature or
chemical potentials. Through the analysis of fluctuations of
conserved charges as well as their higher moments and
correlations, we thus gain insight into the relevant degrees
of freedom of the system under consideration and at the
same time gather information on possible nearby singular-
ities in the QCD phase diagram.
From lattice calculations at vanishing chemical potential

it is well known that baryon number and strangeness
susceptibilities are sensitive indicators for the transition
from the low temperature hadronic regime to the high
temperature quark gluon plasma. Also in the case of a
continuous crossover transition, as is the case for QCD
with physical quark masses, the susceptibilities rise rapidly
in the transition region [4–8]. This shows that on the scale
of the temperature the (quasi)particles carrying the quan-
tum numbers under consideration ðB; SÞ are heavy at low
and light at high temperature.
In calculations with two light, dynamical quark degrees

of freedom (2-flavor QCD) it also has been shown that
baryon number and electric charge fluctuations increase
and that their fourth moments start to show pronounced
peaks in the transition region from low to high temperature
[7,9]. In fact, higher order cumulants of e.g. baryon number
fluctuations, become increasingly sensitive to the singular
behavior in the vicinity of the chiral phase transition at zero
mass and vanishing chemical potential. Starting from the
6th order cumulant baryon number fluctuations will di-
verge in the chiral limit and are expected to reflect critical
behavior in accordance with theOð4Þ symmetric universal-
ity of the chiral transition.
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It also has been noted that the analysis of correlations
between different quantum numbers or flavor channels will
provide insight into the quasiparticle structure and the
relevant degrees of freedom in QCD at high temperature
[10]. In lattice calculations this has been analyzed in
quenched [11] and 2-flavor QCD [7,9,12]. Recent lattice
calculations for the QCD equation of state performed with
dynamical light and strange quark degrees of freedom
[13,14] now also allow one to perform a systematic analy-
sis of these correlations among different quantum number
channels including effects arising from the treatment of
strange quarks as dynamical degrees of freedom [8,15].

We present here results from lattice calculations of
baryon number, electric charge, and strangeness fluctua-
tions in QCD with dynamical light and strange quark
degrees of freedom.1 The results are based on calculations
with an improved staggered fermion action (p4 action) that
strongly reduces lattice cutoff effects in bulk thermody-
namics at high temperature. The values of the quark masses
used in this calculation are almost physical; the strange
quark mass,ms, is fixed to its physical value while the light
up and down quark masses are taken to be degenerate and
equal to ms=10. This is about twice as large as the average
up and down quark masses realized in nature. We obtained
results from calculations performed with two different
values of the lattice cutoff, corresponding to lattices with
temporal extent N� ¼ 4 and 6. This allows us to judge the
magnitude of systematic effects arising from discretization
errors in our improved action calculations. The spatial

volume has been chosen to be V1=3T ¼ 4, which insures
that finite volume effects are small.

II. FLUCTUATIONS AND CORRELATIONS;
COMPUTATIONAL SETUP

At vanishing baryon number (B), electric charge (Q) and
strangeness (S) fluctuations of these quantities can be
obtained by starting from the QCD partition function
with nonzero light and strange quark chemical potentials,
�̂u;d;s � �u;d;s=T. The quark chemical potentials can be

expressed in terms of chemical potentials for baryon num-
ber (�B), strangeness (�S), and electric charge (�Q),

�u ¼ 1

3
�B þ 2

3
�Q; �d ¼ 1

3
�B � 1

3
�Q;

�s ¼ 1

3
�B � 1

3
�Q ��S:

(1)

Moments of charge fluctuations, �NX � NX � hNXi,
with X ¼ B, Q, or S and their correlations are then ob-
tained from derivatives of the logarithm of the QCD par-
tition function, i.e. the pressure,

p

T4 � 1

VT3
lnZðV; T;�B;�S;�QÞ; (2)

evaluated at �B;Q;S ¼ 0,

�BQS
ijk ¼ @iþjþkp=T4

@�̂i
B@�̂

j
Q@�̂

k
S

���������¼0
; (3)

with �̂X � �X=T. While the first derivatives, i.e. baryon
number, electric charge, and strangeness densities, vanish
for �̂B;Q;S ¼ 0, their moments and correlation functions

with iþ jþ k even are nonzero. The basic quantities we
will analyze here are the quadratic and quartic charge
fluctuations,2

�X
2 ¼ 1

VT3
hN2

Xi �X
4 ¼ 1

VT3
ðhN4

Xi � 3hN2
Xi2Þ; (4)

and the correlations among two conserved charges,

�XY
11 ¼ 1

VT3
hNXNYi: (5)

These quantities have been evaluated in the temperature
interval 0:8 & T=Tc & 2:5 on lattices of size 163 � 4 and
243 � 6, respectively. On the 163 � 4 lattice we also cal-
culated 6th order expansion coefficients,

�X
6 ¼ 1

VT3
ðhN6

Xi � 15hN4
XihN2

Xi þ 30hN2
Xi3Þ: (6)

The gauge field configurations, that have been used to
evaluate the above observables, had been generated pre-
viously in calculations of the QCD equation of state [14]
and the transition temperature [16]. In these calculations
the strange quark mass has been tuned close to its physical
value and the light quark masses have been chosen to be
one tenth of the strange quark mass. This corresponds to a
line of constant physics on which the kaon mass is close to
its physical value and the lightest pseudoscalar mass3 is
about 220 MeV, i.e. the light quark masses used in these
calculations are about a factor 2 larger than their physical
values. Further details on the improved gauge and stag-
gered fermion actions used in these calculations are given
in [14,16]. The number of gauge field configurations ana-
lyzed varies from about 300 at high to 1500 at low tem-

1Preliminary results of this calculation had been presented at
Lattice 2007 and 2008 [15].

