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It has been argued recently that parton showers based on color dipoles conflict with collinear

factorization and do not lead to the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-

tion. We show that this conclusion is based on an inappropriate assumption, namely, the choice of the

gluon energy as evolution variable. We further show numerically that Monte Carlo programs based on

dipole showers with ‘‘infrared-sensible’’ evolution variables reproduce the DGLAP equation both in

asymptotic form as well as in comparison to the leading behavior of second-order QCD matrix elements.
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I. INTRODUCTION

Because of the large center-of-mass (CM) energies at
modern hadron colliders, and especially in connection with
the production of high-ŝ states it is becoming increasingly
essential that we have well-controlled calculations that
cover all regions of phase space in a reliable way (see,
e.g., [1]), and that these are implemented consistently in
the phenomenological tools we use for collider studies—
we shall here focus on Monte Carlo Event Generators. It is
likewise important that we have an accurate theoretical
understanding of the properties we rely on these calcula-
tions to have.

Nontrivial collider observables almost invariably in-
volve an interplay between widely separated energy scales.
This represents an important challenge to collider phe-
nomenology since, in any gauge theory with massless
gauge bosons (thus QED and QCD, in particular), such
scale hierarchies give rise to logarithmic enhancements in
the matrix elements, order by order in perturbation theory,
which ultimately render a truncation of the perturbative
series invalid at any fixed order. This becomes increasingly
relevant as the collider CM energy (or other relevant hard
scale) grows, leaving more room for scale hierarchies to
develop beneath it.

A state-of-the-art collider physics calculation includes
both a good description of physics at short distances—
usually represented by perturbative leading order (LO) or
next-to-leading order (NLO) matrix elements with
renormalization-group (RGE) improved couplings—a
good description of the transition from short to long dis-
tances, which takes proper account of any large scale
hierarchies that may develop on the way—usually repre-
sented by leading-log (LL) parton showers incorporating as
many next-to-leading-log (NLL) effects as feasible, as well
as models of other possible perturbatively enhanced as-
pects such as multiple parton interactions (MPI)—and
finally a good description of the physics at long dis-
tances—usually represented by nonperturbative models
of beam remnants, hadronization, and hadron decays.

We shall here focus on parton shower algorithms, which
provide the connection between the perturbative fixed-
order matrix elements and the nonperturbative hadroniza-
tion models, and which thus constitute an essential ingre-
dient of general-purpose event generators like HERWIG

[2,3], PYTHIA [4,5], or SHERPA [6].
Parton showers generate infinite-order approximations

to matrix elements (both real and virtual), in such a way as
to coincide exactly with the matrix elements in the singular
limits. The number of singular coefficients that are repro-
duced exactly depends on the order of the parton shower;
thus, an LL parton shower can be expected to generate the
correct coefficients for the ‘‘leading’’ matrix-element sin-
gularities (to be defined further below). These terms domi-
nate in the limit of infinitely large hierarchy between the
scales of each successive emission, and hence LL showers
are supposed to be exact in this so-called ‘‘strongly or-
dered’’ limit. An NLL shower [7–10] should also generate
the correct coefficients for the next-to-leading singular
terms (dominant in regions with one less large hierarchy
than the strongly ordered limit), and so on. While the
accuracy of the above mentioned general-purpose event
generators can be debated, we note that none of them
systematically include the tree-level n ! nþ 2 and 1-
loop n ! nþ 1 splitting functions, and hence they are
all formally LL. However, also without exception, they
do incorporate a number of nontrivial NLL effects system-
atically and usually perform significantly better than cor-
responding analytical LL calculations. Any proposed
algorithm should therefore be subjected to two basic tests:
1) whether it correctly reproduces QCD in the LL singular
limit, and 2) how well it approximates QCD in NLL
singular limits.
At first order in perturbation theory the matrix elements

become singular in phase space regions corresponding to
the emission of collinear or soft particles. The first show-
ering algorithms started from the collinear factorization of
the matrix elements and approximated color interference
effects through angular ordering [11–13]. An alternative
approach is the Lund-dipole or dipole-antenna shower
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model, first implemented in ARIADNE [14–18], in which
first-order color interference effects are instead taken into
account by choosing color-connected pairs of partons to be
the radiating entities.

Here, unfortunately, a digression on nomenclature is
necessary. These parton pairs were simply called dipoles
in the original Lund papers [14–18]. They are also known
as antennae [19–21], mostly in fixed-order contexts. In
order to be clear about what we mean to both communities,
we therefore use the term dipole-antennae [22] here for
these objects. Later, Catani and Seymour invented a re-
lated, but different, concept which they unfortunately also
called dipoles [23]. Roughly, a Catani-Seymour dipole
corresponds to one half of a dipole-antenna, partitioned
in a way that isolates the collinear singularities; hence the
Catani-Seymour dipole could also be called a partitioned-
dipole, as suggested in [24]. The problem has been further
compounded by a new generation of shower models based
on Catani-Seymour dipoles being generally referred to as
‘‘dipole showers’’[25–28], whereas the same name was
already used by ARIADNE to describe its final-state radia-
tion (FSR) model based on dipole-antennae [18]. To make
the confusion complete, while ARIADNE’s algorithm for
final-state radiation is based on a strict dipole-antenna
picture, its treatment of initial-state radiation (ISR) is
somewhat different. We shall nonetheless attempt to retain
some measure of clarity by referring consistently to the
Catani-Seymour-type as partitioned-dipoles and to the
antenna-type as dipole-antennae. The two shower types
do exhibit many similarities, so the distinction may mostly
be important to experts, but as with all approximations, the
devil is in the details.

The last few years have witnessed significant progress in
the improvement of parton shower algorithms. Based on a
proposal by Nagy and Soper [25,26] new algorithms based
on partitioned-dipoles have been developed [27,28]. A new
final-state algorithm relying on the dipole-antenna picture
has also been constructed [22], with similar properties as
the ARIADNE final-state shower, and a complete dipole-
antenna shower model incorporating both ISR and FSR
has been developed in [29]. These new algorithms have
their origin in subtraction methods for fixed-order calcu-
lations [23,30–34] and implement in a correct way simul-
taneously the soft and the collinear limit in a manner
similar to that of ARIADNE’s FSR model. At the same
time the new partitioned-dipole algorithms (as well as
any dipole-antenna algorithm) are able to satisfy simulta-
neously at each step momentum conservation and the on-
shell conditions. This is possible, because they are based
on 2 ! 3 splittings, where the spectator can absorb the
recoil. Within the traditional 1 ! 2 splitting algorithms it
is impossible to satisfy simultaneously momentum conser-
vation and the on-shell conditions for a splitting. What has
to be done in 1 ! 2 splitting algorithms is either to restore
momentum conservation by an ad hoc procedure in the

end, as in HERWIG, or to restore it more locally during the
shower evolution, but still involving at least a third parton
at each step, as in PYTHIA and SHERPA.
In a recent paper Dokshitzer and Marchesini [35] study a

