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For SUð2Þ lattice gauge theory, we study numerically the infrared behavior of the Landau-gauge ghost

and gluon propagators with a special accent on the Gribov copy dependence. Applying a very efficient

gauge-fixing procedure and generating up to 80 gauge copies, we find that the Gribov copy effect for both

propagators is essential in the infrared. In particular, our best copy dressing function of the ghost

propagator approaches a plateau in the infrared, while for the random first copy it continues to grow.

Our best copy zero-momentum gluon propagator shows a tendency to decrease with growing lattice size,

which excludes singular solutions. Our results seem compatible with the so-called decoupling solution

with a nonsingular gluon propagator. However, we do not yet consider the Gribov copy problem to be

resolved.
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I. INTRODUCTION

The lattice study of the gluon and ghost propagators in
Landau gauge has a long history, beginning with the work
of Mandula and Ogilvie [1] (for a review see, e.g., [2,3] and
references therein). One of the main goals of such studies
was to clarify the infrared (IR) asymptotics of the propa-
gators and of the running coupling which can be deter-
mined through these propagators. The hope was always
that ab-initio lattice results would give support to or dis-
criminate between various theoretical predictions for the
IR behavior obtained with continuum methods, in particu-
lar, within the Dyson-Schwinger (DS) approach. One pre-
vious assumption about confinement was definitely
overturned: lattice results showed that the gluon propagator
has no 1=p4 IR singularity.

At the same time, it has been found that the lattice
approach has its own difficulties when applied to such
studies. One of them is that, to reach the small momenta
that are necessary to study the IR limit, one has to use huge
lattices, which makes the numerical simulations formi-
dable. Another less apparent, but not less difficult problem
is the existence of Gribov copies. Although for many years
it was believed that the effect of Gribov copies on both
gluon and ghost propagators was weak and could be con-
sidered just as a noise in the scaling region [2,4], it has been
found, first for the ghost propagator [5] and quite recently
for the gluon propagator [6], that these effects are in fact
quite strong. The presence of these effects makes the task
of lattice computation of the field propagators in the IR
region even more difficult.

These difficulties of the lattice approach have made it
impossible so far to obtain results which could confirm or
disprove the existent confinement scenarios proposed by
Gribov [7] and Zwanziger [8] on one hand, and by Kugo
and Ojima [9,10] on the other. The Gribov-Zwanziger
scenario predicts that the gluon propagator is IR vanishing,
while both approaches point to an IR divergent ghost
dressing function.
In recent years the interest in the lattice results for field

propagators in the IR region has been revived. This interest
was also stimulated by the practical progress achieved over
the years within the DS approach, as pursued by Alkofer,
von Smekal, and others (for an intermediate review see
[11]), and more recently with the help of functional renor-
malization group (FRG) equations [12,13]. Infrared QCD
has also been investigated using the stochastic quantization
method [14,15], as well as with effective actions [16,17].
In this paper we continue our lattice study of the influ-

ence of Gribov copies on the (minimal) Landau-gauge
SUð2Þ gluon and ghost propagators in the IR region by
applying global Zð2Þ flip transformations in combination
with an effective optimization algorithm, the so-called
simulated annealing (SA). The flip transformation was
introduced in [6]. Its influence on the gluon propagator
was thoroughly studied later [18]. The Zð2Þ flips—equiva-
lent to nonperiodic Zð2Þ gauge transformations—were
shown to cause rather strong effects in the IR behavior of
the gluon propagator. In [18] high statistics computations
of the gluon propagator were made for lattice sizes varying
from 1.8 fm to 6.5 fm at one fixed bare lattice coupling
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� ¼ 4=g20 ¼ 2:20. The latter was chosen in order to reach

reasonably large physical volumes (and thus small mo-
menta) on comparatively moderate lattice sizes up to 324.
It turned out that due to better gauge fixing, finite-volume
effects, which are usually strong at minimal momenta,
became largely suppressed. Furthermore, it has been ob-
served that at momenta p� 270 MeV the gluon propaga-
tor seems to have a turning point, leaving open the
possibility for a vanishing gluon propagator in the IR limit
p2 ! 0. Here we continue this investigation, enlarging the
lattice up to 404 at the same � value corresponding to a
volume of ð8:4 fmÞ4 and extending the studies to the ghost
propagator, too. We systematically search for Gribov cop-
ies by combining all 24 ¼ 16 Zð2Þ Polyakov loop sectors
for all Euclidean directions into one gauge orbit.

