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Studying various thermodynamic quantities for the free domain wall fermions for both finite and

infinite fifth dimensional extent N5, we find that the lattice corrections are minimal for NT � 10 for both

energy density and susceptibility, for its irrelevant parameter M in the range 1.45–1.50. The correction

terms are, however, quite large for small lattice sizes of NT � 8. We propose modifications of the domain

wall operator, as well as the overlap operator, to reduce the finite cutoff effects to within 10% of the

continuum results of the thermodynamic quantities for the currently used NT ¼ 6–8 lattices. Incorporating

the chemical potential, we show that divergences proportional to�2=a2 are absent for a large class of such

domain wall fermion actions although the chiral symmetry is broken for � � 0 at any finite lattice

spacing.
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I. INTRODUCTION

The nature of QCD matter at high temperatures and
densities has been of interest due to the experiments at
the Relativistic Heavy Ion Collider in Brookhaven
National Laboratory, New York, and the upcoming Large
Hadron Collider in CERN, Geneva. Theoretically, it is
expected that the spontaneously broken chiral symmetries
at low temperatures are restored at high temperatures.
While lattice methods have been very effective in predict-
ing the transition temperature as well as the nature of the
strongly interacting matter near the transition temperature,
fermions with exact chiral symmetry on lattice are impor-
tant for such a study of the chiral phase transition. Kaplan
[1] proposed to define fermions with exact chiral symmetry
on a five-dimensional (5D) lattice with a mass term M in
the form of a step function (domain wall) and with an
infinite extent along the fifth dimension. The massless 4D
fermions are obtained as localized on the wall, and are
hence known as the domain wall fermions. On a finite
lattice needed for numerical simulations, however, fermi-
ons of both chiralities exist with an exponentially small
overlap between the respective chiral states [2]. Currently,
the most popularly used fermions in QCD simulations at
finite temperatures/densities are the staggered fermions
which have only a remnant chiral symmetry on the lattice.
Moreover, they explicitly break spin and flavor symme-
tries. The full chiral symmetry for these fermions is recov-
ered only in the continuum limit, i.e., in the limit of
vanishing lattice spacing. In spite of the (exponentially
small in N5, the number of sites in the fifth dimension)
chiral violation on the lattice, the domain wall fermions are
more promising than the staggered fermions due to their
exact flavor and spin symmetry on the lattice. On the other
hand, these are more expensive to simulate as the computa-

tional cost increases linearly with N5. One has to optimize
N5 and M for full QCD simulations. In order to gain
insights on ways to minimize the lattice cutoff effects,
we study various thermodynamic quantities of free domain
wall fermions as a function of M and N5 with an aim to
optimize the irrelevant lattice parameters for faster con-
vergence to their continuum values. We find that by adjust-
ing the domain wall heightM in the range 1.45–1.55 rather
than the frequently used choice of M ¼ 1:0, a faster con-
vergence to the continuum results for both finite and infi-
nite values of N5 is achieved. However, the cutoff effects
are seen to be quite large on small lattices with the
temporal extent of 4–6 where most of the current QCD
simulations are being done. We therefore examine modifi-
cations of the domain wall, as well as the overlap kernel to
minimize such corrections for small lattice sizes.
The plan of the paper is as follows: In Sec. II, we

analytically compute the energy density of free domain
wall quarks on the lattice and verify that it yields the
correct continuum limit. In Sec. III, the same quantity is
computed numerically and the various lattice parameters
for which the convergence to the continuum is fastest are
estimated. In Sec. IV, we repeat the calculations of energy
density in the presence of chemical potential and suscep-
tibility and confirm that this optimum M range does not
shift significantly. In Sec. V, we propose a method of
reducing the lattice cutoff corrections to thermodynamic
quantities on small lattice sizes, computed using both the
chiral fermions, namely, the domain wall at infinite N5 and
the overlap fermions. This helps in faster convergence to
the continuum results even for M ¼ 1:0.

II. ENERGY DENSITY OF DOMAIN WALL
FERMIONS

The domain wall fermions [1] in the continuum
are defined on a 5D space-time with the mass term in
the fifth dimension in the form of a domain wall
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�ðMÞ ¼ M tanhðsÞ, s being the coordinate in the fifth
dimension. This helps in localizing a fermion of definite
chirality on the domain wall. The domain wall operator in
the continuum is given as

DDW ¼ X4
�¼1

��@� þ �5@5 þ�ðMÞ: (1)

The massless fermion modes in 4D are obtained when the
following conditions are simultaneously satisfied:

X4
�¼1

��@�c ¼ 0 ð�5@5 þ�ðMÞÞc ¼ 0: (2)

It was shown that only one normalizable solution exists,
bounded to the wall at s ¼ 0 where the �ðMÞ changes
abruptly. The corresponding analog of the domain wall
term on the lattice is of the form

�ðMÞ ¼ M�ðsÞ: (3)