soft dipole-type model with recoil effects, which is ob-
tained from considering multiple antennas in QCD [36].
The first version of Ref. [35] on the archive claimed that
dipole showers are in conflict with collinear factorization
and do not lead to the correct Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equation. Reference [35] moti-
vated us to study this question in detail. In this paper we
show that the above mentioned conclusion is a conse-
quence of an inappropriate assumption, namely, the choice
of the gluon energy as evolution variable. We further show
that with a proper evolution variable the DGLAP equation
is reproduced, thus proving that dipole showers, whether of
the partitioned-type or the antenna-type, have the correct
LL behavior, so long as sensible evolution variables are
chosen. Subleading differences between these shower
models will still be present, at the NLL level, which can
first be accessed at 2nd order in perturbative QCD. We
therefore also include a set of explicit comparisons of
different shower models to 2nd order QCD matrix ele-
ments. We note that in a recent paper Nagy and Soper
[37] have given a strict formal derivation that dipole show-
ers reduce to the DGLAP equation in the strongly ordered
limit. We further note that the second version of Ref. [35]
on the archive only claims that models with the gluon
energy as the evolution variable conflict with collinear
factorization. This is in line with the findings of Ref. [37]
and of this paper.
This paper is organized as follows: In Sec. II, we discuss

the factorization of tree-level matrix elements in soft and
collinear limits. In Sec. III, we review the way a parton
shower is obtained from the factorization properties of the
matrix elements. We discuss in detail the choice of the
evolution variable and point out that an energy-ordered
shower is not compatible with the collinear limit.
Showers ordered by the transverse momentum or the vir-
tuality are unproblematic. In Sec. IV, we consider the
evolution of the nonsinglet quark fragmentation function.
In Sec. V, we compare the analytical result of the previous
section with numerical results obtained from Monte Carlo
programs based on both partitioned-dipole and dipole-
antenna showers. Again we show that, so long as
‘‘infrared-sensible’’ evolution variables are chosen, these
showers correctly reproduce the collinear limit. Finally,
Sec. VI contains our conclusions.

II. BASICS

To set the scene let us consider the matrix-element
squared for �� ! qðp1Þgðp2Þ �qðp3Þ in four dimensions:

jA3ðp1; p2; p3Þj2 ¼ 8e2g2NcCF

�
2
s123s13
s12s23

þ s12
s23

þ s23
s12

�
:

(1)
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In this formula, e denotes the electromagnetic coupling, g
denotes the strong coupling,Nc ¼ 3 denotes the number of
colors, and CF ¼ ðN2

c � 1Þ=ð2NcÞ. The invariants are sij ¼
ðpi þ pjÞ2 and sijk ¼ ðpi þ pj þ pkÞ2.

In the limit where the momentum p2 of the gluon
becomes soft, the formula factorizes as

lim
p2!0

jA3ðp1; p2; p3Þj2 ¼ 8��sCFEikðp1; p2; p3Þ
� jA2ðp1; p3Þj2; (2)

where

Eik ðp1; p2; p3Þ ¼ 2
s13

s12s23
; (3)

and �s ¼ g2=ð4�Þ. The matrix-element squared for �� !
qðp1Þ �qðp2Þ is given by

jA2ðp1; p2Þj2 ¼ 4e2Ncs12: (4)

In the limit where the momentum p2 of the gluon becomes
collinear with the momentum p1 of the quark such that
p1 ¼ zP and p2 ¼ ð1� zÞP we have the factorization

lim
p1jjp2

jA3ðp1; p2; p3Þj2 ¼ 8��sCFPq!qgjA2ðP; p3Þj2;
(5)

with the Altarelli-Parisi splitting function

Pq!qg ¼ 1

s12

�
2

1� z
� ð1þ zÞ

�
: (6)

A similar factorization formula holds for the case where
the gluon becomes collinear with the antiquark.

With the help of an antenna function [21,30] we may
combine the three singular limits (p2 soft, p2jjp1 and
p2jjp3) into one formula:

lim
p2 unresolved

jA3ðp1; p2; p3Þj2 ¼ 8��sCFA
0
3ðp1; p2; p3Þ

� jA2ð~p1; ~p3Þj2: (7)

The antenna function is given by

A0
3ðp1; p2; p3Þ ¼ 1

s123

�
2
s13s123
s12s23

þ s12
s23

þ s23
s12

�
; (8)

which is exactly the object used in both ARIADNE and
default VINCIA for q �q ! qg �q branchings. The momenta
~p1 and ~p3 entering the matrix element A2 are obtained
from p1, p2 and p3 such that they approach the correct
limit in all singular limits, one possibility is [30]

~p1 ¼ ð1þ �Þs123 � 2rs23
2ðs123 � s23Þ p1 þ rp2

þ ð1� �Þs123 � 2rs12
2ðs123 � s12Þ p3;

~p3 ¼ ð1� �Þs123 � 2ð1� rÞs23
2ðs123 � s23Þ p1 þ ð1� rÞp2

þ ð1þ �Þs123 � 2ð1� rÞs12
2ðs123 � s12Þ p3;

(9)

where

r ¼ s23
s12 þ s23

; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4rð1� rÞ s12s23

s123s13

s
: (10)

Note that Eq. (7) gives the correct factorization in any
singular limit: p2 soft, p2jjp1 and p2jjp3. Let us introduce
the dimensionless quantities

y12 ¼ s12
s123

¼ 1� x3; y23 ¼ s23
s123

¼ 1� x1;

y13 ¼ s13
s123

¼ 1� x2;
(11)

where the xi are the ordinary energy fractions, evaluated in
the CM of the 3-parton system,

xi ¼ 2Eiffiffiffiffiffiffiffiffi
s123

p : (12)

Obviously we have y12 þ y23 þ y13 ¼ 1 and x1 þ x2 þ
x3 ¼ 2. The antenna function reads then

A0
3ðp1; p2; p3Þ ¼ 1

s123

�
2

y13
y12y23

þ y12
y23

þ y23
y12

�
: (13)

The unresolved phase space in terms of these variables is

d�unresolved ¼ s123
16�2

dy12dy23dy13�ð1� y12 þ y23 þ y13ÞÞ
��ðy12Þ�ðy23Þ�ðy13Þ: (14)

The Dalitz plot for the unresolved phase space is shown in
Fig. 1. The allowed phase space consists of the triangle
y12 � 0, y23 � 0, y12 þ y23 � 1. The soft singularity cor-

y12

y23

FIG. 1 (color online). The Dalitz plot for the phase space of the
unresolved particle. The location of the soft singularity is shown
by a dot, the location of the collinear singularities by a thick line.
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responds to the point y12 ¼ y23 ¼ 0, while the collinear
singularity p1jjp2 corresponds to the line y12 ¼ 0 (and
the collinear singularity p2jjp3 corresponds to the line
y23 ¼ 0).

