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In this report we describe both I ¼ 2 and I ¼ 0 �� scattering for twisted mass lattice QCD utilizing

twisted mass chiral perturbation theory at next-to-leading order. Focusing on the lattice spacing (b)

corrections, we demonstrate that in the exotic I ¼ 2, I3 ¼ �2 channels (����), the leading scaling

violations of �� scattering at maximal twist begin at Oðm2
�b

2Þ. This is not the case in any other isospin

channel, for which the scaling violations at maximal twist begin at Oðb2Þ. Furthermore, we demonstrate

the existence of a mixing between the I ¼ 2, I3 ¼ 0 and I ¼ 0 scattering channels due to the breaking of

isospin symmetry by the twisted mass term. The mixing term, although formally next-to-leading order, is

relatively large, thus necessitating the use of a coupled channel analysis. We argue that this mixing likely

renders the computation of the I ¼ 0 channel impractical with twisted mass lattice QCD.

DOI: 10.1103/PhysRevD.79.074503 PACS numbers: 12.38.Gc

I. INTRODUCTION

The last few years have seen a growth in the computa-
tion of hadron interactions with lattice QCD [1], with
dynamical calculations of two-meson systems [2–6], two-
baryon systems [7,8] and systems of up to 12 pions [9,10]
and kaons [11]. Further, lattice field theory methods are
now being applied to the low-energy effective field theory
of multinucleon interactions [12–19], for which there ex-
ists a nice review [20]. The dynamical lattice QCD calcu-
lations of hadron interactions to date have either been
performed with Wilson fermions or a mixed lattice action
[21,22] of domain-wall valence fermions [23–25] and the
Asqtad improved [26,27] rooted staggered MILC configu-
rations [28,29]. Twisted mass lattice QCD [30] has recently
emerged as a viable fermion discretization method for
computing gauge configurations with two flavors of light
quarks (up and down) [31–33] and hopeful prospects of
2þ 1þ 1 (up, down, strange and charm) flavors of dy-
namical sea fermions [34] in the chiral regime. It is there-
fore only a matter of time before hadron interactions will
be computed with the twisted mass fermion discretization
method.

The first multihadron system to be explored with twisted
mass lattice QCD will most likely be that of two pions. The
two-pion system is numerically the simplest as well as
theoretically the best understood. In fact, the scattering
of two pions at low energies was uniquely predicted at
leading order (LO) in chiral perturbation theory (�PT) by
Weinberg in 1966 [35]. The subleading orders in the chiral
expansion give rise to perturbative corrections to the LO
predictions and have been worked out to one loop, or next-

to-leading order (NLO) by Gasser and Leutwyler [36] and
also to two loops, or next-to-next-to-leading order (NNLO)
[37–39]. Each new order introduces operators with coef-
ficients not constrained by chiral symmetry, known as low-
energy constants (LECs). To have predictive power, these
LECs must be determined either by comparison with ex-
periment or lattice QCD calculational results. A compari-
son with lattice QCD can introduce additional
complications as the calculations are performed at finite
lattice spacing in a finite volume. Modifications to the
infrared and ultraviolet behavior of the theory can be
incorporated into chiral perturbation theory. For suffi-
ciently large but finite lattice volumes, the operator struc-
ture and power counting of the effective theory remain
valid with exponentially small corrections to matrix ele-
ments [40]. Lattice discretization effects can also be in-
corporated into the chiral Lagrangian through a two-step
process first detailed in Ref. [41]. One first constructs the
effective continuum Symanzik Lagrangian [42,43] for a
given lattice action. One then builds the low-energy chiral
Lagrangian from the Symanzik theory, giving rise to new
unphysical operators with their own LECs. These new
operators capture the discretization effects for a given
lattice action.
In this report, we briefly review the construction of the

twisted mass chiral Lagrangian in Sec. II. We then deter-
mine the lattice spacing (b) corrections to low-energy ��
scattering specific to the twisted mass lattice action. We
work through Oðb2Þ �Oðbm2

�Þ.