2As all expectation values have been evaluated at vanishing
chemical potential, we have �NX � NX.

3In calculations with staggered fermions flavor symmetry is
broken at nonvanishing values of the lattice spacing a. As a
consequence only one of the pseudoscalar mesons has a light
mass that is proportional to

ffiffiffiffiffiffi
ml

p
and vanishes in the chiral limit

at fixed a > 0. Full chiral symmetry with the correct Goldstone
pion multiplet is recovered only for a ! 0. For a study of the
remaining flavor symmetry violations with the p4 action in the
quenched case see [17]. For dynamical calculations discussed
here we have calculated one of the non-Goldstone pion masses at
cutoff values corresponding to the transition region of our N� ¼
4 and 6 calculations. This gives 700 MeV and 550 MeV,
respectively.
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peratures. Subsequent configurations are separated by 10 to

60 trajectories. The various operators contributing to �BQS
ijk

have been calculated using unbiased random estimators
[18]. While at high temperature already 50 random sources
per configuration were sufficient to get reliable estimates
for these observables, we used up to 480 random sources
below the transition temperature. Autocorrelations of the
operators contributing to the quadratic and quartic fluctua-
tions turned out to be about 100 trajectories close to Tc and
to drop quickly away from it. Errors on these fluctuations
have been determined by means of the jackknife proce-
dure. Some details on our data sample are given in Table I.

In the following we will present our results using a
physical temperature scale in MeV. As explained in detail
in Ref. [14], this scale has been obtained through detailed
studies of the zero temperature static quark potential along
the line of constant physics used also for the finite tem-
perature calculations. This yields unambiguously the tem-
perature in units of the lattice scale r0 that characterizes the
shape of the potential at distance r0, i.e. r0 is defined
through the relation ðr2dV �qqðrÞ=drÞr¼r0 ¼ 1:65. Although

r0 is not directly accessible in experiments, its value is
quite well known through comparison with determinations
of, e.g., the level splitting in the bottomonium system as
well as calculations of light meson decay constants
[19,20]. For the conversion to physical units we have
used the value r0 ¼ 0:469 fm [20].

In calculations with the improved staggered action the
transition temperature has been determined on lattices with
temporal extent N� ¼ 4 and 6 for the values of quark
masses used here [14,16]. This gave Tc ¼ 204ð2Þ MeV
for N� ¼ 4 and 196(3) MeV for N� ¼ 6, respectively.
The temperature values given in Tables I, II, and III have

TABLE I. The data samples analyzed on lattices of temporal extent N� ¼ 4 and 6, respectively. The columns give from left to right
the temperature values, the number of configurations used in this calculation, the number of trajectories by which these configurations
are separated and the number of random vectors used for the evaluation of traces.

N� ¼ 4 N� ¼ 6

T
½MeV�

Number of

configurations

Trajectories

separating

configurations

Random

vectors

T
½MeV�

Number of

configurations

Trajectories

separating

configurations

Random

vectors

176 1013 20 480 174 985 10 400

186 1550 30 480 180 910 10 400

191 1550 30 480 186 1043 10 400

195 1550 30 384 195 924 10 400

202 1550 30 384 201 873 10 350

205 475 60 384 205 717 10 200

219 264 60 384 211 690 10 150

218 950 30 384 224 560 10 150

254 199 60 192 238 670 10 100

305 302 60 96 278 540 10 50

444 618 10 48 363 350 10 50

416 345 10 50

TABLE II. The data on quadratic and quartic fluctuations of
light ðu; dÞ and strange (s) quarks obtained from calculations on
163 � 4 (upper table) and 243 � 6 (lower table) lattices, respec-
tively.

T ½MeV� �u
2 �s

2 �u
4 �s

4

176.0 0.1656(28) 0.0922(9) 0.551(38) 0.199(5)

186.4 0.3530(41) 0.2186(20) 1.246(121) 0.561(22)

190.8 0.4298(50) 0.2660(30) 1.662(84) 0.722(25)

195.4 0.5144(74) 0.3190(46) 2.199(127) 0.968(39)

202.4 0.7095(58) 0.4464(38) 2.315(122) 1.189(48)

204.8 0.7689(66) 0.4918(49) 1.762(154) 1.117(65)

209.6 0.9452(52) 0.6577(54) 1.140(98) 1.104(58)

218.2 1.0040(27) 0.7371(25) 0.857(29) 1.013(25)

253.7 1.0556(28) 0.9078(25) 0.594(19) 0.754(16)

305.2 1.0543(21) 0.9851(18) 0.543(2) 0.631(13)

444.4 1.0158(5) 0.9913(5) 0.515(7) 0.536(7)

T ½MeV� �u
2 �s

2 �u
4 �s

4

173.8 0.2077(77) 0.1167(35) 0.803(210) 0.244(18)

179.6 0.2769(85) 0.1643(32) 0.915(225) 0.310(36)

185.6 0.3950(81) 0.2341(45) 1.348(122) 0.563(40)