The main motivation for this computation is triggered by
the puzzle posed by the above-mentioned continuum ap-
proaches. Various kinds of solutions with a quite different
IR behavior of the gluon and ghost propagators have been
reported by several groups. The powerlike solution with a
relation between gluon �D and ghost �G > 0 exponents
�D ¼ �2�G was recently called a scaling solution [19].
This solution [13,14,20–23] allows the gluon propagator to
vanish and the ghost dressing function to diverge in the IR
limit in one-to-one correspondence with both the Gribov-
Zwanziger scenario [7,24] and the Kugo-Ojima criterion
[9,10] for confinement. On the contrary, the so-called
decoupling solutions [17,25–27] provide an IR finite or
weakly divergent gluon propagator and a finite ghost dress-
ing function, leading to a running coupling vanishing in the
infrared. For recent discussions of the present status of
research see, e.g., [19] and further references therein.1

The lattice approach based on the first-principles path
integral quantization should be able to resolve the issue.

Results for SUð2Þ [28] as well as for SUð3Þ [29] obtained
on very large lattices and by employing purely periodic
gauge transformations seem to be in conflict with the
scaling solution and are compatible with the decoupling
solution. It has recently been pointed out in [30] that this
might not be in conflict with the (appropriately modified)
Gribov-Zwanziger scenario.

Here, by enlarging the gauge orbits with nonperiodic
Zð2Þ flip gauge transformations and employing the SA
algorithm, we shall come closer to the global extremum
of the Landau-gauge functional, i.e. closer to the funda-
mental modular region.2

We find the Gribov copy dependence to be very strong.
Still, our results look rather like an argument in favor of the
decoupling solution with a nonsingular gluon propagator.
However, we do not yet consider the problem of Gribov

copies and, correspondingly, the infrared asymptotics of
the gluon propagator to be resolved.
In Sec. II we introduce the observables to be computed.

In Sec. III some details of the gauge-fixing method and of
the simulation are given, whereas in Sec. IV we present our
results. Before coming to the conclusions in Sec. VI, we
will discuss the dependence of our results on the number of
gauge copies in Sec. V.

II. GLUON AND GHOST PROPAGATORS: THE
DEFINITIONS

For the Monte Carlo generation of ensembles of non-
gauge-fixed gauge field configurations, we use the standard
Wilson action, which for the case of an SUð2Þ gauge group
is written

S ¼ �
X
x

X
�>�

�
1� 1

2
TrðUx�Uxþ�;�U

y
xþ�;�U

y
x�Þ

�
;

� ¼ 4=g20:

(1)

Here g0 is a bare coupling constant and Ux� 2 SUð2Þ
are the link variables. The latter transform under gauge
transformations gx as follows:

Ux��
g
Ug

x� ¼ gyxUx�gxþ�; gx 2 SUð2Þ: (2)

The standard definition [1] of the dimensionless lattice
gauge vector potential Axþ�̂=2;� is

A xþ�̂=2;� ¼ 1

2i
ðUx� �Uy

x�Þ � Aa
xþ�̂=2;�

�a

2
: (3)

The reader should keep in mind that the definition is not
unique, which can have an essential influence on the
propagator results in the IR region, where the continuum
limit is hard to control.
In lattice gauge theory the usual choice for the Landau-

gauge condition is [1]

ð@AÞx ¼
X4
�¼1

ðAxþ�̂=2;� �Ax��̂=2;�Þ ¼ 0; (4)

which is equivalent to finding an extremum of the gauge
functional

FUðgÞ ¼ 1

4V

X
x�

1

2
TrUg

x�; (5)

where V ¼ L4 is the lattice volume, with respect to gauge
transformations gx. After replacing U ) Ug at the extre-
mum, the gauge condition (4) is satisfied. The manifold
consisting of Gribov copies providing local maxima of the
functional (5) and a semipositive Faddeev-Popov operator
(see below) is called Gribov region �, while that of the
global maxima is called the fundamental modular domain
� � �. Our gauge-fixing procedure is designed to ap-
proach this domain.