On the lattice we do not get a single massless mode by
discretizing Eq. (1). This is because the lattice regulator is
anomaly free, so massless fermions of both handedness
exist on the lattice. A Wilson term is needed to spatially
separate the left- and right-handed fermions in the fifth
dimension by localizing them on the domain wall and the
antidomain wall, respectively, which are separated from
each other by the lattice extent in the fifth dimension N5.
To obtain thermodynamical quantities of free fermions
with exact chiral symmetry on the lattice in 4D, we need
to divide out contribution of the heavy fermion modes
which exist in the fifth dimension. This is done by sub-
tracting a pseudofermion action [3] from the standard 5D
action. Following Shamir [3], the domain wall fermion
action on a N3 � NT � N5 anisotropic lattice with lattice
spacings of a, a4, and a5 in the three spatial, the temporal,
and the fifth dimension, respectively, can be written as,

SDW ¼ � XN5

s;s0¼1

X
x;x0

�c ðx; sÞDDWðx; s; x0; s0; �̂; m̂Þc ðx0; s0Þ

¼ � XN5

s;s0¼1

X
x;x0

�c ðx; sÞ
��

a5
a
DWðx; x0; �̂Þ þ 1

�
�s;s0

� ðP��s0;sþ1 þ Pþ�s0;s�1Þ�x;x0

�
c ðx0; s0Þ; (4)

with the boundary conditions

P�c N5þ1 ¼ �m̂qP�c 1; Pþc 0 ¼ �m̂qPþc N5
(5)

where P� ¼ 1��5

2 are the chiral projectors and m̂q is the

bare quark mass in lattice units. DW is the Wilson-Dirac
operator defined on a 4D lattice. The volume of the system
is V ¼ N3a3 and T ¼ 1=ðNTa4Þ is its temperature. The
chemical potential �a4 ¼ �̂ is usually introduced as a
Lagrange multiplier corresponding to the conserved num-
ber density in the expression for the Lagrangian. For the
domain wall fermions, we do not have a good prescription

for obtaining the conserved number density. Following
Bloch and Wettig [4], we incorporate the chemical poten-
tial inDW but in a general form using the functionsK and L
[5] defined below. These multiply the 1� �4 factors in the
Wilson-Dirac operator leading to

DWðx; x0; �̂Þ ¼
�
3þ a

a4
�M

�
�x;x0

� X3
j¼1

�
Uy

j ðx� ĵÞ 1þ �j

2
�x;x0þĵ

þUjðxÞ
1� �j

2
�x;x0�ĵ

�

� a

a4

�
Lð�̂ÞUy

4 ðx� 4̂Þ 1þ �4

2
�x;x0þ4̂

þ Kð�̂ÞU4ðxÞ 1� �4

2
�x;x0�4̂

�
: (6)

In this paper we consider the noninteracting fermions, i.e.,
U�ðxÞ ¼ 1. Introducing R and � by

Kð�̂Þ þ Lð�̂Þ
2

¼ R cosh�;
Kð�̂Þ � Lð�̂Þ

2
¼ R sinh�;

(7)

the free Wilson-Dirac operator in Eq. (6) can be diagonal-
ized in the momentum space in terms of the functions

hj ¼ � sinapj; h4 ¼ � a

a4
R sinða4p4 � i�Þ;

h5 ¼ M� X3
j¼1

ð1� cosapjÞ � a

a4
ð1� R cosða4p4 � i�ÞÞ;

(8)

such that

DWð ~p; p4Þ ¼ �X4
i¼1

i�ihi � h5: (9)

To study thermodynamics of fermions, one has to neces-
sarily take antiperiodic boundary condition along the tem-
poral direction. Assuming periodic boundary conditions
along the spatial directions we obtain

apj ¼
2nj�

N
; nj ¼ 0; . . . ; ðN � 1Þ;

j ¼ 1; 2; 3 and ap4 ¼ !n ¼ ð2nþ 1Þ�
NT

;

n ¼ 0; . . . ; ðNT � 1Þ:

(10)

It is to be noted thatM, the height of the domain wall on the
lattice, is bound to 0<M< 2 to simulate one flavor quark
on the lattice. To suppress the heavy mode contributions
and recover a single chiral fermion, pseudofermion fields
are introduced which have the same action but with m̂q ¼
1, i.e., with an antiperiodic boundary condition in the fifth
dimension [2]. The fifth dimensional degrees of freedom
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can be integrated out to yield an effective domain wall
operator [6,7]

DDWðm̂qÞ
DDWð1Þ

¼ 1þ m̂q þ ð1� m̂qÞ�5

1� TN5

1þ TN5
; (11)

where the transfer matrix T is

T ¼
�
1þ a5

a
�5DWPþ

��1
�
1� a5

a
�5DWP�

�
: (12)

Since T can be shown to be Hermitian for �̂ ¼ 0, and
therefore has real eigenvalues, TN5 has only positive ei-
genvalues for even N5. Introducing [7] a notation jTj, the
function 1�TN5

1þTN5
in the domain wall operator can be ex-

pressed in the form of a tanh function as in Eq. (13).

DDWðm̂qÞ
DDWð1Þ

¼ 1þ m̂q � ð1� m̂qÞ�5 tanh

�
N5

2
lnjTj

�
:

(13)

The above derivation of the effective domain wall operator
assumes that 1þ TN5 does not have any zero eigenvalues.
For if it does, then the contribution of the heavy modes is
zero. If � be an eigenvalue of T, then this assumption
requires that

ln� � i
ð2nþ 1Þ�

N5

: (14)

This is clearly true for �̂ ¼ 0 for even the interacting
fermions where T is Hermitian and thus any � is real.
However, once chemical potential is introduced in the
Wilson-Dirac operator, as above, DW and T are not
Hermitian any longer for the free fermions themselves,
leaving open the possibility that this condition will not
be met.