195.0 0.6011(116) 0.3743(93) 1.786(196) 0.963(112)

201.3 0.7556(80) 0.5027(58) 1.001(94) 0.843(49)

204.6 0.8093(86) 0.5630(53) 0.935(80) 0.816(48)

211.1 0.8714(65) 0.6483(49) 0.809(87) 0.879(66)

224.3 0.9313(61) 0.7219(62) 0.667(75) 0.900(63)

237.7 0.9695(33) 0.8319(39) 0.571(56) 0.731(43)

278.4 0.9975(48) 0.9439(21) 0.576(36) 0.591(32)

362.9 1.0181(35) 1.0039(21) 0.543(22) 0.549(11)

415.8 1.0163(18) 1.0044(30) 0.541(12) 0.563(25)
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been obtained from a fit to r0=a. The fitting function is
given in Eq. 22 of Ref. [14]. We therefore do not quote
errors on individual temperature values in the table. As
discussed in Ref. [14], these errors are generally below 1%.

III. FLUCTUATIONS OF LIGHTAND STRANGE
QUARK NUMBERS

Before entering a discussion of fluctuations of B, Q, and
S it is instructive to look into fluctuations of the partonic
degrees of freedom, the light and strange quarks. It has
been noticed before that close to the transition temperature
fluctuations of the heavier strange quarks are suppressed
relative to those of the light u or d quarks [12]. At higher
temperatures, however, they approach each other. In these
earlier calculations, however, the strange quark sector has
not been incorporated as a dynamical degree of freedom in
the numerical calculations. Nonetheless, the basic obser-
vation also holds true in QCD calculations with dynamical
strange quarks.

The difference in the behavior of light and strange quark
fluctuations is apparent from Fig. 1, where we show the
quadratic fluctuations of light and strange quark numbers
(upper figure) and the ratio of these fluctuations (lower
figure). The quadratic fluctuations rapidly approach the

Stefan-Boltzmann ideal gas value, �SB
2 ¼ 1, and decrease

strongly in the transition region. The calculations on latti-
ces with temporal extent N� ¼ 4 and 6 show some cutoff
dependence, which is larger for light quarks than for
strange quarks. Nonetheless, it is apparent that the ap-
proach to the high temperature limit is slower for the
heavier strange quarks than for the light up or down quarks.
This is highlighted in the lower part of Fig. 1 where we
show the ratio of strange to light quark fluctuations. This
ratio shows less cutoff dependence than �u

2 and �s
2 sepa-

rately. In fact, the difference between the N� ¼ 4 and 6

TABLE III. The data on quadratic and quartic fluctuations
obtained from calculations on 163 � 4 (upper table) and 243 �
6 (lower table) lattices, respectively.

T ½MeV� �B
2 �Q

2 �B
4 �Q

4

176.0 0.0301(9) 0.1229(8) 0.028(12) 0.189(5)

186.4 0.0831(25) 0.2433(17) 0.083(16) 0.415(17)

190.8 0.1061(19) 0.2903(29) 0.137(18) 0.521(26)

195.4 0.1328(32) 0.3412(43) 0.193(15) 0.682(30)

202.4 0.1931(17) 0.4601(35) 0.193(36) 0.744(35)

204.8 0.2133(33) 0.4961(39) 0.111(25) 0.599(41)

209.6 0.2694(23) 0.6154(38) 0.072(14) 0.365(43)

218.2 0.2978(5) 0.6480(18) 0.060(5) 0.259(11)

253.7 0.3313(18) 0.6918(12) 0.034(6) 0.159(6)

305.2 0.3398(10) 0.6992(11) 0.023(5) 0.143(3)

444.4 0.3343(3) 0.6760(5) 0.019(2) 0.127(1)

T ½MeV� �B
2 �Q

2 �B
4 �Q

4

173.8 0.0395(36) 0.1517(30) 0.094(56) 0.215(10)

179.6 0.0581(48) 0.1980(34) 0.101(54) 0.260(36)

185.6 0.0928(30) 0.2700(47) 0.102(32) 0.435(34)

195.0 0.1600(37) 0.3930(78) 0.142(30) 0.577(69)

201.3 0.2088(31) 0.4928(46) 0.047(18) 0.346(29)

204.6 0.2299(41) 0.5266(38) 0.091(15) 0.270(20)

211.1 0.2528(28) 0.5723(32) 0.067(22) 0.237(18)

224.3 0.2794(21) 0.6058(37) 0.036(17) 0.218(19)

237.7 0.3000(20) 0.6388(15) 0.043(23) 0.156(7)

278.4 0.3232(22) 0.6637(16) 0.029(6) 0.139(7)

362.9 0.3354(11) 0.6798(17) 0.021(7) 0.135(5)

415.8 0.3362(10) 0.6777(12) 0.023(4) 0.131(2)
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FIG. 1 (color online). The quadratic fluctuations of light and
strange quark number versus temperature (upper figure) and the
ratio of s and u quark fluctuations on lattices of size 163 � 4 and
243 � 6, respectively. The solid lines show results for an ideal
Fermi gas with mass m ¼ 100 MeV and 200 MeV, respectively,
(top to bottom). In the lower figure we also show partially
quenched results obtained with unimproved staggered fermions
on 163 � 4 lattices [12]. These results have been given in
Ref. [12] as function of T=Tc. This scale is shown on the upper
x axis in the lower part of the figure. We have used the mean
value of the transition temperatures on the N� ¼ 4 and 6 lattices,
i.e. T0 ¼ 200 MeV, to compare with calculations performed
with the p4 action.
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results for �s
2=�

u
2 is well understood in terms of the small

shift (cutoff dependence) of the transition temperature
determined for these two different lattice sizes.