1It is worthwhile to note that the DS approach, introduced
originally as a method for resummation of the perturbative
series, is not sensible for different gauge copies.

2Alternative algorithms to reach the fundamental modular
region have been discussed in [31,32].
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The gluon propagator D and its dressing function Z are
then defined (for p � 0) by

Dab
��ðpÞ ¼ a2

g20
h ~Aa

�ðkÞ ~Ab
�ð�kÞi ¼

�
��� �

p�p�

p2

�
�abDðpÞ;

ZðpÞ ¼ DðpÞp2; (6)

where ~AðkÞ represents the Fourier transform of the gauge
potentials defined by Eq. (3) after having fixed the gauge,
and a is the lattice spacing. The momentum p is given by
p� ¼ ð2=aÞ sinð�k�=LÞ, k� 2 ð�L=2; L=2�. For p � 0,

one gets, from Eq. (6),

DðpÞ ¼ 1

9

X3
a¼1

X4
�¼1

Daa
��ðpÞ; (7)

whereas at p ¼ 0 the ‘‘zero-momentum propagator’’ Dð0Þ
is defined as

Dð0Þ ¼ 1

12

X3
a¼1

X4
�¼1

Daa
��ðp ¼ 0Þ: (8)

The lattice expression for the Landau-gauge Faddeev-
Popov operator Mab ¼ �@�D

ab
� (where Dab

� denotes the

covariant derivative in the adjoint representation) for
SUð2Þ is given by

Mab
xy ½U� ¼ X

�

fð �Sabx� þ �Sabx��̂;�Þ�x;y � ð �Sabx� � �Aab
x�Þ�y;xþ�̂

� ð �Sabx��̂;� þ �Aab
x��̂;�Þ�y;x��̂g (9)

where

�S ab
x� ¼ �ab1

2 TrUx�; �Aab
x� ¼ �1

2�
abcAc

xþ�̂=2;�: (10)

From the expression (10) it follows that a trivial zero
eigenvalue is always present, such that at the Gribov
horizon @� the first nontrivial zero eigenvalue appears.
Thus, if the Landau gauge is properly implemented, M½U�
is a symmetric and semipositive matrix.

The ghost propagator Gabðx; yÞ is defined as [8,33]

Gabðx; yÞ ¼ �abGðx� yÞ � 1

a2
hðM�1Þabxy ½U�i: (11)

Note that the ghost propagator becomes translational in-
variant (i.e., dependent only on x� y) and diagonal in
color space only in the result of averaging over the en-
semble of gauge-fixed representatives of the original
Monte Carlo gauge configurations. The ghost propagator
GðpÞ in momentum space and its dressing function JðpÞ
can be written as

GðpÞ ¼ a2

3V

X
x;y;a

e�ð2�i=LÞk�ðx�yÞhðM�1Þaaxy ½U�i;

JðpÞ ¼ GðpÞp2;

(12)

where the coefficient 1
3V is taken for a full normalization,

including the indicated color average over a ¼ 1, 2, 3. We
mentioned above that M½U� is symmetric and semiposi-
tive. In particular, it is positive-definite in the subspace
orthogonal to constant vectors. The latter are zero modes of
M½U�. Therefore, it can be inverted by using a conjugate-
gradient method, provided that both the source c aðyÞ and
the initial guess of the solution are orthogonal to zero
modes. As a source, we adopted the one proposed in [4],

c aðyÞ ¼ �aceð2�i=LÞk�y; k � ð0; 0; 0; 0Þ; (13)

for which the condition
P

yc
aðyÞ ¼ 0 is automatically

imposed. Choosing the source in this way allows one to
save computer time since, instead of the summation over x
and y in Eq. (12), only the scalar product ofM�1c with the
source c itself has to be evaluated. In general, the gauge-
fixed configurations can be used in a more efficient way if
the inversion of M is done on sources for c ¼ 1, 2, 3 such
that the (adjoint) color averaging, formally required in Eq.
(12), will be explicitly performed.