We can write the antenna function A0
3 in terms of two

dipoles:

A0
3ðp1; p2; p3Þ ¼ D12;3 þD32;1; (15)

with

D12;3 ¼ 1

s123

�
2y13

y12ðy12 þ y32Þ þ
y23
y12

�
;

D32;1 ¼ 1

s123

�
2y13

y23ðy12 þ y23Þ þ
y12
y23

�
:

(16)

In their recent paper Dokshitzer and Marchesini [35] study
a model consisting of only the soft part of the dipoles:

Dsoft
12;3 ¼

2y13
y12ðy12 þ y23Þs123 ;

Dsoft
32;1 ¼

2y13
y23ðy12 þ y23Þs123 :

(17)

Dokshitzer and Marchesini actually use slightly different
dipoles, obtained upon averaging over the azimuthal angle
of the emitted particle around the emitter. The differences
in the choice for the dipoles will not be relevant to the rest
of the paper. Note that although we label these terms
‘‘soft,’’ the terms Dsoft

12;3 and Dsoft
32;1 have a soft and collinear

singularity. It is also clear, that in the collinear limit Dsoft
12;3

does not reduce to Pq!qg, but to

Psoft
q!qg ¼ 2z

ð1� zÞs12 : (18)

In statements about shower algorithms reproducing the
correct DGLAP equation in the collinear limit, the term
‘‘correct DGLAP equation’’ refers therefore for the model
above to Eq. (18) and not to Eq. (6).

III. PARTON SHOWER

Whereas the factorization formula Eq. (7) is exact in all
singular limits, the right-hand side of Eq. (7) does however
not necessarily equal the full matrix element on the left-
hand side away from the singular limit. (In the particular
example discussed above the full matrix element for �� !
qg �q actually equals the factorized form over the complete
phase space, but this is not the general case.) Since for high
parton multiplicities the full matrix elements are too com-
plicated one approximates in a parton shower the full
matrix elements by the factorized form over the complete
phase space. Let us stress that this identification is exact in
all singular limits and an approximation away from the
singular limits.

The antenna function A0
3 and the dipoles D12;3 and D32;1

are positive definite over the complete phase space and

therefore can be interpreted as a probability distribution for
the emission of an additional particle. For a parton shower
algorithm we introduce two variables t (‘‘shower time’’)
and z (‘‘momentum fraction’’). The shower time t gives the
scale at which the next splitting occurs, the variable z
describes for a splitting a ! bc the momentum fraction
of the daughter b with respect to the mother a. For a
complete description of a splitting we need in principle a
third variable �, but this variable will not be relevant for
the discussion of this paper and we suppress it. Therefore
we can restrict ourselves to a two-dimensional space pa-
rametrized by ðt; zÞ or ðy12; y23Þ as in Fig. 1. The choice for
t (and z) is not unique. If we focus on the dipole D12;3 with

singularities for s12 ! 0 possible choices are

t~1 ~3 ¼ � ln
�k2?
Q2

¼ � ln

�
y12y23y13
ð1� y12Þ2

s~1 ~3
Q2

�
(19)

for a k?-ordered shower or

t~1 ~3 ¼ � ln
s12
Q2

¼ � ln

�
y12

s~1 ~3
Q2

�
(20)

for a virtuality-ordered shower. The quantity Q2 in
Eqs. (19) and (20) is a fixed reference scale, usually taken
to be the center-of-mass energy squared of the showering
system. The shower time t takes values between a starting
time t0 and þ1. As a larger values of t corresponds to
lower scales we have to require that the singular region is
contained in the region defined by t ! 1. In Fig. 2, we
show in the Dalitz plot lines of constant t for the definitions
as in Eqs. (19) and (20). It is clear that the collinear
singular region y12 ¼ 0 is contained for both definitions
in the region defined by t ! 1.
Associated to the scale t is the Sudakov factor �12;3,

giving the probability that no emission occurs between the
scales t0 and t

y12

y23

y12

y23

FIG. 2 (color online). Lines of constant shower time t for a
k?-ordered shower (left panel) and a virtuality-ordered shower
(right panel). The singular region for the dipole D12;3 is shown

by a dot and a thick line. The singular region is approached for
t ! 1.
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�12;3ðt0; tÞ ¼ exp

�
�
Z t

t0

dt0
Z

d�unres�ðt0 � t~1 ~3Þ

� 8��sCFD12;3

�
; (21)

with t~1 ~3 given by Eq. (19) or Eq. (20). The derivative of the
Sudakov factor with respect to t gives the probability of a
splitting at the shower time t:

� d

dt
�12;3ðt0; tÞ ¼ �s

2�
CF

Z
d�unres�ðt� t~1 ~3Þs123D12;3:

(22)

Working this out for a virtuality-ordered shower and set-
ting z ¼ 1� y23 one obtains

� d

dt
�12;3ðt0; tÞ ¼ �s

2�
CF

Z 1

�
dz

�
2

1� zþ �
� 1� z

�
;

� ¼ Q2

s~1 ~3
e�t: (23)

At finite shower time t the splitting probability is finite, as
it should be. In the limit t ! 1 one recovers the DGLAP
equation:

lim
t!1

�
� d

dt
�12;3ðt0; tÞ

�
¼ �s

2�
CF

Z 1

0
dz

�
2

1� z
� 1� z

�
:

(24)

A similar analysis can be carried out for a k?-ordered
shower.

In their paper Dokshitzer and Marchesini [35] did not
use the transverse momentum k? or the virtuality as evo-
lution variable. Instead they chose energy of the emitted
gluon (in the rest frame of the dipole) as evolution variable.
In our notation this amounts to the choice

t~1 ~3 ¼ � ln
E2
g

Q2
¼ � ln

�ðy12 þ y23Þ2
4

s~1 ~3
Q2

�
: (25)

For this choice the lines of constant shower time t are
shown in Fig. 3. In this case, t ! 1 corresponds to the
single point y12 ¼ y23 ¼ 0 in phase space and lines of
constant t intersect the collinear region for finite t. We
can therefore not expect to obtain a shower algorithm
which is correct in the collinear limit based on this evolu-
tion variable. Indeed, a short calculation shows in this case

� d

dt
�12;3ðt0; tÞ ¼ �s

2�
CF�ð1� ymaxÞ

Z ymax

0

dy23
ymax � y23

�
�
1� ymax

�
1� 1

2
y23

��
;

ymax ¼ 2

ffiffiffiffiffiffiffi
Q2

s~1 ~3

s
e�ðt=2Þ:

(26)

There are several problems related to an energy-ordered
shower: For finite shower time t the splitting probability is
infinite, due to the 1=ðymax � y23Þ singularity in the inte-
grand. In the limit t ! 1 the integration over y23 reduces
to a point and not to the integral over the splitting function.
The integrand of Eq. (26) bears no resemblance to the
Altarelli-Parisi splitting function. These deficiencies are
all related to the inappropriate choice of the shower evo-
lution variable.
For completeness we also show the corresponding plot

for an angular-ordered shower in Fig. 3. Lines of constant
angle are given by

1� cos�12 ¼ 2
y12

ðy12 þ y23Þð1� y23Þ (27)

and the corresponding definition of the shower time t is
given by

t~1 ~3 ¼ � ln

�
y12

ðy12 þ y23Þð1� y23Þ
s~1 ~3
Q2

�
: (28)