We find that �s
2=�

u
2 is about 0.6 at Tc and approaches

unity at about 1:7Tc. In both figures we show a band
indicating the result for fluctuations in a noninteracting,
massive Fermi gas. As can be seen this can explain the
smaller fluctuations of strange quarks relative to light
quarks only at temperatures larger than about 300 MeV,
i.e. for T * 1:5Tc. In quenched QCD and QCD with nf
massless quark flavors the approach to the high tempera-
ture limit has also been analyzed within hard thermal loop
(HTL) resummed perturbation theory [21] as well as in a
straightforward perturbative calculation performed up to
Oðg6 lngÞ [22]. In both cases the results resemble closely
properties of a Fermi gas with a temperature dependent
mass term. Both approaches, however, use additional phe-
nomenological input to either resum next-to-leading order
corrections to the HTL mass or fix the unknown scale for
the Oðg6 lngÞ correction. The lattice results presented in
Fig. 1 overshoot the HTL result by about 5%. This is of
similar magnitude as the cutoff dependence seen in the
current lattice results when comparing the N� ¼ 4 and 6
data in the temperature interval 1:5 & T=Tc & 2. In view
of the large change between the leading and the next-to-
leading order HTL calculations as well as the systematics
of the cutoff dependence seen in the lattice results, this
seems to be a reasonably good agreement.

We note that the results shown in Fig. 1 are in agreement
with calculations performed with another improved stag-
gered fermion action [6,8], the asqtad action. The results
obtained with improved (p4 and asqtad) actions are, how-
ever, in contrast to calculations performed with the stan-
dard staggered action in quenched [11] and 2-flavor [12]
QCD. These calculations led to significantly larger values
for �2, which is understood in terms of the large cutoff
effects in the standard discretization scheme (see the
Appendix). In the absence of results on larger lattices,
which would have allowed for a continuum extrapolation,
the numerical results obtained within the standard discre-
tization scheme [11,12] have been normalized to the cor-
responding ideal gas value evaluated also on lattices with
finite temporal extent. It is well known that at temperatures
a few times the transition temperature this procedure,
which is correct in the limit of infinite temperature, over-
estimates the actual cutoff distortion of numerical results.
The normalized values thus end up to be substantially
smaller than the results obtained with improved staggered
fermion actions for which an ad hoc normalization has not
been performed. We discuss cutoff effects and their quark
mass dependence for the standard and p4 action in some-
what more detail in the Appendix.

The situation is different for the ratio �s
2=�

u
2 shown in

the lower part of Fig. 1. Here unknown normalization
factors drop out. Nonetheless, also in this case results

obtained in calculations with improved actions are signifi-
cantly larger than those obtained with a standard action.
This difference may be due to the fact that in Ref. [12] the
strange quark sector has only been treated in the quenched
approximation.

IV. FLUCTUATION OF CONSERVED CHARGES

In Fig. 2 we show results for quadratic (�X
2 ) and quartic

(�X
4 ) fluctuations with X ¼ B, Q, and S. As can be seen, in

all cases the quadratic fluctuations rise rapidly in the
transition region where the quartic fluctuations show a
maximum. This maximum is most pronounced for the
baryon number fluctuations but is still visible also in
fluctuations of the strangeness number.
We note that results obtained on lattices with temporal

extent N� ¼ 6 are in good agreement with those obtained
on the coarser N� ¼ 4 lattice. The slight shift towards
smaller temperatures, visible for the N� ¼ 6 data relative
to the N� ¼ 4 data, is consistent with findings for the

0.0
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FIG. 2 (color online). Quadratic and quartic fluctuations of
baryon number, electric charge, and strangeness. All quantities
have been normalized to the corresponding free quark gas
values, �X;SB

n given in Table IV.
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equation of state, e.g. the trace anomaly ð�� 3pÞ=T4, and
also reflects the shift in the transition temperature observed
when comparing the location of cusp in the chiral suscep-
tibility [16]. The generic form of this temperature depen-
dence, a smooth crossover for quadratic fluctuations and a
peak in quartic fluctuations, is in fact expected to occur in
the vicinity of the chiral phase transition of QCD. At
vanishing chemical potential and for vanishing quark
mass the singular behavior of fluctuation observables,
like e.g. the baryon number cumulants, is expected to be
controlled by the singular part of the free energy that has
the same universal structure as that of a three-dimensional
Oð4Þ spin model.4 This singular part of the free energy, fs,
is controlled by a reduced ‘‘temperature’’ t that is a func-
tion of temperature as well as the quark chemical potentials
�X [23,24]. The latter add in even combinations to the
reduced temperature in order to respect charge symmetry
at �X ¼ 0. Baryon number cumulants are thus expected to
scale like,

�B
2n �

��������
T � Tc

Tc

��������
2�n��

(7)

with � ’ �0:25½�0:015� [25] denoting the critical expo-
nent characterizing the nonanalytic structure of the specific
heat in three-dimensional, Oð4Þ½Oð2Þ� symmetric spin
models. Starting at 6th order the baryon number cumulant
thus will diverge at Tc in the chiral limit. It has been argued
in [7] that this singularity will also show up in cumulants of
the electric charge.