It is easy to see that three distinct limits are of interest in
which we should compute the various thermodynamic
quantities for the massless domain wall operator. These
are as follows:

(1) N5 ! 1, a5 � 0, where one obtains exact chiral
fermions for m̂q ¼ 0,

(2) N5 ! 1, a5 ! 0 such that the L5 is finite, where
L5 ¼ N5a5, leading to an approximate form for the
overlap fermions [4,8], and

(3) N5 ¼ finite, a5 ¼ finite, corresponding to the form
of the domain wall operator directly relevant for
practical simulations on the lattice.

A. N5 ! 1, a5 � 0

In this limit, the tanh function in Eq. (13) becomes the
sign function (") and the resultant effective domain wall
operator is given as

Deff
DW ¼ 1þ m̂q � ð1� m̂qÞ�5"ðlnjTjÞ: (15)

The operator T has an explicit a5 dependence as shown in
Eq. (12). For m̂q ¼ 0, this form of the domain wall opera-

tor satisfies the Ginsparg-Wilson relation [9]. Indeed, it is
just like the overlap operator, but with a different argument
of the sign function. The operator T is not Hermitian in the
presence of �̂ and hence the sign function has to be defined
carefully. We follow the definition as in Bloch and Wettig
[4]. The finite size corrections to various thermodynamic
quantities computed with this lattice operator are expected
to be different from the overlap case. For this type of
Ginsparg-Wilson fermion too, the introduction of chemical
potential necessarily leads to chiral symmetry breaking
[10] on the lattice because the action in the presence of
�̂ is not invariant under the chiral transformations [11] on
the lattice. Like in the case of the overlap fermions, chiral
symmetry is exactly realized for these domain wall fermi-
ons only in the absence of the chemical potential.
The energy density � of the domain wall fermions in the

chiral limit is evaluated from the partial derivative with
respect to the inverse temperature, of the partition function,
Z ¼ DetðDeff

DWÞ. This is equivalent to taking a partial de-
rivative with respect to a4 on a lattice of fixed size NT . The
energy density,

� ¼ � 1

N3a3NT

�
@

@a4
lnZ

�
a;�̂

; (16)

can be evaluated analytically in terms of the quantities q, s,
t and s0, t0 defined below in Eq. (17), where the dash
denotes the a4 derivative of the respective quantities.
Defining

h2 ¼ X4
i¼1

h2i ; s2 ¼ h2 þ h25; t ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4h5 þ 4

q
; q ¼ s2 � 2h5 þ 2; 	 ¼ a4

@h4
@a4

¼ a

a24
R sinða4p4 � i�Þ;

� ¼ a4
@h5
@a4

¼ a

a24
ð1� R cosða4p4 � i�ÞÞ s0 ¼ h4	þ h5�

s
; t0 ¼ s0t

s
þ s2ðss0 � 2�Þ

t
(17)

one has

�a4 ¼ 1

N3NT

X
pj;n

�
2t0

t
� 4h5�þ 4ss0ð1þ s2Þ þ 2ss0tþ s2t0 � 4�s2 � 8h5ss

0 � 2�t� 2h5t
0

2h25 þ 2s2 þ s4 þ s2t� 4h5s
2 � 2h5t

�
� 1

N3NT

X
pj;n

FðR;!n; ~pÞ:

(18)
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In all the equations above and in the following subsections,
a5 is set to unity in the units of a. Furthermore, setting
a4 ¼ a after evaluating the a4 derivatives, the summation
over the discrete Matsubara frequencies can be evaluated
analytically by the standard contour integral technique or
numerically by explicitly summing over them and the
momenta pj. For the former, we need to determine the
singularities of the summand F in Eq. (18). We outline
below briefly the results one obtains for the zero and finite
temperature cases.

T ¼ 0, � � 0: In order to obtain a general condition for
eliminating the spurious �̂2 divergences, we first calculate
the energy density at zero temperature in the limitNT ! 1
at finite a. The frequency sum 1=NT

P
n in Eq. (18) gets

replaced by the integral 1
2�

R
�
�� d! in this limit.

Subtracting the vacuum contribution corresponding to �̂ ¼
0, i.e., R ¼ 1, � ¼ 0, the energy density at zero tempera-
ture is given by

�a4 ¼ 1

�N3

X
pj

�Z �

��
FðR;!� i�Þd!�

Z �

��
Fð!Þd!

�
:

(19)

For brevity, we suppress from now on the explicit pj

dependence of the function F, although we retain the
overall sign to remind us of it. Choosing the contour shown
in Fig. 1, the expression above can be evaluated in the
complex ! plane as

�a4 ¼ 1

�N3

X
pj

�
2�i

X
i

ResFðR;!iÞ �
Z �

��i�
FðR;!Þd!

�
Z ��

�
FðR;!Þd!�

Z ���i�

��
FðR;!Þd!

�
Z �

��
Fð!Þd!