II. TWISTED MASS LATTICE QCD AND THE
CONTINUUM EFFECTIVE ACTION

The twisted mass chiral Lagrangian was determined
previously in Refs. [44–48], and for baryons in Ref. [49].
In this report we focus on twisted mass lattice QCD with
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degenerate light flavors given by the lattice action

S ¼ X
x

�c ðxÞ
�
1

2

X
�

��ðr�
� þr�Þ � r

2

X
�

r�
�r� þm0

þ i�5�3�0

�
c ðxÞ; (1)

where c and �c are the dimensionless lattice fermion
fields, r�ðr�

�Þ are the covariant forward (backward) lattice
derivatives in the � direction, m0 is the dimensionless bare
quark mass and�0 is the dimensionless bare twisted quark
mass. The fermion fields are flavor doublets, �3 is the third
Pauli-spin matrix and the bare mass term is implicitly
accompanied by a flavor identity matrix. Our twisted
mass �PT analysis also holds for dynamical lattice calcu-
lations with 2þ 1þ 1 flavors, the only difference being
the numerical values of the LECs determined when fitting
the extrapolation formula to the calculation results.

The continuum chiral Lagrangian, supplemented by dis-
cretization effects, is determined with the two-step proce-
dure of Ref. [41]. This was done for the twisted mass lattice

action in Ref. [46], to NLO in which a power counting
mq � b�2

QCD was used and which we shall adopt. The

resulting effective Lagrangian is

L eff ¼ Lglue þ �qðD6 þmþ i�5�3�Þq
þ cSWb �qi���F��qþOðb2; bmq;m

2
qÞ; (2)

whereLglue is the Yang-Mills Lagrangian. The quark fields

are an isodoublet, qT ¼ ðqu; qdÞ and the quark masses are
given by

m ¼ Zmðm0 �mcÞ=b; � ¼ Z��0=b: (3)

The symmetry properties of the twisted mass lattice action
protect the twisted mass from additive mass renormaliza-
tion. With Eq. (2), one can construct the two-flavor chiral
Lagrangian. This is the Gasser-Leutwyler Lagrangian [36]
supplemented by chiral and flavor symmetry breaking
terms proportional to the lattice spacing. The Lagrangian
through NLO relevant to our work takes the form [46,48]
(we use the normalization f� 130 MeV)

Ltw
� ¼ f2

8
trð@��@��yÞ � f2

8
trð�0y�þ �y�0Þ � l1

4
trð@��@��yÞ2 � l2

4
trð@��@��yÞ trð@��@��yÞ

� l3 þ l4
16

½trð�0y�þ�y�0Þ�2 þ l4
8
trð@��@��yÞ trð�0y�þ�y�0Þ þ ~W trð@��@��yÞ trðÂy�þ�yÂÞ

�W trð�0y�þ �y�0Þ trðÂy�þ �yÂÞ �W 0½trðÂy�þ �yÂÞ�2; (4)

where the LECs, l1–l4 are the SUð2Þ Gasser-Leutwyler
coefficients and the coefficients ~W, W and W 0 are unphys-
ical LECs arising from the explicit chiral symmetry break-
ing of the twisted mass lattice action. The spurion fields are
defined as

�0 ¼ 2B0ðmþ i�3�Þ þ 2W0b � m̂þ i�3�̂þ b̂ Â

¼ 2W0b � b̂: (5)

As discussed in Ref. [48], the vacuum of the theory as
written is not aligned with the flavor identity but is given at
LO by

�0 � h0j�j0i ¼ m̂þ b̂þ i�3�̂

M0 ¼ expði!0�3Þ; (6)

with

M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm̂þ b̂Þ2 þ �̂2

q
: (7)

Therefore, to determine the Feynman rules which leave the
interactions of the theory the most transparent, one ex-

pands the Lagrangian around the physical vacuum.
Extending this analysis to NLO, one finds the vacuum
angle shifts to ! ¼ !0 þ � where one can determine �
either by finding the minimum of the potential, as was done
in Ref. [48] or by requiring the single pion vertices to
vanish:

�ð!0Þ ¼ � 32

f2
b̂ sin!0

�
W þ 2W 0 cos!0

b̂

M0

�
: (8)

One can expand about the physical vacuum by making the
replacement

� ¼ 	m�ph	m; with 	m ¼ expði!�3=2Þ; (9)

and

�ph ¼ exp

�
2i


f

�
; 
 ¼

�0ffiffi
2

p �þ

�� � �0ffiffi
2

p

0
@

1
A: (10)

One then finds the Lagrangian is given by
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L ¼ Lcont þ ~W b̂ cos! trð@��ph@��
y
phÞ trð�ph þ �y

phÞ � b̂ cos!ðWM0 þW 0b̂ cos!Þ½trð�ph þ �y
phÞ�2

þ ~W b̂ sin! trð@��ph@��
y
phÞ trði�3ð�ph � �y

phÞÞ �W 0b̂2sin2!½trði�3ð�ph ��y
phÞÞ�2

� trði�3ð�ph � �y
phÞÞ

�
�ð!ÞM

0f2

8
þ b̂ sin!ðWM0 þ 2W 0b̂ cos!Þ trð�ph þ �y

phÞ
�
; (11)

where Lcont is the continuum SUð2Þ chiral Lagrangian to
NLO. Of particular interest to us are the new two-, three-
and four-pion interactions which result from the discreti-
zation errors in the twisted mass Lagrangian. We find, in
agreement with Ref. [48]

L ¼ Lcont þ �L2
 þ�L3
 þ �L4
; (12)

where

�L2
 ¼ cos!
16 ~W b̂

f2
trð@�
@�
Þ þ 1

2
�M0ð!Þ trð
2Þ

þ 1

2
�M0

0ð!Þ
�
tr

�
�3
ffiffiffi
2

p
��

2
; (13)

�L3
 ¼ � sin!
16 ~W b̂

f3
trð�3
Þ trð@�
@�
Þ

þ �ð!ÞM0

2f
trð�3
Þ trð
2Þ; (14)

�L4
 ¼ ��M0ð!Þ
3f2

½trð
2Þ�2 � �M0
0ð!Þ

3f2

�
�
tr

�
�3
ffiffiffi
2

p
��

2
trð
2Þ

þ cos!
32 ~W b̂

3f4
trð
@�
½
; @�
�Þ

� cos!
16 ~W b̂

f4
trð@�
@�
Þ trð
2Þ; (15)

and the mass corrections are given by

�M0ð!Þ ¼ cos!
64b̂

f2
ðWM0 þ cos!W 0b̂Þ;

�M0
0ð!Þ ¼ �sin2!

64W 0b̂2

f2
:

(16)

From this Lagrangian, one can determine the pion masses,
decay constants and wave-function corrections. One finds
the masses are (using the modified dimensional regulari-
zation of Ref. [36])

m2
�� ¼ M0

�
1þ M0

ð4�fÞ2 ln

�
M0

�2

�
þ lr3ð�Þ 4M

0

f2

�
þ �M0ð!Þ

� cos!
32 ~W b̂M0

f2
; (17)

m2
�0 ¼ m2

�� þ�M0
0ð!Þ; (18)

the decay constants are1

f� ¼ f

�
1� 2M0

ð4�fÞ2 ln

�
M0

�2

�
þ lr4ð�Þ 2M

0

f2

þ cos!
16 ~W b̂

f2

�
;

(19)

and the wave-function correction is

�Z� ¼ 4M0

3ð4�fÞ2 ln

�
M0

�2

�
� lr4ð�Þ 4M

0

f2
� cos!

32 ~W b̂

f2
:

(20)

These expressions will be needed to express the scattering
in terms of the lattice-physical parameters (by lattice-
physical, we mean the renormalized mass and decay con-
stant as measured from the correlation functions, and not
extrapolated to the continuum or infinite volume limit). As
we discuss in the next section, these interactions lead to
three types of new contributions to �� scattering states:
there are discretization corrections to the scattering pa-
rameters, the scattering lengths, effective ranges, etc.,
which appear in a mild manner as those from the Wilson
chiral Lagrangian [51]. There are corrections which can
potentially significantly modify the chiral behavior, arising
from the three-pion interactions, and there are new correc-
tions which mix different scattering channels, for example,
the I ¼ 2, I3 ¼ 0 and the I ¼ 0 scattering states.