On lattices with temporal extent N� ¼ 4 and 6 and for
the values of quark masses used here the transition tem-
perature is close to 200 MeV. From Fig. 2 we thus conclude
that at temperatures of about 1:5Tc and larger quadratic and
quartic cumulants of the fluctuations of B, Q, and S are
close to those of an ideal, massless quark gas, for which the
pressure is given by

pSB

T4
¼ X

f¼u;d;s

�
7�2

60
þ 1

2

�
�f

T

�
2 þ 1

4�2

�
�f

T

�
4
�
: (8)

Using the relations given in Eq. (1) one easily derives the
corresponding ideal gas values for quadratic and quartic
fluctuations of conserved charges. These are summarized
in Table IV.

The upper part of Fig. 2 shows that over a wide tem-
perature range quadratic fluctuations of strangeness are
suppressed relative to those of baryon number and charge,
which receive contributions also from fluctuations of the
light u and d quarks. Only for temperatures T * 1:7Tc do

the fluctuations of all three charges agree. This resembles
the pattern of the relative strength of light and strange
quark fluctuations seen in Fig. 1.
On the coarser N� ¼ 4 lattices we also have calculated

the 6th order cumulants, �X
6 , which vanish in the infinite

temperature, ideal gas limit as well as in leading order
perturbation theory [21]. For strangeness and charge fluc-
tuations we show results in Fig. 3. Note that these 6th order
cumulants change sign at T ’ Tc. Below Tc they rise
rapidly and reach a maximum at T ’ 0:95Tc; they ap-
proach zero from below and almost vanish for T * 1:5Tc.

V. RATIOS OF CUMULANTS

At low temperatures hadrons are the relevant degrees of
freedom. The hadron resonance gas (HRG) model has been
shown to provide a good description of thermal conditions
at freezeout [26,27]. Also fluctuations of the thermal me-
dium have been successfully described in the framework of
a HRG model [28]. Nonetheless, in a HRG model cumu-
lants are monotonically rising functions of the temperature,
while the 6th order cumulants change sign at Tc. This
indicates that a straightforward HRG model has to break
down in the vicinity of the transition temperature.
The partition function of the hadron resonance gas can

be split into mesonic and baryonic contributions,

TABLE IV. Ideal gas values for quadratic (�2) and quartic (�4)
fluctuations of baryon number (B), electric charge (Q), and
strangeness (S).

X B Q S

�X;SB
2 1=3 2=3 1

�X;SB
4 2=9�2 4=3�2 6=�2

 -4

 -2

  0

  2

  4

  6

  8

 150  200  250  300  350  400  450

T [MeV] 

SB

2χ6
Q

χ6
S

FIG. 3 (color online). The 6th order cumulant of electric
charge and strangeness fluctuations evaluated on lattices of
size 163 � 4.

4As chiral symmetry is explicitly broken in numerical calcu-
lations with staggered fermions, the relevant symmetry group is,
in fact, expected to be Oð2Þ.
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pHRG=T4 ¼ 1

VT3

X
i2mesons

lnZM
mi
ðT; V;�B;�Q;�SÞ

þ 1

VT3

X
i2baryons

lnZB
mi
ðT; V;�B;�Q;�SÞ; (9)

where

lnZM=B
mi

¼ � Vdi
2�2

Z 1

0
dkk2 lnð1� zie

�"i=TÞ; (10)

with energies "i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
, degeneracy factors di, and

fugacities

zi ¼ expððBi�B þQi�Q þ Si�SÞ=TÞ: (11)

The HRG model has been compared to lattice results
previously [28]. In these earlier comparisons with lattice
calculations, which had to be performed with rather large
quark masses and without dynamical strange quarks the
masses contributing to the HRG model were adjusted and
strange contributions were suppressed. Here we no longer
follow this strategy but compare directly the lattice results
with an HRG model that is based on the experimentally
observed spectrum. We use the same HRG model as it also
is used in heavy ion phenomenology and the analysis of
freezeout conditions [26,27]. This ansatz for the HRG
includes all meson and baryon masses from the particle
data book with masses mi � 2:5 GeV that are character-
ized at least as ‘‘4 star states.’’

Also on the lattice with temporal extent N� ¼ 6 calcu-
lations at low temperature are still performed on quite
coarse lattices. We thus cannot expect to reproduce details
of the hadron spectrum well under these conditions.
Nevertheless, we feel that it is now most appropriate to
compare lattice results directly with the unmodified con-
tinuum version of the HRG model that is commonly used
in the phenomenological treatment of QCD thermodynam-
ics. By improving lattice calculations systematically one
will then be able to judge to what extent the HRG model
does describe the thermodynamics of QCD in the hadronic
phase. In fact, the current calculations of the QCD equation
of state, e.g. the pressure and trace anomaly ð�� 3pÞ=T4,
show deviations from the HRG at temperatures below the
transition region. This is still the case in calculations on
lattices with temporal extent N� ¼ 8, i.e. closer to the
continuum limit [29,30]. We thus concentrate here on
observables which are less sensitive to details of the hadron
mass spectrum and emphasize the charges of the relevant
degrees of freedom contributing to the fluctuations. These
are in general ratios of cumulants of NB, NQ, and NS. In

fact, in the framework of a HRG model it is easy to
convince oneself that the ratio of 4th and 2nd order
cumulants of baryon number fluctuations is completely
independent of the actual value of hadron masses;
ð�B