�
: (20)

The second and fourth terms cancel since F satisfies
FðR;�þ i
Þ ¼ FðR;��þ i
Þ. Hence, we obtain

�a4 ¼ 1

�N3

X
pj

�
2�R1�

�
Kð�̂Þ � Lð�̂Þ

2
� ffiffiffi

f
p �

þ
Z �

��
FðR;!Þd!�

Z �

��
Fð!Þd!

�
; (21)

where �iR1 is the residue of the function FðR;!Þ at the
pole �isinh�1ð ffiffiffi

f
p

=RÞ. It is clear from Eq. (21) that the
condition R ¼ 1 cancels the integrals, yielding the canoni-
cal Fermi surface form of the energy density. For R � 1,
there will in general be violations of the Fermi surface on
the lattice. Moreover, in the continuum limit a ! 0, one
will in general have the �2 divergences for R � 1 in the
energy density. The condition to obtain the correct contin-
uum values of � ¼ �4=4�2 turns out to be Kð�̂Þ �

Lð�̂Þ ¼ 2�̂þOð�̂2Þ. That this effective domain wall fer-
mion satisfies the same condition as the overlap [10]
suggest that such a condition may be generically true for
Ginsparg-Wilson fermions. Also that one obtains an iden-
tical condition in the staggered case [5] suggests that the
behavior near the continuum limit dictates this condition.
Note also that the form used by Bloch and Wettig [4],
namely, expð��̂Þ for K, L, also satisfies the condition R ¼
K � L ¼ 1.
T � 0, �̂ ¼ 0: In order to choose the appropriate con-

tour in the T � 0 case, note that the function FðR ¼
1; !; ~pÞ at �̂ ¼ 0 has poles at cos�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d� g2
p Þ ¼

�isinh�1
ffiffiffi
f

p
. These turn out to contain the physical poles

in the continuum limit. As in the overlap case [10], there

are poles at cos�1ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� g2

p Þ ¼ ��� isinh�1
ffiffiffi
f

p
and

branch cuts at ��� icosh�1 d
2g ð�icosh�1 d

2gÞ for d
2g >

0ð<0Þ. However in this case, there are additional (unphys-
ical) poles and cuts at �icosh�1!1 where !1 ¼ ðdþ 4�
4gÞ=2ðg� 2Þ. The definitions of the quantities d, f, g are

g ¼ M� 4þ b;

with b ¼ cosðap1Þ þ cosðap2Þ þ cosðap3Þ
f ¼ h21 þ h22 þ h23

d ¼ 4þ ðM� 4Þ2 þ 2ðM� 4Þbþ c;

with c ¼ X
i<j<4

2 cosðapiÞ cosðapjÞ:

(22)

Unlike in the overlap case, however, the contour is not
closed just above and below the branch cuts at ���
icosh�1 d

2g for d
2g > 0, but over and below the additional

FIG. 1. Contour chosen for evaluating the energy density for
the nonzero value of the chemical potential at zero temperature.
The thick line indicates the Matsubara frequencies while the
filled circles denote the poles of FðR;!Þ.
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poles at �icosh�1!1. This pole moves to infinity in the
a5 ! 0 limit or the overlap limit and hence does not
contribute to the overlap energy density on the lattice.
The contour chosen for evaluating the frequency sum
shown in Fig. 2, is thus slightly different from that chosen
for overlap fermions. The residue of the pole enclosed by
the contour for F comes out to be,

4

ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1þ fÞp GðMÞ; (23)

with the first term yielding the continuum value of the
energy density in the limit of the vanishing lattice spacing

a. The resultant energy density is,

�a4 ¼ 1

N3

X
pj

�
4

ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1þ fÞp GðMÞ

�

� 1

eNTsinh
�1

ffiffi
f

p
þ 1

þ �3 þ �4; (24)

which again turns out to be similar to the overlap case.
Because of a different functional form of F and a different
choice of contour, the corresponding lattice correction
terms �3, �4 which are the line integrals of F along lines
3, 4 in Fig. 2, are different, leading to different finite size
corrections. In the continuum limit, the unphysical poles
and branch cuts are pushed to infinity and the values of �3,
�4 vanish, leaving only the contribution of the physical
poles to the energy density: In the square bracket, only the
first term gives the usual continuum expression with the
other term vanishing as a ! 0. The same treatment goes
through in the presence of �̂ only the contour has to be
shifted along the imaginary ! plane by an amount depen-
dent on �̂ with the position of the poles in the complex !
plane remaining unchanged.

B. N5 ! 1, a5 ! 0, L5 ¼ N5a5 ¼ finite

In the case when the lattice spacing in the fifth direction
a5 ! 0 and the number of sites N5 ! 1 such that L5 ¼
N5a5 is finite, the effective domain wall operator reduces to

DDW ¼ ð1þ m̂qÞ þ ð1� m̂qÞ�5 tanh

�
L5

2
�5DW

�
: (25)

Starting from the above expression, we recover the overlap
operator when L5 ! 1. With this effective domain wall
operator, the energy density can be evaluated [12] as

�a4 ¼ X
pj;n

4 sinh½sL5

2 	ðð�h4h5	þ h2�Þ cosh½sL5

2 	 þ ðh4h5	þ ðh25 þ s2Þ�þ 2h5s
2tÞ coshð3sL5

2 Þ � 2s sinh½sL5

2 	
sN3NTðh2 þ ðs2 þ h25Þ cosh½2sL5	

� ðh25tþ h5�þ ðh2tþ h4	þ 2h5ðh5tþ �ÞÞ cosh½sL5	ÞÞ
�2h5s sinh½2sL5	Þ ; (26)

where 	 and � are the same as defined previously and t is
now defined as

t ¼ ð�sin2ap4 þ h5�Þð� tanhL5s
2 þ L5s

2 sech2 L5s
2 Þ

s2 tanhL5s
2

: (27)

It was checked that the overlap energy density is obtained
back when L5 ! 1. We use the expression above for our
numerical work presented in Sec. III.