III. SIMULATION DETAILS

We restrict ourselves to Monte Carlo simulations at � ¼
4=g20 ¼ 2:20 and use lattice field configurations for which

the gluon propagator has already been computed in [18].
Here we add the computation of the ghost propagator and
new data obtained on the larger symmetric lattice with a
linear size of L ¼ 40. For the latter case we generated an
ensemble of 430 independent Monte Carlo lattice field
configurations. Consecutive configurations (considered as
independent) were separated by 100 sweeps, each sweep
comprised of one local heatbath update followed by L=2
microcanonical updates. In Table I we provide the full
information for the field ensembles used throughout this
paper.
For gauge fixing we employ the Zð2Þ flip operation as

discussed in [18]. This consists in flipping all link variables
Ux� attached and orthogonal to a 3d plane by multiplying

them by �1. Such global flips are equivalent to nonperi-
odic gauge transformations and represent an exact symme-
try of the pure gauge action considered here. The Polyakov
loops in the direction of the chosen links and averaged over

TABLE I. Lattice sizes, statistics, and number of gauge copies
used throughout this paper. The second (third) column gives the
number of configurations used to compute the gluon (ghost)
propagators.

L Number of gl. prop. Number of gh. prop. Ncopy

8 200 80

12 200 80

16 240 60 24

24 346 157 24

32 247 118 40

40 430 64 80
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the 3d plane obviously change their sign. Therefore, the
flip operations combine, for each lattice field configuration,
the 24 distinct gauge orbits (or Polyakov loop sectors) of
strictly periodic gauge transformations into one larger
gauge orbit. Let us note that the fundamental modular
regions for the two procedures, i.e. with and without flips,
might be different, at least for finite volume.

The second ingredient of our gauge-fixing procedure is
the consequent use of the SA method, which has been
found even computationally more efficient than the use
of standard overrelaxation (OR).

The SA algorithm generates a field of gauge transfor-
mations gðxÞ by Monte Carlo iterations with a statistical
weight proportional to expð4VFU½g�=TÞ. The ‘‘tempera-
ture’’ T is a technical parameter which is gradually de-
creased in order to maximize the gauge functional FU½g�.
In the beginning, T has to be chosen sufficiently large in
order to allow traversing the configuration space of gðxÞ
fields in large steps. It has been checked that an initial value
Tinit ¼ 1:5 is high enough. After each quasiequilibrium
sweep, including both heatbath and microcanonical up-
dates, T has been decreased with equal step size until
gðxÞ is uniquely captured in one basin of attraction. The
criterion of success is that during the consecutively applied
OR, the violation of transversality decreases in a more or
less monotonous manner for almost all applications of the
compound algorithm. This condition is reasonably satisfied
for a final lower temperature value of Tfinal ¼ 0:01 [34].
The number of temperature steps was chosen to be 1000 for
the smaller lattice sizes and has been increased to 2000 for
the lattice size 404 included here. The finalizing OR algo-
rithm requires a number of iterations, varying from Oð102Þ
to Oð103Þ. In what follows we will call the combined
algorithm employing SA (with finalizing OR) and Zð2Þ
flips the ‘‘FSA’’ algorithm.

Some details of the gauge-fixing procedure compared to
our previous work [18] have been changed. For every
configuration the Landau gauge was fixed Ncopy ¼ 80

times (5 gauge copies for every flip sector), each time
starting from a random gauge transformation of the mother
configuration, in this way obtaining Ncopy Landau-gauge-

fixed copies. In [18], where smaller lattices were simu-
lated, Ncopy was generally smaller. Only on very small

lattices (124 and 84), where producing copies was substan-
tially cheaper, did we also produce 80 copies.