4 =�
B
2 ÞHRG ¼ 1 if all hadrons are heavy on the scale of

the temperature. In that case the fugacity expansion of

Eq. (10),

lnZB
m ¼ VT3

�2

�
m

T

�
2 X1
‘¼1

ð�1Þ‘þ1‘�2K2ð‘m=TÞ coshð‘�B=TÞ;

(12)

is well approximated by its leading order term, i.e. the
Boltzmann approximation. In this case the baryonic con-
tribution to the pressure of a HRG is proportional to
coshð�B=TÞ and the ratio �B

4 =�
B
2 thus becomes indepen-

dent of the hadron mass spectrum. This is reasonably well
reproduced by the lattice results shown in Fig. 4 (top).
Note, however, that in the chiral limit it is expected that the
cusp in �B

4 (Fig. 2) is expected to become more pronounced
and thus more prominent also in the ratio �B

4 =�
B
2 . How

strong this effect will be requires more detailed studies and
also a better control over the continuum limit. Model
calculations yield quite a different strength for the peak
in �B

4 =�
B
2 [31].

Even within the Boltzmann approximation the structure
of a HRG is, however, more complicated in the strange
and/or electrically charged sectors. In these cases multiply
strange hadrons or hadrons with charge Q ¼ 2 contribute
to the HRG. This enhances quartic fluctuations relative to
quadratic ones and leads to a deviation of cumulant ratios
from unity. This qualitative feature is indeed seen in the

results obtained for �S
4=�

S
2 and �Q

4 =�
Q
2 shown in Fig. 4,

respectively.
We note that the lightest hadrons, the pions, only con-

tribute to cumulants of electric charge fluctuations. For
these light states the Boltzmann approximation is not
sufficient at temperatures close to Tc. We thus have used
the complete bosonic fugacity sum in the pion sector.
These light hadronic states are also not well taken into
account in current lattice calculations which still are being
performed with light quark masses that are about a factor 2
larger than the physical up and down quark masses.
Moreover, the pion spectrum is distorted in calculations
with staggered fermions due to cutoff effects that explicitly
break flavor symmetry at nonvanishing lattice spacing (see
footnote 3). In the case of electric charge fluctuations we
therefore have analyzed in more detail the contribution of
pions to the fluctuations in a HRG. In Fig. 4 (bottom) we
show results for HRG model calculations with physical
pion masses, with a pion mass of 220 MeV, which corre-
sponds to the lightest pseudoscalar state formed with the
quark mass values currently used in our calculations, and
without the pion sector, i.e. for infinitely heavy pions.
Although the largest part of the electric charge fluctuations
arises from heavier hadrons, the ratio of cumulants is
sensitive to the pion sector. Already pion masses that are
50% larger than the physical value drastically reduce the
contribution of the pion sector. This effect is even more
significant in higher order cumulants. In the 6th order
cumulant half of the fluctuations can be attributed to the
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light pion sector. This is obvious from Fig. 5 where we
show the ratio of 6th and 2nd order cumulants for electric
charge fluctuations. In a HRGmodel the ratio of cumulants
calculated without the light pion sector is a factor 2 smaller
than that calculated with the physical pions included. In the
low temperature regime the lattice calculations are consis-
tent with the former. We thus conclude that lighter quark
masses and calculations closer to the continuum limit are
needed to correctly represent in lattice calculations higher
order cumulants that are sensitive to the light hadron sector.
Irrespective of this we find, however, that the occurrence of
maxima in �X

6 close but below Tc signal the breakdown of

the HRG model close to Tc. The ratio �Q
6 =�

Q
2 starts drop-

ping below Tc and is consistent with zero at Tc.
A similar behavior is found for higher order cumulants

of strangeness fluctuations. We find that for both values of
the lattice cutoff the ratio �S

4=�
S
2 overshoots the HRG

values in the transition region and this also holds true for
the ratio�S

6=�
S
2 evaluated on the coarse 16

3 � 4 lattices. Of
course, this requires confirmation through calculations
with lighter quark masses on lattices closer to the contin-
uum limit. It may suggest that the contribution of even
heavier, experimentally not well-established multiple
strange hadrons, which are not included in the current
version of the HRG model, is of importance in the tran-
sition region. In general we find, however, that the HRG
model gives a fairly good description of cumulants of the
fluctuations of conserved charges up to temperatures close
to the transition temperature.

VI. CORRELATIONS AMONG CONSERVED
CHARGES

The analysis of cumulant ratios presented in the previous
section suggests that for temperatures above 1:5Tc fluctua-
tions of baryon number, strangeness, and electric charge
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FIG. 4 (color online). The ratio of 4th and 2nd order cumulants
of baryon number (top), strangeness (middle), and electric
charge (bottom) fluctuations. In the latter case we show curves
for a HRG model calculated with physical pion masses (upper
curve), pions of mass 220 MeV (middle), and infinitely heavy
pions (lower curve).
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FIG. 5 (color online). The ratio of 6th and 2nd order cumulants
of electric charge fluctuations evaluated on lattices of size
163 � 4.
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agree well with the corresponding fluctuations in a non-
interacting gas of light and strange quarks. In order to
further test whether the relevant quasiparticle degrees of
freedom indeed can be assigned to quarks, the analysis of
correlations between different charges is quite instructive
[10,12] (see Table V). Results for correlations betweenNB,
NS, and NQ are shown in Figs. 6 and 7. For completeness

we also include the HRG prediction. We note that the
model is not expected and, in fact, does not capture the
fluctuations and correlations in the transition region cor-
rectly. However, as shown in Figs. 6 and 7 as well as in
Fig. 4 it reproduces qualitatively the features of fluctua-
tions and correlations. In particular, the drop and rise seen
in our numerical results for BQ and BS correlations, re-
spectively, is seen also in the HRG model calculations. To
put these observations on a more quantitative basis will
require further calculations at lower temperatures.