C. Finite N5 and a5

While performingMonte Carlo simulations with domain
wall fermions, one needs to work on lattices with a finite
number of sites in the fifth dimension. For finite N5, the
chiral symmetry is broken and it is important to ascertain
the dependence of the correction terms withN5. Evaluating
the matrix tanhðN5=2 lnjTjÞ in Eq. (13) various thermody-
namic quantities of free domain wall fermions on the
lattice can be evaluated. The energy density in the massless
limit then is

FIG. 2. Contour chosen for evaluating the energy density at
finite temperature. The crosses indicate the Matsubara frequen-
cies while the filled circles denote the poles of Fð ~p;!Þ.
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�a4 ¼ 2

N3NT

X
pj;n

�
t0

t
þ 2N5u0

22N5þ1 þ 2N5u

� tu0 þ ut0 � xq0 � ðq� 2Þx0
tu� ðq� 2Þx

�
; (28)

where the quantities u and x are functions of h’s as in
Eq. (8) and are defined as

u ¼
�
t� q

h5 � 1

�
N5 þ

�
tþ q

1� h5

�
N5

;

x ¼
�
t� q

h5 � 1

�
N5 �

�
tþ q

1� h5

�
N5

:

(29)

The partial derivatives of the above variables are repre-
sented as the same variables with a dash, and are functions
of h’s, 	, and �,

q0 ¼ 2ss0 � 2�

u0 ¼ N5

�
t� q

h5 � 1

�
N5�1

�
t0 � q0

h5 � 1
� �ðt� qÞ

ðh5 � 1Þ2
�

þ N5

�
tþ q

1� h5

�
N5�1

�
t0 þ q0

1� h5
þ �ðtþ qÞ

ð1� h5Þ2
�
;

x0 ¼ N5

�
t� q

h5 � 1

�
N5�1

�
t0 � q0

h5 � 1
� �ðt� qÞ

ðh5 � 1Þ2
�

� N5

�
tþ q

1� h5

�
N5�1

�
t0 þ q0

1� h5
þ �ðtþ qÞ

ð1� h5Þ2
�
:

(30)

Again, we shall use these expressions for obtaining the
numerical results presented below where we also show the
results for quark number susceptibility. The same set of
formulas as in Eq. (30) remain valid for the calculation of
susceptibility where 	 and � are replaced by the deriva-
tives 	� and �� with respect to �̂, defined as

	� ¼ @h4
@�̂

¼ ia

a4
cosða4p4 � i�̂Þ;

�� ¼ @h5
@�̂

¼ �ih4ðfor number densityÞ:

III. NUMERICAL RESULTS FOR �̂ ¼ 0

A. N5 ¼ 1, a5 ¼ 1

The goal of our numerical study is to find the optimum
range of M for which the finite lattice spacing corrections
are minimum and compare it with that for the Dirac-
Neuberger case [10]. We do this in the chiral limit and
set m̂q ¼ 0. The lattice energy density given by Eq. (18)

was computed numerically by summing over the momenta
along the spatial and temporal directions. The zero tem-

perature part of the energy density was determined in the
limitNT ! 1 on a lattice with a very large spatial extentN
by numerically evaluating the ap4 ¼ ! integral. Holding
the physical volume constant in units of T by keeping

V1=3T ¼ N=NT � � fixed, we define the continuum limit
by NT ! 1. The thermodynamic limit is then achieved in
the limit of large � . We first determine the acceptable range
of � by looking for � independence. The � obtained by
subtracting the zero temperature part from the lattice en-
ergy density expression was normalized by its continuum
value �SB. Figure 3 displays the ratio �=�SB as a function of
NT for different values of � at a fixed M ¼ 1:50. One
notices that for � � 3 the energy density plots lie on top
of each other, suggesting the thermodynamic limit to have
reached by � ¼ 4–5. In order to highlight the deviations
from the continuum limit, the same ratio is exhibited for
differentM values for � ¼ 4 in Fig. 4 as a function of 1=N2

T

for a range of NT likely to be used in simulations. We
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choose to define the optimum range of M as the values of
M for which the thermodynamic quantities are within 3%
of the continuum values for the smallest possible NT . One
sees from Fig. 4 that the order 1=N2

T corrections are mini-
mum for M between 1.45–1.50 and NT � 12. The correc-
tion terms for M ¼ 1 are linear in 1=N2