The points ðy12; y23Þ ¼ ð0; 0Þ and ðy12; y23Þ ¼ ð0; 1Þ are
also reached for finite shower time t and angular-ordered
showers have to introduce a cutoff on the variable z to
avoid these points. In more detail we have for an angular-
ordered shower

� d

dt
�12;3ðt0; tÞ ¼ �s

2�
CF�ð1� ymaxÞ

Z 1

0
dy23

�
�
2
1� y23
y23

1� ymax

1� ð1� y23Þymax

þ y23
1� ð1� y23Þymax

�
;

ymax ¼ Q2

s~1 ~3
e�t:

(29)

As already mentioned above, we have for an angular-
ordered shower for finite t an infinite splitting probability
due to the soft singularity at y23 ¼ 0. In angular-ordered
shower programs this situation is usually handled by in-
troducing an ad hoc cutoff on the variable y23. In the limit

y12

y23

y12

y23

FIG. 3 (color online). Lines of constant shower time t for an
energy-ordered shower (left panel) and an angular-ordered
shower (right panel). The singular region for the dipole D12;3

is shown by a dot and a thick line. For the energy-ordered
shower, lines of constant t intersect the singular region for finite
t. For the angular-ordered shower, the two singular points
ðy12; y23Þ ¼ ð0; 0Þ and ðy12; y23Þ ¼ ð0; 1Þ are reached for finite
shower time.
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t ! 1 and setting z ¼ 1� y23 we recover the DGLAP
equation:

lim
t!1

�
� d

dt
�12;3ðt0; tÞ

�
¼ �s

2�
CF

Z 1

0
dz

�
2

1� z
� 1� z

�
:

(30)

IV. THE NONSINGLET QUARK FRAGMENTATION
FUNCTION

In this section, we review the relevant formulas for the
evolution of the nonsinglet quark fragmentation function.
The DGLAP evolution equation for the nonsinglet quark
fragmentation function dðx;Q2Þ is

Q2 d

dQ2
dðx;Q2Þ ¼ �

Z 1

x

dz

z

�s

2�
CFPqqðzÞd

�
x

z
;Q2

�
;

(31)

where Pqq is the regularized splitting function

PqqðzÞ ¼ 2

1� z

��������þ
þ 3

2
�ð1� zÞ � ð1þ zÞ: (32)

To a function fðxÞ we denote the Mellin transform by

~fðNÞ ¼
Z 1

0
dxxN�1fðxÞ: (33)

In Mellin space the evolution equation for the nonsinglet
quark fragmentation function factorizes:

Q2 d

dQ2
~dðN;Q2Þ ¼ � �s

2�
CF

~PqqðNÞ~dðN;Q2Þ; (34)

with

~P qqðNÞ ¼ �2S1ðN � 1Þ þ 3

2
� 1

N
� 1

N þ 1
: (35)

S1ðN � 1Þ is the harmonic sum

S1ðN � 1Þ ¼ XN�1

j¼1

1

j
: (36)

For large N, S1ðN � 1Þ diverges logarithmically. In Mellin
space the evolution equation can be solved analytically

~dðN;Q2Þ ¼
�
1þ �sðQ0Þ

4�
�0 ln

Q2

Q2
0

��ð2=�0ÞCF
~PqqðNÞ

~dðN;Q2
0Þ;

(37)

where �0 ¼ 11=3CA � 4=3TrNf is the first coefficient of

the beta-function. We are also interested in a toy model
with �s ¼ const, in this case the solution is given by

~dðN;Q2Þ ¼
�
Q2

Q2
0

��ð�s=4�Þ2CF
~PqqðNÞ

~dðN;Q2
0Þ: (38)

The initial condition

dðx;Q2
0Þ ¼ �ð1� xÞ (39)

corresponds in Mellin space to

~dðN;Q2
0Þ ¼ 1: (40)

Finally we are interested in the x-space result for the quark
fragmentation function dðx;Q2Þ for values of x close to 1
and with �s ¼ const. In this region only soft gluons have
been emitted. With the ansatz [38]

dðx;Q2Þ ¼ AðQ2Þð1� xÞBðQ2Þ (41)

and neglecting terms which vanish in the limit x ! 1 one
finds the equation

1

AðQ2Þ
dAðQ2Þ
d lnQ2

þ �sCF

�

�
3

4
� �E � c ðBðQ2Þ þ 1Þ

�
þ lnð1� xÞ

�
dBðQ2Þ
d lnQ2

þ �sCF

�

�
¼ 0: (42)

The coefficient of lnð1� xÞ and the term independent of
lnð1� xÞ have to vanish independently. With the initial
condition Eq. (39) one then obtains

lndðx;Q2Þ ¼ �
�
1þ �sCF

�
ln
Q2

Q2
0

�
lnð1� xÞ

� �sCF

�

�
3

4
� �E

�
ln
Q2

Q2
0

� ln�

�
��sCF

�
ln
Q2

Q2
0

�
: (43)

This solution is valid for

ð1� xÞ � 1 and
�s

�
ln

1

1� x
� 1: (44)

V. NUMERICAL STUDIES

A. The quark fragmentation function

In this section, we study the quark energy distribution in
Monte Carlo events obtained from a shower simulation,
starting from the hard matrix element eþe� ! q �q. As
center-of-mass energy we take Q ¼ mZ, unless indicated
otherwise. The ðN � 1Þ-th moment of the quark energy
distribution at the scale Qj is just

~dðN;Q2
j Þ: (45)

Our main interest is the comparison between the numerical
shower program and the analytical result from the DGLAP
equation. For this comparison it is sufficient to consider a
toy model with �s ¼ const. We set �s ¼ 0:1. For the
numerical result we first generate quark-antiquark events
according to the hard matrix element, then start the shower
at a scaleQ0 and run the shower to the lower scaleQIR. For
a k?-ordered shower starting from a process at the center-
of-mass energy Q the upper limit on Q0 is given by
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Q0;max ¼ Q=2. We then calculate the energy fraction of the

quark (additional quarks obtained from g ! q �q splittings
are not relevant to the discussion here):

x ¼ 2Eq

Q
: (46)

This defines a distribution in x. In addition, we can simul-
taneously bin the moments of this distribution.