In Fig. 6 the correlation functions in the numerator
project only on the charged baryon sector of the spectrum.

The ratio �BQ
11 =�

B
2 therefore approaches5 1=2 in the low

temperature limit as the numerator receives contributions
from protons and antiprotons only, while the denominator
also receives contributions from the neutrons. The ratio
�BS
11 =�

B
2 , however, will approach zero in the low tempera-

ture limit as the lightest baryons carry no strangeness!
In Fig. 7 we show the correlation among Q and S

normalized to the quadratic fluctuations of electric charge.
A similar ratio, where strangeness fluctuations have been
used to normalize the Q-S correlations, has been discussed
in [10] and has also been calculated in 2-flavor QCD with a
quenched strange quark sector [12]. We prefer the above
normalization, as it emphasizes the nontrivial correlations
between Q and S that persist in the high temperature phase

of QCD. Unlike �S
2 the charge fluctuations �Q

2 approach

the ideal gas value rapidly above Tc (see Fig. 2). The
deviations from ideal gas behavior seen in Fig. 7 thus are

mainly due to the deviations of �QS
11 from ideal gas behav-

ior. This is shown in the lower part of Fig. 7. Apparently,

the temperature dependence of �QS
11 is very similar to that

of �S
2 .

TABLE V. The data on correlations between different quantum
number fluctuations obtained from calculations on lattices with
temporal extent N� ¼ 4 (upper table) and 6 (lower table),
respectively.

T ½MeV� �BQ
11 �BS

11 �QS
11

176.0 0.006 30(35) �0:0175ð9Þ 0.0374(2)

186.4 0.013 32(40) �0:0564ð14Þ 0.0811(5)

190.8 0.016 70(26) �0:0727ð13Þ 0.0966(9)

195.4 0.020 23(43) �0:0924ð19Þ 0.1133(14)

202.4 0.028 11(32) �0:1369ð14Þ 0.1548(13)

204.8 0.029 59(41) �0:1544ð20Þ 0.1687(15)

209.6 0.030 24(58) �0:2089ð19Þ 0.2244(19)

218.2 0.029 12(17) �0:2395ð8Þ 0.2488(9)

253.7 0.016 25(12) �0:2988ð16Þ 0.3045(6)

305.2 0.007 65(6) �0:3245ð11Þ 0.3303(5)

444.4 0.002 72(1) �0:3289ð4Þ 0.3312(3)

T ½MeV� �BQ
11 �BS

11 �QS
11

173.8 0.008 30(88) �0:0228ð23Þ 0.0469(8)

179.6 0.010 40(120) �0:0373ð26Þ 0.0635(14)

185.6 0.016 11(74) �0:0606ð18Þ 0.0868(18)

195.0 0.024 06(49) �0:1119ð33Þ 0.1312(31)

201.3 0.026 97(72) �0:1549ð24Þ 0.1739(18)

204.6 0.026 41(72) �0:1771ð31Þ 0.1930(13)

211.1 0.023 12(67) �0:2066ð25Þ 0.2208(16)

224.3 0.023 09(90) �0:2332ð25Þ 0.2444(20)

237.7 0.015 29(66) �0:2695ð23Þ 0.2812(10)

278.4 0.005 29(77) �0:3126ð10Þ 0.3157(8)

362.9 0.001 45(63) �0:3325ð8Þ 0.3357(10)

415.8 0.0012 2(34) �0:3338ð13Þ 0.3353(12)
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FIG. 6 (color online). Correlations of electric charge and
strangeness with baryon number normalized to quadratic fluctu-
ations of baryon number.

5We ignore here small mass differences of charged and neutral
hadrons.
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VII. CONCLUSIONS

We have analyzed the fluctuations of baryon number,
electric charge, and strangeness in finite temperature QCD
at vanishing chemical potential. A comparison of calcula-
tions performed with Oða2Þ improved staggered fermions
for two different values of the lattice cutoff shows that
these effects are generally small; cutoff effects as well as
the dependence of observables on the light quark masses
become, however, more severe for higher order cumulants.

We find fluctuations and correlations of conserved
charges are well described by an ideal, massless quark
gas already for temperatures of about (1.5–1.7) times the
transition temperature. Deviations from ideal gas behavior
seem to be mainly induced by the strange quark sector for
which the quadratic quark number fluctuations approach
the ideal gas limit more slowly. This cannot only be
explained by the quark mass dependence of an ideal gas
but seems to reflect a significant quark mass dependence of
the interaction at high temperature.