T for NT � 10 and
are about 20% of the continuum value even for NT ¼ 12.
This is similar to that reported earlier for the overlap
fermions [10]. Though the continuum extrapolation with
M ¼ 1 is easier due to the linear functional form, it is
computationally expensive, needing simulations at more
values of NT , each greater than 10. Thus M ¼ 1:45–1:50
seems to be an optimum range for lattice simulation of the
energy density of domain wall fermions. We have found
that the odd values of NT will give similar results, for both
optimumM and in the continuum limit. For small values of
NT however, there are perceptible oscillations in the values

of �=�SB for odd and even values making the continuum
extrapolation difficult. We have also varied the lattice
spacing along the fifth dimension a5 to find out how the
cutoff dependent terms change with it. The correction
terms to the energy density for a5 ¼ 0:5a at small lattice
sizesNT � 10 are indeed larger than that for a5 ¼ a for the
above mentioned optimum range but for NT > 12 such
terms are again within 2%–3% of the Stefan-Boltzmann
value. The optimumM range for which the lattice artifacts
are minimum shifts to 1.50–1.60. Thus, there is a marginal
dependence on a5 for NT � 10. Reducing a5 further does
not increase the range much as we demonstrate in the plot
for a5 ! 0 in Fig. 6.

B. N5 ! 1, a5 ! 0, L5 ¼ finite

Next we investigated the limit N5 ! 1, a5 ! 0 such
that L5 ¼ finite in order to estimate numerically the value
of L5 for which we recover the overlap energy density
starting from Eq. (26). As can be observed from Fig. 5,
L5-independent results are obtained for L5 � 14 for M ¼
1:55. This was also the case for a range of M around this
value. For L5 � 10 the convergence towards the �SB value
was seen to be very slow for all M and we find that the
continuum value is not reached even for a lattice size as
large as NT ¼ 32. Figure 6 displays the results as a func-
tion of 1=N2

T for L5 ¼ 14 and various values of M indi-
cated on it. The deviations from the continuum for such L5

are less than 3% for the range of M between 1.50–1.60 for
NT � 12, in agreement with the overlap results [10].

C. Finite N5 and a5 ¼ 1

The case of finite N5 with a5 ¼ 1 is clearly of the most
interest for practical simulations with dynamical fermions.
Earlier numerical studies for free domain wall fermions
[13,14] employed M ¼ 1:0 and found somewhat slow
convergence of various thermodynamic quantities towards
their continuum values. We intend to check whether tuning
the value of M results in a faster convergence. For that
purpose, we have computed the energy density expression
for finite N5 and a5 ¼ a in Eq. (28) by summing over all
the discrete momenta. We display those results for �=�SB in
Fig. 7. Figure 7(a) shows the results for a series of N5 and a
fixed M ¼ 1:5. The results are seen to become N5 inde-
pendent by N5 ¼ 18, making it an optimum choice for
obtaining continuum results on the lattice. Figure 7(b)
shows the M variation for N5 ¼ 18. Table I provides the
values for lattices with reasonable NT extent. The general
trend is clearly the same as above with M ¼ 1:45–1:50
emerging as the range for which the Stefan-Boltzmann
limit is reached to within 3%–4% for NT � 10 (Table I).
Interestingly, N5 ¼ 18 seems to mimic the N5 ! 1 limit
quantitatively rather well, as can be seen by comparing the
plots in Fig. 4. Also the values of �=�SB in the chiral limit,
N5 ! 1 are within 1%–2% of the N5 ¼ 18 values tabu-
lated in Table I.
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IV. NUMERICAL RESULTS FOR �̂ � 0

It should be noted that in this case T is no longer
Hermitian but as long as the condition given in the
Eq. (14) is satisfied the effective operator in Eq. (13) is
well defined. We shall restrict the range of �̂ to ensure that
it is so. We choose K and L to be e��̂, respectively, in our
numerical computations as suggested in [4]. Our aim again
is to find the optimum M for which the continuum results
are obtained with least computational effort, and compare
it with our range obtained from the energy density above.
We consider two observables here. One is the change in the
energy density due to nonzero � : ��ð�; TÞ ¼ �ð�; TÞ �
�ð0; TÞ. In the continuum limit this is

��ð�; TÞ
T4

¼ �4

4�2T4
þ �2

2T2
: (31)

Another observable we studied was the quark number
susceptibility at �̂ ¼ 0. It is defined for any �̂ by

� ¼ 1

N3a2NT

�
@2 lndetD

@�̂2

�
a4

; (32)

and in the continuum is given by

�ð�Þ ¼ �2

�2
þ T2

3
: (33)