III. �� SCATTERING IN TWISTED MASS �PT

In this section we calculate corrections to the two-pion
scattering channels. We begin with the maximally
stretched I ¼ 2 states, which have the simplest corrections.

A. I ¼ 2, I3 ¼ �2 channels

There are two types of discretization corrections which
modify the I ¼ 2, I3 ¼ �2 scattering, those which are
similar to the corrections for the Wilson lattice action
[51,52] and those which arise from the three-pion interac-
tions, Eq. (14) and give rise to new Feynman diagrams. We
will express the scattering parameters in terms of the
lattice-physical pion mass and decay constant. As was

1There is an exact Ward identity one can exploit to compute
the charged pion decay constant and avoid issues of the axial
current renormalization discussed, for example, in Ref. [50].
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shown in detail, this has dramatic consequences on the
formula for the scattering parameters in both partially
quenched and mixed action �PT [53–55], such that the
extrapolation formulas were free of unphysical counter-
terms through NLO. There is a second benefit to expressing
the scattering parameters in lattice-physical parameters.
This allows one to perform a chiral extrapolation in terms
of the ratio m�=f�, and thus avoid the need for scale
setting. This was crucial in allowing the NPLQCD
Collaboration to make a precision prediction of the I ¼ 2
scattering length [3,4].

The simple corrections to the scattering amplitude are
determined from �L4
, Eq. (15). The three-pion interac-

tions from Eq. (14) lead to new topological graphs in the
scattering amplitude, which we depict in Fig. 1. The I ¼ 2,
I3 ¼ �2 scattering channels receive corrections from
Fig. 1(a) and its u-channel counterpart. The internal prop-
agating pion is a �0, which, for present lattice actions, is
known to be lighter than the charged pions in dynamical
twisted mass lattice calculations with degenerate light
quark masses [31,33].

Putting all the corrections together, one finds the scat-
tering amplitude, which we express in Minkowski space, is
given by

T 2;�2 ¼ T 2;�2
cont þ �T 2;�2; (21)

where the discretization corrections are

�T 2;�2ð!Þ ¼ 4
�M0ð!Þ

f2�
þ cos!

64 ~W b̂

f4�
sþ 2�2ð!Þm4

�

f2�

�
�

1

m2
�0 � t

þ 1

m2
�0 � u

�
: (22)

The first two terms arise from Eq. (15) as well as from the
conversion to the lattice-physical parameters. The second
two terms arise from Fig. 1(a). These terms are formally
NNLO. However, depending upon the precision with
which the twist angle is tuned, these terms may become
large and require promotion to lower order. Expanding the
NLO contribution to the twist angle, Eq. (8), one finds

�2ð!Þm4
� ¼

�
64W 0b̂2

f2�

�
2
sin2!cos2!þOðm2

�Þ: (23)

We can then determine the corrections to the I ¼ 2, I3 ¼
�2 scattering lengths, for which we find

�m�a
I¼2;�2
�� ð!Þ ¼ �M0ð!Þ

8�f2�
� cosð!Þ 8 ~W b̂m2

�

�f4�

þ ð32W 0Þ2
2�

sin2!cos2!

m2
�0=f

2
�

b̂4

f8�
: (24)

The first observation we make is that at maximal twist,
! ¼ �=2, these leading discretization errors exactly can-
cel through NLO (this is true of the corrections to the
scattering amplitude and not just the scattering length)2

�m�a
I¼2;�2
�� ð�=2Þ ¼ 0: (25)