At low temperature we find that fluctuations and corre-
lations of conserved charges are reasonably well described

by a hadron resonance gas up to temperatures close to the
transition temperature. Higher order cumulants, however,
signal that the resonance gas prescription has to break
down at temperature values close but below Tc.
The current analysis has been performed with light

quarks that are one-tenth of the strange quark mass. We
have shown that higher order cumulant ratios, like for

instance �Q
6 =�

Q
2 , become quite sensitive to the pseudosca-

lar Goldstone mass. In numerical calculations with stag-
gered fermions this also means that results become
sensitive to a correct representation of the entire
Goldstone multiplet. Calculations with smaller quark
masses closer to the continuum limit will thus be needed
in the future to correctly resolve these higher order cumu-
lants, which will give deeper insight into the range of
applicability of the resonance gas model at low tempera-
ture and the nonperturbative features of the quark-gluon
plasma above but close to Tc.
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APPENDIX: QUARK MASS DEPENDENCE
OF CUTOFF EFFECTS

Cutoff effects arising from the introduction of a finite
lattice spacing and, in particular, their dependence on the
discretization scheme have been extensively discussed in
the ideal gas limit. However, standard as well as Oða2Þ
improved staggered fermion formulations have usually
been analyzed in the massless limit, which is appropriate
for the light quark sector of QCD. For the strange quark
sector nonzero mass effects may play a role, in particular,
close to the QCD transition temperature which is only
about twice as large as the strange quark mass. We present
here an analysis of the quark mass dependence of cutoff
effects in the ideal gas limit.
The quark number susceptibilities are obtained as the

second derivative of the pressure, p=T4, with respect to the
chemical potential normalized to the temperature, �=T.
An analysis of the cutoff and quark mass dependence of
�u;s
2 thus can follow closely the corresponding analysis
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FIG. 7 (color online). Correlations of electric charge and
strangeness (lower part) and the same quantity normalized to
quadratic fluctuations of electric charge (upper part).
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performed for the pressure6 in the massless limit [32]. On a
lattice of size N3

�N� this is given by

p

T4 ¼ 2

�
N�

N�

�
3X
p;p4

lnðD2 þm2Þ; (A1)

with D2 ¼ P
4
�¼1 D

2
� where

D1 ¼ c10 sinðp1Þ þ c30 sinð3p1Þ þ 2c12 sinðp1Þ
� ½cosð2p2Þ þ cosð2p3Þ þ cosð2p4Þ� (A2)

and D2, D3, and D4 are obtained by cyclic permutation of
the pis. For the standard (naive) discretization scheme, one
has c10 ¼ 1, c30 ¼ c12 ¼ 0; the discretization scheme used
in the p4 action corresponds to c10 ¼ 3=4, c30 ¼ 0, c12 ¼
1=24 and for the Naik action it is c10 ¼ 9=8 and c30 ¼
�1=24 and c12 ¼ 0.

We evaluate here quark number susceptibilities as a
function of quark mass on lattices with finite temporal
extent N� and infinite spatial volume for the standard
(naive) staggered fermion discretization and the improved
(p4) discretization scheme. For vanishing quark mass,
results on the cutoff dependence of quark number suscep-
tibilities in the ideal gas limit have also been presented in
Ref. [33,34]. There also some results for �4 and �6 can be
found.

Starting with the expressions for p=T4 at nonzero
chemical potential (p4 ! p4 � i�) and taking two deriva-
tives with respect to �=T one finds in the standard scheme
for � � 0,

�2ðm;N�Þ ¼ 2

�
N�

N�

�
3X
p;p4

ðA� Bþ ABÞ;

A ¼ 2sin2ðp4Þ
m2 þP

4
i¼1 sin

2ðpiÞ
; B ¼ 2cos2ðp4Þ

m2 þP
4
i¼1 sin

2ðpiÞ
:

(A3)

The corresponding expressions for the p4 and Naik actions
are somewhat more complicated but can be derived
straightforwardly.

In the continuum limit the quark number susceptibility is
given by,

�2ðm=T;1Þ ¼ 6

T3�2

Z 1

0
dk

k2e�E=T

ð1þ e�E=TÞ2 ; (A4)

with E2 ¼ k2 þm2. We note that for small values of the
quark mass �2 is quadratic in the mass,

�2ðm=T;1Þ ¼ 1� 3

2�2

�
m

T

�
2 þOððm=TÞ4Þ: (A5)

We have evaluated �2ðm;N�Þ for various values of N�

and fixed quark mass as well as for fixed N� varying the
quark mass. The results for the naive and p4 actions are
shown in Fig. 8.
As expected, the cutoff dependence of �2 at nonzero

values of the quark mass closely follow the pattern known
from the analysis of the pressure at finite N� andm=T ¼ 0.
While the standard discretization scheme shows large de-
viations from the continuum result even for N� � 10, the
results for the p4 action come close to the continuum result
already for N� ¼ 6. This also is true for the ratio
�2ðm;N�Þ=�2ð0; N�Þ. Although in this ratio a large part
of the cutoff dependence cancels, the quark mass depen-
dent corrections remain.
We note that for finite N� the quark mass dependence of

�2ðm;N�Þ=�2ð0; N�Þ in the naive discretization scheme is
weaker than in the continuum limit. This is qualitatively
different from the differences seen in the lower part of
Fig. 1 between the standard and improved discretization
schemes.
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FIG. 8 (color online). Cutoff dependence of quark number
fluctuations in the infinite temperature, ideal gas limit. Shown
are results for staggered fermions in the standard (naive), p4 and
Naik discretization scheme.

6Note that at vanishing chemical potential the pressure is
simply related to the free energy density, p ¼ �f.
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