In order to reduce the computational effort in the final-
izing OR sweeps on the 404 lattice, we applied the follow-
ing trick. We noticed that after a comparably small number
of OR sweeps, definitely before the convergence criterion
is reached, one can already decide which copy has a higher
maximum of the gauge functional; i.e. one can stop the OR
procedure when the change in the functional becomes
comparably small and further sweeps will not change the
order of copies according to the value of the maximized
functional. Note that the functional differed from its final

value only in the eighth digit, and we used these values
below in Fig. 7. After having selected the ‘‘best copy’’ (bc),
the OR gauge fixing for this copy has to be finalized. To be
precise, the randomly chosen ‘‘first copy’’ (fc) was also
completely gauge fixed, just for the purpose of comparison.
For the finalizing OR we used the standard Los Alamos-

type overrelaxation with the parameter! ¼ 1:7. For the bc
and the fc, the iterations are stopped when the following
transversality condition is satisfied:

max
x;a

��������
X4
�¼1

ðAa
xþ�̂=2;� � Aa

x��̂=2;�Þ
��������<�lor: (14)

We used the value �lor ¼ 10�7 [i.e. 10�14 for ð@AÞ2].

IV. RESULTS

In this section we present the data for the gluon and
ghost propagators. In Fig. 1 we show the new data for the
gluon propagator DðpÞ in physical units, obtained on the
404 lattice at� ¼ 2:20. We compare the bc FSA result with
the fc SA result (the latter without flips). We clearly see the
Gribov copy effect for the lowest accessible momenta
moving the data points to lower values for better copies
(with the larger gauge functional). The different points at
p� 300 MeV belong to different realizations of p2 and
seem to indicate some violation of the hypercubic
symmetry.
In Fig. 2 we present these new data together with the

ones obtained on smaller lattice sizes, always for the bc
FSA case.
We see that the data are nicely consistent with each other

and indicate a turnover to decreasing values towards van-
ishing momenta. A smooth extrapolation to Dð0Þ becomes
visible. But still, there is no indication for a vanishing
gluon propagator at zero momentum for increasing vol-
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FIG. 1. The momentum dependence and Gribov copy sensi-
tivity of the gluon propagator DðpÞ in the IR region on the 404

lattice. Filled symbols correspond to the bc FSA ensemble, open
symbols to the fc SA ensemble.

BORNYAKOV, MITRJUSHKIN, AND MÜLLER-PREUSSKER PHYSICAL REVIEW D 79, 074504 (2009)

074504-4



ume. This is demonstrated in Fig. 3, where we show the
dependence of the zero-momentum propagator Dð0Þ as a
function of the inverse linear lattice size 1=L. This behav-
ior demonstrates a (slight) tendency to decrease, and hardly
seems consistent with the Dð0Þ ¼ 0 limit. Rather, one
could consider it as an argument in favor of the decoupling
solution, with a finite gluon propagator in the infrared.
However, one still cannot exclude that there are even
more efficient gauge-fixing methods, superior to the one
we use, which could make this decrease more drastic.

Using Ward-Slavnov-Taylor identities the authors of
[25,27,35] came to the conclusion that the gluon propaga-
tor should be IR divergent; however, this divergence might
be so weak that it could hardly be resolved on the lattice.
We believe that our results for Dð0Þ are in clear disagree-
ment with even a weak divergence.