We will focus on �ð0Þ here due to its importance in the
applications to the heavy ion collisions.
We estimated numerically ��ð�; TÞ for �=T ¼ �̂NT

fixed at 0.5. Figures 8(a) and 8(b) display our results for
this observable in the units of T4 for N5 ¼ 1 and 18,
respectively, for the M values indicated. The horizontal
line in each case shows the expected result in the contin-
uum limit from Eq. (31). From Figs. 8(a) and 8(b) it is
evident that there are no �2=a2 divergences on the lattice,
as expected. The deviations from the continuum limit are
due to theM dependent finite size effects. These correction
terms are again seen to be small for the same optimum
range of 1:45 � M � 1:50 for both the cases, as obtained
in the zero chemical potential case in Sec. III.
The N5 dependence of the quark number susceptibility

at �̂ ¼ 0 is plotted in Fig. 9. It too exhibits a convergence
to the infinite N5 results for N5 � 16, indicating that N5 ¼
18 can again be used safely to approximate the infinite N5.
Figure 10 shows the M dependence of the quark number
susceptibility at �̂ ¼ 0. The N5 ¼ 18 plots show small
deviations from the Stefan-Boltzmann value of 1=3 for
the 1:45 � M � 1:55 range and for NT � 10.
Recent computations of this susceptibility [15] for the

interacting domain wall fermions were performed with
M ¼ 1:8. Of course, one expects some shift in M due to
additive renormalization in the presence of gauge interac-
tions. The change should however be small for large
enough temperature and the small gauge field coupling
constant where one expects those computations to ap-
proach the free quark gas results. In all our plots we find
that for the optimumM range, the deviations from the ideal
gas results at smaller NT ¼ 4–8 are quite significant but
with a relative mild M dependence for M> 1:4. Thus a
slightly larger value of M than the optimum range we
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TABLE I. �=�SB values for different M for � ¼ 4, N5 ¼ 18.

NT M ¼ 1:0 1.40 1.45 1.50 1.55

4 0.909 1.240 1.285 1.333 1.383

6 1.308 1.413 1.425 1.443 1.467

8 1.317 1.221 1.197 1.174 1.156

10 1.237 1.090 1.052 1.009 0.965

12 1.169 1.049 1.013 0.968 0.917

14 1.123 1.045 1.017 0.980 0.934

16 1.093 1.048 1.029 1.002 0.966
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found may not change the finite size effects drastically for
smallNT . What one does need to be careful about though is
the extrapolation to the continuum limit. For the optimal
range of M and NT � 10, the smallness of corrections
compared to other errors in the computations may make
it a less important issue.

V. IMPROVEMENT OF THE CHIRAL FERMION
KERNELS

In the previous sections we observed that the fermions
with exact chiral symmetry on the lattice have large 1=N2

T

corrections for small NT . While we found that the contin-
uum limit for various thermodynamic quantities can be
approached faster by choosing the irrelevant parameter
M in the range 1.45–1.55, the correction terms for NT ¼
4–6 are about 50% of the Stefan-Boltzmann result for the
domain wall fermions (Fig. 4) and about the same magni-
tude as the continuum values for overlap fermions [10] for
such a choice of M too. Here we describe our attempts to
improve the convergence to the continuum results for small
NT and even for M ¼ 1:0. Having the option of the choice
of M ¼ 1:0 may be useful since it has been noted previ-
ously [2,16] that the residual mass for such a choice ofM is
zero for a range of N5 at the tree level.

A. Domain wall kernel

The domain wall operator given in Eq. (13) is a matrix-
function of the Wilson-Dirac operator as in Eq. (6). It is
clear that its improvement may lead to a better domain wall
operator, or indeed even a better overlap operator, one is
looking for. Inspired by the attempts to improve the stag-
gered fermions in the so-called Naik action [17], we add
three-link terms to the DW as below:
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DWðx; x0; �̂Þ ¼
�
3þ a

a4
�M

�
�x;x0 �

X3
j¼1

�
Uy

j ðx� ĵÞ 1þ c1�j

2
�x;x0þĵ þUjðxÞ

1� c1�j

2
�x;x0�ĵ

�

� a

a4

�
Uy

4 ðx� 4̂Þ 1þ c1�4

2
�x;x0þ4̂ þU4ðxÞ 1� c1�4

2
�x;x0�4̂

�

� X3
j¼1

�
Uy

j ðx� 3ĵÞ c3�j

6
�x;x0þ3ĵ �UjðxÞ

c3�j

6
�x;x0�3ĵ

�

� a

a4

�
Uy

4 ðx� 34̂Þ
c3�4

6
�x;x0þ34̂

�U4ðxÞ c3�4

6
�x;x0�34̂

�
: (34)

It is clear that the modification amounts to replacing each
�� by ðc1 þ c3=3Þ�� in the noninteracting case. The
Wilson mass term, added to remove the doublers, is kept
unchanged. Note that the modified DW operator is still �5

Hermitian for arbitrary real values of the coefficients c1
and c3. The new domain wall operator can therefore be
derived in the same way as Eq. (13) was obtained. We fix
the coefficients by demanding the dispersion relation for
free fermions on the lattice to be the same as in the
continuum up to Oða4p4

j Þ. We find that all the terms at
Oða3p3

j Þ are eliminated for the coefficients c1 ¼ 9=8, c3 ¼
�1=8. We employ them below for the calculation of the
thermodynamic quantities.

Following [18], we use K3ð�̂Þ ¼ K3ð�̂Þ and L3ð�̂Þ ¼
L3ð�̂Þ for introducing �̂ for the three-link terms in the
modified domain wall operator. The ratio of quark number
susceptibilities, �ð0Þ=�SB, computed using the modified
domain wall operator in the presence of �̂, is plotted as a
function of 1=N2

T as in Fig. 11 along with that for the
unimproved domain wall operator of Eq. (13). We used
M ¼ 1, � ¼ 4, N5 ¼ 18, and a5 ¼ 1 for this computation.
One clearly notices that the large correction terms
(
 45%) at NT ¼ 6–8 for the usual domain wall operator
go down to about 7%–8%. Indeed, the size of corrections

go down further as NT increases. Similarly, the energy
density of such improved fermions also exhibited smaller,
about 15%–5%, deviations from the continuum for NT ¼
6–10, as compared to about 30% in the Fig. 7(b).