We perform several comparisons between the numerical
shower program and the analytical result from the DGLAP
equation. In Mellin space the DGLAP equation is an
ordinary differential equation and the numerical shower
program has to reproduce this equation in the strongly
ordered limit. Strongly ordered implies that the scale of
successive emissions satisfy

. . . � Q2
j�1 � Q2

j � Q2
jþ1 � . . . (47)

We can ensure these conditions by starting the shower at a
rather low scaleQ0 ¼ 2 GeV and run the shower only for a
short interval to QIR ¼ 1 GeV. The low starting scale Q0

ensuresQ2 � Q2
0 and no emissions with a scale larger than

Q0 are generated. The short interval ensures that the num-
ber of events with two or more emissions is negligible and
almost all events will have either zero or one shower
emission. This is necessary since although in a shower
successive emissions are ordered

. . .>Q2
j�1 >Q2

j > Q2
jþ1 > . . . ; (48)

condition (48) does not exclude successive emissions to be
of the same orderQ2

j ¼ OðQ2
j�1Þ. Running the shower over

the short interval from 2 to 1 GeV tests therefore if the
emission of a single particle correctly approaches the
DGLAP limit. Figure 4 shows for this case the comparison
between the numerical shower program and the analytical
solution Eq. (38). We observe an excellent agreement.

We then compare the numerical shower program and the
analytical result from the DGLAP equation for a larger
interval for the evolution. We start the shower at the hard
scale Q0 ¼ Q0;max and run to the low scale QIR ¼ 1 GeV.
We compare again the moments of the quark energy dis-
tribution. We do this for the center-of-mass energies Q ¼
mZ, Q ¼ 1 TeV, Q ¼ 10 TeV, and Q ¼ 100 TeV. We do
not expect perfect agreement, since now the shower may
generate emissions with a scale smaller but comparable to
the previous one. However both the shower and the
DGLAP equation resum the leading logarithm. In the limit
where this logarithm is large against other terms, the
results should agree. Figure 5 shows the comparison be-
tween the numerical shower program and the analytical
solution Eq. (38) for the center-of-mass energies Q ¼ mZ,
Q ¼ 1 TeV, Q ¼ 10 TeV, and Q ¼ 100 TeV. The start-
ing scale of the shower is always Q0 ¼ Q0;max ¼ Q=2. For
the final scale of the shower the value QIR ¼ 1 GeV is
always used. We observe that for large values of

ln
Q2

0

Q2
IR

(49)

the two results approach each other.
Figure 6 shows the 10th moment of the quark energy

distribution as a function of the (fixed) value of �s. The
center-of-mass energy is Q ¼ mZ and the starting scale of
the shower Q0 ¼ Q0;max ¼ Q=2. As the low scale QIR ¼
1 GeV is used. From Eq. (38) we expect on a logarithmic
scale a linear relationship with respect to the variation of
�s:

ln~dðN;Q2
IRÞ ¼ � �s

4�
2CF

~PqqðNÞ lnQ
2
IR

Q2
0

: (50)

We observe in the left plot of Fig. 6 that both the numerical
result from the shower program and the theoretical curve
give straight lines. However the slope is slightly different.
From Eq. (50) we see that the slope depends on the value
of the hard scale Q0. To eliminate the dependence on Q0

we show in the right plot of Fig. 6 the ratio
~dðN;Q2

IRÞ=~dðN; 4Q2
IRÞ of the 10th moment at the low scales

QIR and 2QIR. In this ratio the dependence onQ0 drops out:

ln
~dðN;Q2

IRÞ
~dðN; 4Q2

IRÞ
¼ �s

�
CF

~PqqðNÞ ln2: (51)

We observe an excellent agreement.
As a further comparison we now study the quark energy

distribution in x-space for values of x close to 1. This
region is sensitive to the emission of soft gluons. We start
the shower at the hard scale Q0 ¼ Q0;max ¼ Q=2 ¼ mZ=2,
and use as the final scale of the shower QIR ¼ 1 GeV.
Figure 7 shows the comparison between the numerical
shower program and the analytical solution Eq. (43). We
observe a good agreement. We would like to make a com-
ment: The analytical solution gives a linear relation

shower
DGLAP

Moments of the quark energy distribution

N

d̃
N

Q
2 IR

100806040200

1.05

1

0.95

0.9

0.85

0.8

0.75

)
(

,

FIG. 4 (color online). Moments of the quark energy distribu-
tion at QIR ¼ 1 GeV obtained from starting the evolution at
Q0 ¼ 2 GeV.
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lndðx;Q2Þ ¼ A lnð1� xÞ þ B; (52)

shown as a straight line in Fig. 7. The validity of the
analytical solution according to Eq. (44) is restricted to

the region

� �

�s

� lnð1� xÞ � 0: (53)
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FIG. 5 (color online). Moments of the quark energy distribution at QIR ¼ 1 GeV for various center-of-mass energies: Q ¼ mZ,
Q ¼ 1 TeV, Q ¼ 10 TeV, and Q ¼ 100 TeV.
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FIG. 6 (color online). The 10th moment of the quark energy distribution for various values of �s, obtained from a process with
center-of-mass energy Q ¼ mZ. The left figure shows the moment atQIR ¼ 1 GeV; the right figure shows the ratio between the values
at QIR ¼ 1 GeV and QIR ¼ 2 GeV.
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Similarly, the shower does not generate emissions below a
certain value of lnð1� xmaxÞ. Values of lnð1� xÞ below
that value would correspond to emissions with a scale less
thanQIR. As a consequence there are for any finite value of
QIR events, which did not radiate at all. (The fraction of
these events is determined by the Sudakov factor at the
scale QIR.) In Fig. 7 we have normalized the shower result
to the number of events which emitted at least one addi-
tional parton.

To further test the validity of our conclusions under
systematic variations of the shower assumptions, we use
the capabilities of the VINCIA plug-in to the PYTHIA 8
generator [5,22], which offers the possibility to use arbi-
trary radiation functions in conjunction with several differ-
ent evolution variables within a dipole-antenna shower
context. We also compare to the standard PYTHIA 8

p?-ordered shower [39], which represents a hybrid be-
tween the parton and dipole approaches. In both programs,
we switch off g ! q �q branchings, use a fixed�s ¼ 0:1 and
take the starting scale to be Q ¼ 103 GeV as default, with
a hadronization scale (infrared cutoff) ofQIR ¼ 1 GeV. In
VINCIA, we further switch off matching to matrix elements

and matching to 2 ! 4 antenna functions.
In VINCIA, we consider two different dipole-antenna

evolution variables: transverse momentum (identical to
the ARIADNE evolution variable [18]) and antenna-mass,
referred to as type I and type II evolution, respectively. In
terms of color-ordered triplets of parton momenta, these
variables are defined as follows:

Q2
I ðp1; p2; p3Þ ¼ 4

s12s23
s123

� 4p2
?; (54)

Q2
IIðp1; p2; p3Þ ¼ 2minðs12; s23Þ � 2m2

ant; (55)

where the normalizations are chosen such that the maximal
value of the evolution variable is s123 in both cases.