Analogously to Fig. 1, in Fig. 4 we show the ghost
dressing function JðpÞ obtained on the 404 lattice. There

is a very clear Gribov copy effect changing JðpÞ even
qualitatively. Whereas the fc SA results seem to support
a weakly singular behavior, the bc FSA data provide a
plateau pointing to a finite IR value of the ghost dressing
function, i.e. a tree-level behavior of the ghost propagator.
Our data indicate that the plateau starts at p & 200 MeV.
In Fig. 5 the ghost dressing function is shown for lattice

sizes from 164 to 404. We always show bc FSA results,
except for 244, where we also compare with fc data ob-
tained with the conventional OR algorithm. The latter show
an even stronger IR singular behavior than those data
obtained with the fc SA algorithm.
Thus, increasing the lattice size up to 404 and applying

the FSA procedure, we observe a deviation from the weak
singular behavior towards a plateau consistent with the
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  G
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FIG. 2 (color online). The momentum dependence of the gluon
propagator DðpÞ on various lattice sizes. The bc results are
shown throughout.
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FIG. 3. The dependence of Dð0Þ on the lattice size. The bc
FSA results are compared with the fc OR results (without flips).
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FIG. 4. The momentum dependence and Gribov copy sensi-
tivity of the ghost dressing function JðpÞ ¼ p2 �GðpÞ in the IR
region on the 404 lattice. Filled symbols correspond to the bc
FSA ensemble, open symbols to the fc SA ensemble.
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FIG. 5. The momentum dependence of the ghost dressing
function p2 �GðpÞ on the various lattices. For comparison,
results obtained with the OR algorithm on 242 lattices are also
shown.
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decoupling solutions and in contradiction with the Kugo-
Ojima confinement criterion.

In Fig. 6, for the bc FSA results obtained on lattice sizes
from 164 up to 404, we show the behavior of the running
coupling related to the ghost-ghost-gluon vertex,

	sðpÞ ¼ g20
4�

J2ðpÞZðpÞ; (15)

under the assumption that the vertex function is constant,
as seen in perturbation theory [36] and also approximately
in lattice simulations [37,38].

The decrease towards p2 ¼ 0 is obvious. With the im-
proved gauge fixing the effect is even strengthened, such
that an approach to an IR fixed point, as expected from the
scaling DS and FRG solutions, seems to be excluded.

V. DISCUSSION: THE QUALITY OF THE GAUGE-
FIXING PROCEDURE

In most of our simulations we have generated up to
Ncopy ¼ 80 for every thermalized configuration (up to 5

gauge copies for every flip sector). A very reasonable
question is whether our results will change if we further
increase the number of gauge copies, Ncopy. In Fig. 7 we

show the dependence of the average bc functional hFbci�
ðkcopyÞ:

hFbciðkcopyÞ ¼ 1

n

Xn
FbcðkcopyÞ; kcopy ¼ 1; . . . ; Ncopy;

(16)

where for every configuration FbcðkcopyÞ is the ‘‘best’’ (i.e.,
maximal) value of the functional F found after employing
kcopy copies, and n denotes the number of configurations.

One can see that this average still has a tendency to
grow, which could mean that one would need even more
copies to reach the global maxima. To understand it better,
we generated 25 configurations on the 404 lattice with
Ncopy ¼ 320 (i.e., 20 gauge copies per sector).

In Fig. 8 we show the difference

�FðkcopyÞ ¼ FbcðkcopyÞ � Fbcð80Þ (17)

at kcopy ¼ 160, 240, and 320 for these configurations.

For the majority of configurations this difference is
rather small. However, for about 20% of configurations
the difference is of the order of 10�5, which could still
mean a rather strong influence on the values of the
propagators.
To demonstrate that the change in the functional of the

order of 10�5 indeed might give rise to a substantial change
in the propagators, we plot in Fig. 9 the gluon propagator
computed on a 324 lattice at two momenta, p ¼ 0 and p ¼
pmin, as a function of the difference Fbcð32Þ � FbcðkcopyÞ
for kcopy ¼ 1; 2; . . . ; 18. One can see that the change in the
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FIG. 6. The momentum dependence of the running coupling in
the infrared region.
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functional Fbc in the fifth digit brings quite a substantial
change in the propagator at both momenta.

These observations show that there might be another
even more efficient gauge-fixing method which will be
more successful in the search of the global maximum of
the functional F (as FSA is superior with respect to stan-
dard OR).