B. Overlap kernel

From Sec. II, we know that the overlap operator can be
derived as a special limiting case of the domain wall
operator. It would be thus interesting to check how the
improvement in the Wilson-Dirac operator in Eq. (34) fairs
in the overlap case. For that purpose, we compute the quark
number susceptibility for noninteracting fermions on a
N3 � NT lattice numerically with the corresponding im-
proved overlap operator. The �=�SB does have lower 1=N2

T

corrections for NT ¼ 6, 8 than for the conventional overlap
operator with M ¼ 1 as shown in Fig. 12. We also observe
a faster approach to the continuum result with such an
improved overlap operator than with the Neuberger over-
lap operator even with optimum M ¼ 1:55 reported in
[10]. Another advantage is that the thermodynamic quan-
tities calculated from this improved operator are free
from oscillations at odd-even values of NT exhibited [10]
by the usual overlap operator. The improvement in the
energy density is marginal up to NT ¼ 8 but substantial
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for NT ¼ 10 onwards. Similar improvement for the 2D
overlap kernel by replacing the Wilson-Dirac operator
with different hypercubic operators was observed in
Ref. [19].

VI. CONCLUSIONS AND DISCUSSIONS

Since the chiral violations vanish exponentially with the
number of sites N5 in the fifth dimension, the domain wall
fermions offer a more practical alternative to the overlap
fermions and yet have exact flavor and spin symmetry. We
have computed the energy density and susceptibility at
zero chemical potential of such fermions numerically for
both finite and infinite N5. The chiral symmetry is exact in
the latter case and a choice M between 1.45–1.50 allows
faster convergence to the continuum results. We have also
verified analytically that the energy density has the correct
continuum value in the chiral limit. Varying the number of
lattice sites in the fifth dimension, we have shown that
N5 ¼ 18 is sufficient to restore chiral symmetry.

We found that introducing chemical potential �̂ in the
domain wall operator leads to chiral symmetry breaking

even for infinite N5. But if we do allow that, there exist a
large class of functions Kð�̂Þ and Lð�̂Þ, with Kð�̂Þ �
Lð�̂Þ ¼ 1, for which there are no �̂-dependent divergent
terms in the physical observables. From the numerical
evaluation of the energy density in the presence of �̂, we
conclude that the optimum range of M remains the same.
The lattice cutoff effects are however very large for small
NT ¼ 4–8. By systematically removing the dominant cor-
rection terms to the continuum value of the chiral fermion
operators, we have achieved a faster rate of convergence to
the continuum as well as a smaller magnitude of 1=N2

T

corrections for small lattice sizes even for M ¼ 1:0. This
set of optimum parameters is anticipated to produce similar
results in full QCD simulations with chiral fermions
though an explicit check needs to be done.

ACKNOWLEDGMENTS

S. S would like to acknowledge the Council of Scientific
and Industrial Research (CSIR) for financial support.

[1] D. B. Kaplan, Phys. Lett. B 288, 342 (1992).
[2] P.M. Vranas, Phys. Rev. D 57, 1415 (1998).
[3] Y. Shamir, Nucl. Phys. B406, 90 (1993).
[4] J. Bloch and T. Wettig, Phys. Rev. D 76, 114511

(2007).
[5] R. V. Gavai, Phys. Rev. D 32, 519 (1985).
[6] H. Neuberger, Phys. Rev. D 57, 5417 (1998).
[7] R. G. Edwards and U.M. Heller, Phys. Rev. D 63, 094505

(2001).
[8] R. Narayanan and H. Neuberger, Phys. Rev. Lett. 71, 3251

(1993); H. Neuberger, Phys. Lett. B 417, 141 (1998).
[9] P. H. Ginsparg and K.G. Wilson, Phys. Rev. D 25, 2649

(1982).

[10] D. Banerjee, R. V. Gavai, and S. Sharma, Phys. Rev. D 78,
014506 (2008).

[11] M. Luscher, Phys. Lett. B 428, 342 (1998).
[12] R. V. Gavai and S. Sharma, J. Phys. G 35, 104097 (2008).
[13] G. T. Flemming, Nucl. Phys. B, Proc. Suppl. 94, 393

(2001).
[14] P. Hegde et al., Eur. Phys. J. C 55, 423 (2008).
[15] P. Hegde, F. Karsch, and C. Schmidt, arXiv:0810.0290.
[16] S. Capitani, Phys. Rev. D 75, 054505 (2007).
[17] S. Naik, Nucl. Phys. B316, 238 (1989).
[18] R. V. Gavai, Nucl. Phys. B, Proc. Suppl. 119, 529 (2003).
[19] W. Bietenholz and I. Hip, Nucl. Phys. B570, 423 (2000).

THERMODYNAMICS OF FREE DOMAIN WALL . . . PHYSICAL REVIEW D 79, 074502 (2009)

074502-11