Contours for constant values of these variables are shown
in Fig. 8.
The most general form for a leading-log antenna func-

tion (dipole-antenna splitting function) for massless parton
splitting is represented by a double Laurent series in the
two branching invariants [24],

Aðy12; y23; s123Þ ¼ 4��sC
s123

X1
�;�¼�1

C�;�y
�
12y

�
23; with

yij ¼
sij
s123

� 1; (56)

where C is the color factor. We here consider 3 different
choices for these functions, the Gehrmann-de-Ridder-
Glover (GGG) ones [33], which are the defaults in
VINCIA, and systematically high and low variations, min

and max, respectively, with coefficients for the q �q ! qg �q
and qg ! qgg functions given in Table I. We note that the
default GGG q �q ! qg �q function is identical to the corre-
sponding function in ARIADNE and reproduces the Z !
qg �q tree-level matrix element exactly. Also note that the
color factor for qg ! qgg is ambiguous up to 1=N2

C and

that this variation is included in the min/max variation.
In PYTHIA 8, the transverse-momentum variable, which

we shall here call qT to distinguish it from the other
definitions, agrees with the ARIADNE definition in the in-
frared limit, but differs from it by up to a factor of 2 away
from that limit; see [39]. The splitting functions in PYTHIA

8 are the ordinary DGLAP ones, augmented by matching to

the tree-level Z ! qg �q matrix element.
In this study, we do not include variations of the kine-

matics maps beyond that offered by the default PYTHIA 8

and VINCIA choices. PYTHIA 8 uses a partitioned-dipole-like
map in which a ‘‘recoiler’’ recoils longitudinally (in the
dipole center-of-mass frame) against a ‘‘radiator’’. VINCIA
by default uses the gg ! ggg dipole-antenna map of
ARIADNE for all branchings. In the dipole-antenna case,

no special distinction is made between radiator and re-
coiler; instead the proper collinear limiting behavior is

shower
DGLAP

Q =

−

mZ

ln 1 x

d
x

Q
2 IR

0-1-2-3-4-5

10

1

0.1

0.01

)
(

( )

,

FIG. 7 (color online). The quark energy distribution for small
values of ð1� xÞ at QIR ¼ 1 GeV for the center-of-mass energy
Q ¼ mZ.

y12

y23

y12

y23

FIG. 8 (color online). Lines of constant shower time t for a
p?-ordered shower (left panel) and an antenna-mass-ordered
shower (right panel). The singular region for the antenna
Aðy12; y23Þ is shown by a dot and a thick line. The singular
region is approached for t ! 1.
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obtained by a rotation angle going to 0	 or 180	 in the
respective limits.

In Fig. 9, we show 4 plots illustrating the quark frag-
mentation function with these variations, as compared to
the analytic expression, Eq. (43). The top left plot illus-
trates that one obtains good agreement between VINCIA and
the analytic expression, irrespective of the choice of evo-
lution variable. (Recall that the validity of the analytic
expression is limited to the region lnð1� xÞ � 0.) It
should be noted, though, that it could still be possible to
obtain bigger variations for more extreme variations of the
choice of evolution variable. The top right plot illustrates
the dependence on the choice of antenna functions. As
expected, this variation is larger, since this dependence
enters already at first order in the shower expansion.
Nonetheless, the asymptotic slope of all the curves agrees
with the analytic expectation. In the lower left-hand plot,
we show the variation between PYTHIA 8 and VINCIA, with
two different choices for the hadronization cutoff for the
latter, either in p? or in antenna mass. Though we empha-
size that this distribution is very infrared sensitive, the
dependence on the choice of hadronization cutoff here
seems rather mild. The PYTHIA 8 curve has a slightly
different slope than the VINCIA ones, but still appears to
be within the uncertainty spanned by the variations above.
Finally, in the lower right-hand plot, we show the results
for two alternative starting scales, one at 100 GeV and the
other at 10 000 GeV. As expected, the agreement improves
with increasing energy (or, more precisely, with increasing
Q0=QIR).

In summary, we find no evidence in either partitioned-
dipole or dipole-antenna showers of a breakdown of agree-
ment with DGLAP-based predictions of the quark frag-
mentation function, provided that ‘‘infrared-sensible’’
evolution variables are chosen. The definition of infrared
sensible is that both infinitely soft and collinear emissions
should be classified as unresolved for any finite value of the
evolution variable.

B. Comparison to second-order QCD

A complementary check on the accuracy of the shower
can be obtained by comparing its second-order expansion
to second-order QCD matrix elements. This is simplest for
the dipole-antenna shower, for which the number of pos-
sible histories for each phase space point grows less fast
than for the partitioned-dipole case, so in this subsection,
we shall only use dipole-antenna showers for the compari-
sons, but we emphasize that the results should be qualita-
tively similar for the partitioned-dipole case. This part of
our study is similar to a previous comparison of ARIADNE to
second-order QCD by Andersson et al. [40].
In phase space regions dominated by leading logs, the

ratio shower/matrix-element should be unity. In phase
space regions dominated by hard wide-angle emissions,
the shower could in principle be arbitrarily far from the
matrix element, and finally in regions dominated by sub-
leading logs (such as regions with two emissions at the
same scale), the subleading-log properties of the shower
can be probed.
To perform this test independently of the shower gen-

erator, we use RAMBO to generate a large number of evenly
distributed 4-parton phase space points. For each phase
space point, we evaluate the leading-color 4-parton an-
tenna function,

A4LC ¼ jM4LCðp1; p2; p3; p4Þj2
jM2ðsÞj2

; (57)

as given by Gehrmann et al. [33] (counter checked with
[41] to protect against typos).
We then compute the tree-level leading-color LL

antenna-shower approximation corresponding to the same
phase space point, based on nested 2 ! 3 branchings. For 4
partons, there are two possible antenna-shower histories:
(i) In path A, parton 2 is emitted between partons 1 and

3. The 4-parton evolution scale is then Q2
4A ¼

Q2
Eð1; 2; 3Þ.

TABLE I. Color factors C (in the VINCIA normalization [22]) and Laurent coefficients C�;� for
the antennae used in this study. The coefficients with at least one negative index are universal
(apart from a reparametrization ambiguity for gluons). The positive-index coefficients are
arbitrary and are here varied between min and max.

C C�1;�1 C�1;0 C0;�1 C�1;1 C1;�1 C�1;2 C2;�1 C0;0 C1;0 C0;1

GGG

q �q ! qg �q 8
3 2 �2 �2 1 1 0 0 0 0 0

qg ! qgg 9
3 2 �2 �2 1 1 0 �1 2.5 �1 1.5

Min

q �q ! qg �q 8
3 2 �2 �2 1 1 0 0 �6 4.5 4.5

qg ! qgg 8
3 2 �2 �2 1 1 0 �1 �8 8 7

Max

q �q ! qg �q 8
3 2 �2 �2 1 1 0 0 2 1.5 1.5

qg ! qgg 9
3 2 �2 �2 1 1 0 �1 2 1.5 1.5
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(ii) In path B, parton 3 is emitted between partons 2 and
4. The 4-parton evolution scale is then Q2

4B ¼
Q2

Eð2; 3; 4Þ.
QE denotes a generic evolution variable. We shall here
consider energy ordering, p?-ordering, and antenna-mass
ordering.