This is independent of the use of lattice-physical parame-
ters, and holds also for the scattering length expressed in
bare parameters, or any combination of bare and physical.
At zero twist, ! ¼ 0, our expressions reduce to those of
Ref. [51]. Converting f� ! f, our answer agrees with that
in Ref. [52]. The scattering length at maximal twist is
simply given by the continuum formula

m�a
I¼2
�� ¼ �2�

�
m�

4�f�

�
2
�
1þ

�
m�

4�f�

�
2

�
�
3 ln

�
m2

�

�2

�
� 1� lI¼2

�� ð�Þ
��
; (26)

where the combination of Gasser-Leutwyler coefficients is
[38,39]

lI¼2
�� ¼ 4ð4�Þ2ð4lr1 þ 4lr2 þ lr3 � lr4Þ: (27)

Furthermore, the discretization errors only enter at tree
level at this order (when the expression is expressed in
lattice-physical parameters), and thus at arbitrary twist, the
exponentially suppressed finite volume corrections to
Lüscher’s method are also given by those determined in
continuum finite volume �PT [58].
Returning to the new graphs arising from the three-pion

interactions, we can estimate the size of the corrections to
the scattering amplitude using the known mass splitting
between the charged and neutral pions [31,33]. Estimating
the splitting with the leading correction, Eq. (18), and
solving for W 0 from Eq. (16), we can estimate the correc-
tions to the I ¼ 2, I3 ¼ �2 scattering length near maximal
twist. As a ratio to the LO prediction for the scattering
length, one finds

�m�a
I¼2;�2
�� ð!Þ

m2
�=8�f

2
�

’ cot2!ð�M0
0ð!Þ=m2

�Þ2
1þ�M0

0ð!Þ=m2
�

: (28)

At the lightest mass point calculated in Refs. [31,33],
which corresponds to m� ’ 300 MeV, the pion mass split-
ting is

(a) (b)

FIG. 1. New unphysical graphs from twisted mass interactions
in the tðuÞ channel (a) and s channel (b). (b) can only contribute
to I3 ¼ 0 scattering.

2We have assumed that a suitable definition of the maximal
twist angle has been used in the numerical lattice computations
such that one is not restricted to the regime mq � b2�3

QCD, but
rather one is allowed mq * b�2

QCD [47,48,56,57].
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�M0
0ð!� �=2Þ
m2

�

’ �0:33; (29)

and therefore one must have cot! 	 0:3 for this term to
make more than a 1% correction. Therefore, for current
twisted mass lattice calculations, corrections to the I ¼ 2,
I3 ¼ �2 scattering length (and other parameters) should
be negligible provided higher order corrections are as small
as expected.

B. I3 ¼ 0 scattering channels

There are several features which make scattering in the
I3 ¼ 0 channels more complicated than in the I ¼ 2, I3 ¼
�2 channels, most of which stem from the fact that the
twisted mass lattice action explicitly breaks the full SUð2Þ
symmetry down to Uð1Þ, the conserved I3 symmetry. The
first technical complication is not specific to twisted mass
calculations, but is simply the need to compute quark
disconnected diagrams. The second complication stems
from the mass splitting of the charged and neutral pions.
Generally, one determines the scattering phase shift for two
particles with the Lüscher method [59–62], by determining
the interaction energy

�E�� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�

q
� 2m�: (30)

In the isospin limit, the j2; 0i and j0; 0i states (in the jI; I3i
basis) are given by

j2; 0i ¼ 1ffiffiffi
6

p ðj�þ��i þ j���þi � 2j�0�0iÞ;

j0; 0i ¼ 1ffiffiffi
3

p ðj�þ��i þ j���þi þ j�0�0iÞ:
(31)

However, given the relatively large mass splitting in cur-
rent twisted mass lattice calculations, Eq. (29), the prop-
agating eigenstates will be arbitrarily shifted from the
physical states, perhaps shifting nearly to the
fj���
i; j�0�0ig basis. This would have to be disen-
tangled numerically. Even ignoring this issue, which we
deem the most serious, and working with the continuum
fj2; 0i; j0; 0ig basis, there is a mixing of these states, which
first appears at NLO as the second operator in Eq. (15).
Working with the states

jI; 0i ¼ j2; 0i
j0; 0i

� �
(32)

one finds

�T 2;0;0;0
�L4


¼ 8�M0
0ð!Þ

9f2
4 � 7ffiffi

2
p

� 7ffiffi
2

p 5

 !
: (33)