Therefore, we cannot draw a final conclusion before
spending much more effort on the optimization of the
gauge-fixing procedure. However, we expect that both
the gluon propagator and the ghost propagator will take
even lower values in the infrared, when approaching the
fundamental modular region.

VI. CONCLUSIONS

In this work we studied numerically the dependence of
the Landau-gauge gluon and ghost propagators, as well as
of the running coupling constant, in pure gauge SUð2Þ
lattice theory in the infrared region. Special emphasis has
been made on the study of the dependence of these ‘‘ob-
servables’’ on the choice of Gribov copies.

The simulations have been performed using the standard
Wilson action at � ¼ 2:20 for linear lattice sizes up to L ¼
40. For gauge fixing, gauge orbits enlarged by Zð2Þ flip
operations were considered with up to 5 gauge copies in
every flip sector (in total, up to 80 gauge copies). For 25
thermalized configurations we produced 20 copies per
sector (in total, 320 gauge copies for every configuration).
The maximization of the gauge functional was achieved by
the simulated annealing method which was always com-
bined with consecutive overrelaxation (‘‘FSA’’ algorithm).

Our findings can be summarized as follows.
(1) For the gluon propagator our new data for the 404

lattice agree with data on the smaller lattices (up to
324). We confirm our conclusion [18] about the
appearance of the maximum at a nonzero value of

the momentum p2 (this maximum was absent for
lattice sizes � 244).
The zero-momentum gluon propagator Dð0Þ has a
tendency to decrease with growing lattice size L.
This observation is in clear contradiction with the
infrared divergent gluon propagator obtained on the
basis of Ward-Slavnov-Taylor identities.
For the time being, this behavior hardly seems con-
sistent with a Dð0Þ ¼ 0 limit at infinite L, and could
be considered rather like an argument in favor of the
decoupling solution with a nonsingular gluon propa-
gator. However, we do not yet consider the problem
of the infrared asymptotics of the gluon propagator
resolved (see below).

(2) We calculated the ghost propagator for lattices up to
404. Our bc dressing function JðpÞ of the ghost
propagator demonstrates the approach to a plateau
in the infrared, while the fc dressing function still
grows (as in earlier calculations; see, e.g.,
[3,29,39]).
This is a clear indication of the lack of IR enhance-
ment of the ghost propagator. This plateau behavior
is in clear contradiction with the Kugo-Ojima con-
finement criterion. The fate of this confinement
criterion still needs further clarification.

(3) We have found that the effect of Gribov copies is
essential in the infrared range p < 1 GeV for both
propagators and as a consequence for the running
coupling. Therefore, the quality of the gauge-fixing
procedure in the study of gauge dependent observ-
ables remains important.

Indeed, the FSA method provides systematically higher
values of the functional FUðgÞ as compared to the standard
OR procedure for the same thermalized configurations.
This means that, in practice, OR needs many more random
copies to explore (correspondingly, much more CPU time
to spend) to find larger values of FUðgÞ as compared to
FSA. This effect becomes stronger with increasing volume.
However, we cannot say that we have reached the funda-
mental modular region when fixing the Landau gauge on
larger lattices. One cannot exclude other methods that may
be superior to our FSA algorithm. We believe that the
Gribov problem deserves even more thorough study.
Perhaps there are alternative ways to resolve the prob-

lem of the IR asymptotics of the propagators. We have to
be aware that the lattice method, as it is normally used, still
has some uncertainties. First of all, the continuum limit in
the infrared range is hard to control and it depends on the
proper choice of the gauge potential Ax�. Moreover, the

infrared limit is sensitive to the boundary conditions,
which normally are taken to be periodic. Incomplete gauge
fixing, in combination with these choices, seems to un-
avoidably lead to zero-momentum modes that are not
sufficiently suppressed even in the thermodynamic limit.
That the presence of zero-momentum modes can spoil the
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behavior of gauge-variant propagators is well known from
the example of 4d compact Uð1Þ lattice gauge theory [40–
42]. Whether a BRST conformal lattice reformulation will
solve the issue, as proposed in [43,44], remains to be seen.
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