We note that a similar study for parton- or partitioned-
dipole (Catani-Seymour) showers would need to consider 8

possible paths from 2 to 4 partons [42]: two possible
radiators in the first 2 ! 3 step (the quark and the anti-
quark), and 4 possible radiators in the subsequent 3 ! 4
step (treating the two ‘‘sides’’ of the gluon, which are
generally associated with different kinematics mappings,
as separate). The dipole-antenna shower is thus very eco-
nomic in the number of terms generated at each successive
order.
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FIG. 9 (color online). The quark fragmentation function as obtained with VINCIA and PYTHIA 8, compared to the analytical
expression, Eq. (43). Top left panel: variation of the evolution variable (p?-ordering vs antenna-mass ordering). Top right: variation
of the antenna functions (the Gehrmann-Glover functions vs the VINCIA min and max variations). Bottom left panel: variation of the
generator and of the hadronization cutoff contour (PYTHIA 8 vs p?-ordered VINCIA with a cutoff in p? or antenna-mass). Bottom right
panel: variation of the starting scale (mZ ¼ 102 GeV vs mZ ¼ 104 GeV). In all cases, g ! q �q branchings were switched off, a
constant �s ¼ 0:1 was used, and D was normalized to the number of inclusive 3-parton events at the cutoff.
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Using a new clustering algorithm that contains the in-
verse of the VINCIA 2 ! 3 kinematics maps, we may

perform clusterings of the type ða; r; bÞ ! ðâ; b̂Þ in a way
that exactly reconstructs the intermediate 3-parton configu-
rations that would have been part of the shower history for
each 4-parton test configuration, for each of the paths A
and B.1 This gives us an exact tree-level reconstruction of
how the antenna shower would have populated each path.
We can now use this to test the shower approximation over
all of 4-parton phase space.

We shall do this by plotting the ratio

R0
4 ¼

Aq �qðc12;c23;4ÞAqgð1;2;3ÞþAq �qð1;c23;c34ÞAg �qð2;3;4Þ
A4ð1;2;3;4Þ ;

(58)

with hatted variables bij denoting clustered momenta. R
thus gives a direct measure of the amount of overcounting
or undercounting by the shower approximation, with val-
ues greater than unity corresponding to overcounting and
vice versa.
The ratio above, Eq. (58), contains nested products of

antennae, identical to the subtraction terms that would be
used in a fixed-order calculation. This does not take into
account the ordering condition imposed in the shower,
however. To impose this condition, we must include step
functions in the shower approximation, as follows:

RE
4 ¼ �ðQ3A �Q4AÞAq �qðc12;c23; 4ÞAqgð1; 2; 3Þ þ�ðQ3B �Q4BÞAq �qð1;c23;c34ÞAg �qð2; 3; 4Þ

A4ð1; 2; 3; 4Þ ; (59)

where

Q4A ¼ QEð1; 2; 3Þ; Q3A ¼ QEðc12;c23; 4Þ
Q4B ¼ QEð2; 3; 4Þ; Q3B ¼ QEð1;c23;c34Þ: (60)

The ratio RE
4 now faithfully reproduces the shower ap-

proximation expanded to tree-level, phase space point by
phase space point, for an arbitrary choice of evolution
variable, QE.

Since the full 4-parton phase space has more dimensions
than can fit on paper, and since the leading singularity of
the gluon emission antenna functions goes like p�2

? [with

p? defined as in Eq. (54)], we project the full phase space
onto two p? values, one of which we choose to correspond
to the initial 2 ! 3 step of a would-be shower history and
the second to the 3 ! 4 step. Specifically, the ordinate
along the y axis will be

y axis: p?;2 ¼ minðp?ð1; 2; 3Þ; p?ð2; 3; 4ÞÞ; (61)

corresponding to the second branching, and the ordinate
along the x axis will be the p? value of the reclustered 3-
parton configuration corresponding to the minð. . .Þ,

x axis: p?;1 ¼
�
p?ðc12;c23;4Þ ;p?ð1;2;3Þ<p?ð2;3;4Þ
p?ð1;c23;c34Þ ;p?ð2;3;4Þ<p?ð1;2;3Þ

:

(62)

Each point in ðp?;1; p?;2Þ-space thus contains a distri-

bution of all 4-parton configurations with that particular

combination of p?;1 and p?;2 values. We shall plot both

the average of this distribution, which we call <RE
4 > , as

well as a measure of the spread of the distribution, which
we define as

rms ðRE
4 Þ ¼ 10rmsðlog10ðRE

4 ÞÞ � 1: (63)

By using this form we probe the average factor of deviation
from unity rather than the absolute measure of the devia-
tion itself. (I.e., we want a point with RE

4 ¼ 0:1 to count as
having a deviation of a factor of 10, rather than an absolute
deviation of 0.9, from unity.) A special case is when we
encounter dead zones in which the shower answer is zero,
and hence the factor of deviation would nominally be
infinite. When computing the rms above we therefore put
a floor on the deviation at a factor 0.01 times the matrix
element.
In Figs. 10 and 11, we show the average and rms for four

different ordering variables; for comparison, we first show
the result without any ordering imposed, as in
Eq. (58), i.e., a simple product of nested antennae with
no � functions imposed. This is equivalent to the subtrac-
tion terms constructed for fixed-order calculations and can
be represented by ‘‘ordering’’ in the variable m2

max ¼
maxðs12; s23Þ. We then compare to the ordered results,
Eq. (59), for energy ordering (as defined by Dokshitzer
and Marchesini, i.e., ordering in the energy of the emitted
parton in the CM of the Z boson), p?-ordering [as defined
in Eq. (54)], and antenna-mass ordering [as defined in
Eq. (55)]. We may identify several regions of interest on
the plots shown in Figs. 10 and 11:
(i) Origo: double-LL singular region: p?;2 � p?;1 �

s, i.e., two widely separated jets plus two strongly
ordered emissions. Should be correctly described by
any LL shower.

1Note that the inversion of VINCIA by this clustering algorithm
is exactly one-to-one, with no approximation made. This was
validated by reclustering a large number of actual branchings
generated by the shower and recovering the prebranching con-
figurations exactly, including global orientations, etc.
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(ii) Top right-hand corner: Hard region: p?;1 
 p?;2 

s, i.e., 4 widely separated jets. Should be correctly
described only by the 4-parton matrix element.

(iii) Area below diagonal dashed (cyan) line (bottom
right-hand corner): region in which the second
emission is strongly ordered with respect to the
first: p?;2 � p?;1. Should be correctly described

by any LL shower matched to the 3-parton matrix
element.

(iv) Intersection of y axis with diagonal solid (cyan)
line: Single-NLL (double-emission) region: p?;2 


p?;1 � s, i.e. 2 widely separated jets plus one

strongly ordered 2 ! 4 emission (two powers of
�s but only one large scale difference). Should be
correctly described only by the 4-parton matrix
element and/or by an NLL shower.