Given the correction �M0
0ð!Þ, one sees this mixing is in

fact maximal at maximal twist. This is nominally a NLO
effect, thus possibly leaving the states mostly unmixed.
However, a comparison of this term with the LO amplitude

of the I ¼ 2, I3 ¼ �2 scattering, one finds close to maxi-
mal twist

�T 2;0;0;0
�L4


=ð32�Þ
�2�ðm�=4�f�Þ2

’ 1

m2
�=f

2
�

1:11 �1:37
�1:37 1:38

� �
: (34)

For m�=f� ¼ 2, all terms in this scattering matrix are
approximately 1=3 the size of the LO amplitude. Since
we now know that the physical NLO corrections to the I ¼
2 scattering length, for example, only provide a few per-
cent deviation from the LO term [3,4,53,54], we conclude
that this NLO operator in fact provides a relatively large
contribution to the scattering amplitude, and furthermore
provides a large mixing term, and thus cannot be neglected.
This, combined with the problem we mentioned previ-
ously, means a coupled channel version of Lüscher’s
method of determining the scattering parameters would
be needed to explore the I3 ¼ 0 scattering channels with
twisted mass lattice QCD.
The �L4
 Lagrangian is not the only source of mixing.

The three-pion interactions, depicted in Fig. 1, in the s, t
and u channels, will also lead to a mixing of the j2; 0i and
j0; 0i states, as one can check with an explicit calculation.
One may be concerned that the new s-channel graph will
invalidate Lüscher’s method. This is not the case, however,
as the internal pion propagator is always off-shell, and thus
these diagrams do not contribute to the power-law volume
dependence of the two-particle energy levels. An alterna-
tive way to understand this is diagrammatically. One can
define a modified (momentum-dependent) four-point func-
tion, which is order by order all the diagrams which do not
go on-shell below the inelastic threshold. We depict this
modified vertex in Fig. 2(a). These 2PI diagrams can then
be resummed to all orders to produce the scattering matrix,
Fig. 2(b). It is this resummation that produces the Lüscher
relation, relating the finite volume scattering to the infinite
volume scattering parameters [59–62]. In this way, one can
see that the new interactions will not lead to a modification
of the structure of the Lüscher relation.

(a)

(b)

FIG. 2. Modified four-point function, (a) consisting of all off-
shell graphs. These vertices can then be iterated and summed (b),
to determine the �� interactions. This summation gives rise to
the Lüscher relation, valid below the inelastic threshold.
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Our last note of caution regards the construction of the
interpolating fields. In the physical basis, the states which
become those of definite isospin in the continuum limit are
given by Eq. (31). However, the interpolating fields are
generally constructed with quark fields in the twisted basis,
with a known definite twist from the physical basis fields.
While this is also true of the �þ�þ scattering channel, the
phase is trivial since there is only one term contributing to
the j2; 2i state. Thus if one were to undertake a calculation
of these coupled scattering channels, care should be taken
in constructing the correct interpolating fields.

IV. CONCLUSIONS

In this report, we have detailed �� interactions in
twisted mass �PT. We have shown that through NLO, at
maximal twist the corrections to the I ¼ 2, I3 ¼ �2 scat-
tering parameters from discretization errors are identically
zero. However, near maximal twist there are corrections
which can modify the expected chiral behavior which we
demonstrated by an explicit calculation of the correction to
the scattering length. We found, however, that for the

dynamical twisted mass lattice configurations which exist
today, the expected corrections are negligible.
The I3 ¼ 0 scattering channels proved to have more

significant discretization corrections, most notably a mix-
ing term between the j2; 0i and j0; 0i states which is
relatively large. In fact, these mixing terms combined
with the need for computing quark disconnected diagrams
and the expected nonperturbative shift of the twisted mass
eigenstates, as discussed in Sec. III B, may make a calcu-
lation of these I3 ¼ 0 scattering channels prohibitively
complicated.
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