(v) Area above diagonal solid (cyan) line (except top
right-hand corner; see above): p?-unordered re-
gion. Corresponds to a dead zone in a shower or-
dered in p?. Although this zone occupies a
relatively large area in our projection, this is chiefly
an artifact of our choice of variables. The actual

FIG. 10 (color online). Left panels: Average of the RE
4 distributions, Eqs. (58) and (59), for no ordering (top) and energy ordering

(bottom). Diagonal lines indicate boundaries between unordered, ordered, and strongly ordered regions (doubly strongly ordered
region is at origo). Right panels: the rms of the factor of deviation from unity of the RE

4 distributions.
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phase space volume in this region amounts to
roughly 1.5% of the full 4-parton phase space.

Our operational definition of a ‘‘correctly described
region’’ we shall here take to be that both the average of
the RE

4 distribution as well as its rms factor in that region
should tend to unity. If so, this means that the shower is not
only getting the average of the distribution right, but there
are also no large fluctuations on either side of the average.
If only the average is unity but the rms factor is not, then
the interpretation is that the shower is still over and under-

counting individual phase space points, and hence the
relevant part of phase space is not being populated
accurately.
In the top row of Fig. 10, we show the average and rms

factor without imposing any ordering condition at all (apart
from that implied by the nested phase spaces). The central
grey color towards the bottom right indicates that the
shower approximation deviates less than 10% from the
matrix element there, and the two neighboring grey shades
indicate 20% deviation. The next colors (lighter red and

FIG. 11 (color online). Left panels: Average of the RE
4 distributions, Eq. (59), for p?-ordering (top) and antenna-mass ordering

(bottom). Diagonal lines indicate boundaries between unordered, ordered, and strongly ordered regions (doubly strongly ordered
region is at origo). Right panels: the rms of the factor of deviation from unity of the RE

4 distributions. The rms distribution for antenna-

mass ordering (on the lower right) is somewhat affected by the occurrence of a few dead points in a region extending towards the lower
left, which artificially increase the rms in that region.
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darker blue shades) represent factors of 2, 5, and, 10,
respectively. The dominance of light shades in the upper
left half of the plots thus indicate that the nested LL
antenna products, without ordering, exhibit a large over-
counting whenever the 2nd emission does not have a p?
several orders of magnitude smaller than the 1st one.

As expected, the situation for energy ordering is actually
worse (bottom plot row). Though the agreement improves
slightly for hard 2nd emissions, we see a disturbing trend
towards systematic undercounting in the double-LL re-
gion, indicated by the darkening shades towards origo.
What is even more disturbing is that the rms factor does
not follow the average, but instead blows up towards the
LL singular regions. This means that the ‘‘good’’ average
agreement on the left-hand side is really obtained by
cancellations between large over and undercounting of
individual phase space points. The desired LL singular
behavior is therefore observed not to be obtained for this
evolution variable.

Finally, the quite impressive properties of p?-ordered
dipole-antenna showers are evident in the near-unity aver-
age value of both RE

4 and its rms factor of deviation over all

LL-dominated phase space regions in the top left-hand plot
of Fig. 11, as was also noted in the study of Andersson
et al. [40]. Though we here use a different set of antenna
functions and kinematics maps, we see that the excellent
basic agreement with the second-order QCD matrix ele-
ments is retrieved also in our case. We note that by defini-
tion a p?-ordered shower does not generate any points in
the p?-unordered region above the diagonal (cyan) solid
line. (Again, these dead zones were also pointed out in the
study by Andersson et al. [40].) As mentioned, we find that
roughly 1.5% of the full 4-parton phase space is left
unpopulated by this particular ordering variable (antenna-
mass ordering gives a similar number). Keep in mind that
this is 4-parton space though; none of these showers have
any dead zones in 3-parton phase space.

The case of antenna-mass ordering (Fig. 11, bottom row)
is similar to p?-ordering, but its dead zones do not follow
strict contours of p?, and hence the rms factor looks
‘‘artificially’’ large over that part of phase space in which
dead points exist, roughly the area above the diagonal of
the plot.

We plan to return to the issue of dead zones in a future
paper, but note that since they are located in the NLL-
dominated region, they do not affect the conclusions we
wish to make here concerning the LL behavior of the
evolution choices. We thus restrict ourselves to the con-
clusion that p?-ordered dipole-antenna showers appear to
give an excellent approximation to the full 4-parton matrix
element over all LL-dominated regions of phase space
[below the diagonal (cyan) dashed line]. When

p?-ordering is imposed, the rms factor of deviation fur-
thermore registers an impressive sharpening-up of the RE

4

distribution, yielding much larger regions of unity rms
factor than the corresponding case without ordering. Also
antenna-mass ordering represents a substantial improve-
ment, although the improvement in the rms is slightly
masked by the fact that our projection ‘‘smears out’’ its
dead zones over a larger area of the plot than for
p?-ordering.
Energy ordering, on the other hand, effectively introdu-

ces artificially undercounted zones in the doubly-LL sin-
gular region, while still not removing the overcounting that
was already present in the same region without ordering—
hence the rms measure of deviation actually worsens as we
go further into the singular region. The factorization im-
plied by this choice of evolution variable is thus clearly not
consistent with the structure of QCD.

VI. CONCLUSIONS

In this paper, we studied shower algorithms based on
partitioned-dipoles and dipole-antennae. In particular we
investigated the behavior in the collinear limit and showed
that with an ‘‘infrared-sensible’’ definition of the evolution
variable they reproduce the DGLAP evolution equation.
The definition of infrared sensible is that both infinitely
soft and collinear emissions should be classified as unre-
solved for any finite value of the evolution variable.
Examples of such choices are k?-ordering or mass order-
ing (ordering in virtuality for partitioned-dipole and
antenna-mass for dipole-antenna showers, respectively).
On the other hand, ordering in the energy of the emitted
particle is not infrared sensible (it classifies infinitely col-
linear emissions as being resolved) and does not reproduce
the DGLAP equation.
In addition to these analytic arguments, we have also

presented a numerical study, making use of existing dipole
shower algorithms. We demonstrated that the DGLAP
behavior of the quark fragmentation function is reproduced
by these models for a range of different infrared-sensible
shower algorithms, in particular p?-ordered ones. In addi-
tion we compared dipole-antennae to second-order QCD
matrix elements and again retrieve good agreement in the
strongly ordered (LL-dominated) region for p?-ordering,
but not for energy ordering.
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[5] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys.

Commun. 178, 852 (2008).
[6] T. Gleisberg et al., J. High Energy Phys. 02 (2004) 056.
[7] K. Kato and T. Munehisa, Phys. Rev. D 36, 61 (1987).
[8] K. Kato and T. Munehisa, Phys. Rev. D 39, 156 (1989).
[9] K. Kato and T. Munehisa, Comput. Phys. Commun. 64, 67

(1991).
[10] H. Tanaka, T. Sugiura, and Y. Wakabayashi, Prog. Theor.

Phys. 114, 477 (2005).
[11] G. Marchesini and B. R. Webber, Nucl. Phys. B238, 1

(1984).
[12] B. R. Webber, Nucl. Phys. B238, 492 (1984).
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