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We study the effect of topology for a random matrix model of QCD at nonzero imaginary chemical

potential or nonzero temperature. Nonuniversal fluctuations of Dirac eigenvalues lead to normalization

factors that contribute to the � dependence of the partition function. These normalization factors have to

be canceled in order to reproduce the � dependence of the QCD partition function. The reason for this

behavior is that the topological domain of the Dirac spectrum (the region of the Dirac spectrum that is

sensitive to the topological charge) extends beyond the microscopic domain at nonzero imaginary

chemical potential or temperature. Such behavior could persist in certain lattice formulations of QCD.
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I. INTRODUCTION

Chiral random matrix models [1,2] have been used with
great success in the past 15 years to understand and com-
pute universal features of the QCD Dirac spectrum; see
Ref. [3] for a review. The effect of temperature or chemical
potential can be included in these models in a schematic
way to obtain qualitative, nonuniversal results for the QCD
phase diagram. The main purpose of this paper is to point
out and clarify a number of subtleties and nonuniversal
effects that can arise when the effects of topology become
important in such schematic random matrix models. In
particular, we shall see that nontrivial normalization fac-
tors can occur which will be related to nonuniversal prop-
erties of the Dirac spectrum.

Let us first consider QCD at zero temperature with Nf

quark flavors, which for simplicity we take to be of equal
mass m. The QCD partition function, ZQCD, can be con-
sidered at fixed � angle or at fixed topological charge �. In
the former case, the � angle can be introduced according to
(see, e.g., [3,4])

mR ! mei�=Nf ; mL ! me�i�=Nf ; (1)

where mR ðmLÞ is the mass that couples right-handed (left-
handed) quarks with antiquarks of opposite chirality. We
assume m to be real and positive.

If the number of right-handed and left-handed modes
differs by �, the product of the fermion determinants
results in an overall factor ei��, and we have

ZQCDðm; �Þ ¼ X1
�¼�1

ei��ZQCD
� ðmÞ: (2)

This relation can be inverted to give the QCD partition
function at fixed �,

ZQCD
� ðmÞ ¼ 1

2�

Z 2�

0
d�e�i��ZQCDðm; �Þ; (3)

which corresponds to a path integral restricted to gauge
fields of topological charge �.
It is generally assumed that the gauge field measure does

not depend on the topological charge. When topological
excitations can be considered as independent events, the
central limit theorem dictates that the distribution of topo-
logical charge is given by

P � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�V�

p e��2=2V�; (4)

where V is the space-time volume and � is the topological
susceptibility at � ¼ 0. In the quenched theory (or, equiv-
alently, for heavy quarks), � ¼ �q is a mass-independent

constant, whereas for light quarks, the topological charge is
screened, resulting in a topological susceptibility at � ¼ 0
given by [5]

� ¼ m�; (5)

where � is the absolute value of the chiral condensate for
m ¼ 0 and � ¼ 0.
In the microscopic domain of QCD, where the Compton

wavelength of the pion is much larger than the size of the
box, the mass and � dependence of the QCD partition
function is given by a random matrix theory (RMT) with
the same global symmetries as those of QCD. Contrary to
QCD, random matrix partition functions are defined in
terms of integrals over the matrix elements of the Dirac
operator at fixed topological charge rather than integrals
over gauge fields at fixed � angle, which contain the sum
over topological charges. In this paper we will study ran-
dom matrix theories that are deformed by an imaginary
chemical potential or temperature. The deformation pa-
rameter will be denoted by u.
Given a random matrix partition function at fixed �, the

partition function at fixed � is defined by

ZRMTðm; �Þ ¼ X1
�¼�1

ei��P �N �Z
RMT
� ðmÞ; (6)
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where we separated a potentially nontrivial normalization
factor N � and a weight factor P � from ZRMT

� ðmÞ. The
factor P � corresponds to the quenched distribution of
topological charge given in Eq. (4) (with � ¼ �q). Other

�-dependent normalization factors that may arise in ran-
dom matrix models of the QCD partition function are
included in the factor N �. One of our objectives is to
discuss the significance of these two factors. We shall see
in Sec. III A that, contrary to QCD or chiral random matrix
theories at u ¼ 0 [1,6], N � can become a nontrivial
function of the deformation parameter. On the other
hand, as will be shown in Sec. III B, for light quarks it
makes no difference whether or not P � is included in the
sum over � [6].

A related question we would like to address in this paper
is which part of the Dirac spectrum is sensitive to the
topological charge. The answer to this question could
depend on the parameters of QCD or the chiral random
matrix model, and we shall see below that this is actually
the case. It also depends on the value of the quark mass, for
which we distinguish the following scales: (i) The micro-
scopic scale [1,2] where mV� is kept fixed in the thermo-
dynamic limit. This corresponds to the " regime of chiral

perturbation theory [7]. (ii) The chiral scale where m
ffiffiffiffi
V

p
is

kept fixed in the thermodynamic limit. This corresponds to
the p regime [8] of chiral perturbation theory. (iii) The
macroscopic domain with m��QCD. In the microscopic

domain, the mass dependence of the QCD partition func-
tion is given by chiral random matrix theory. Actually, this
domain extends beyond the microscopic domain all the
way to the chiral scale. Therefore, it is appropriate to
borrow the name ‘‘ergodic domain’’ from the theory of

disordered systems [9] to distinguish the domain m �
1=�QCD

ffiffiffiffi
V

p
from the microscopic scaling domain. Note

that we will sometimes consider the limit where mV�
approaches infinity with the understanding that the ther-
modynamic limit is taken first so that m is still in the
microscopic domain.

The issues that will be addressed in this paper are al-
ready manifest for one quark flavor, and for simplicity we
will only discuss this case. The one-flavor QCD partition
function, given by the average fermion determinant, is a
function of the quark mass and of the � angle or the
topological charge �. If the eigenvalues of the (anti-
Hermitian) Dirac operator at fixed � are denoted by i��

k ,

the QCD partition function at fixed � can be expressed as

Z�ðmÞ ¼
�Y

k

ði��
k þmÞ

�
; (7)

where the average is over gauge fields with fixed �.
We know that in the microscopic domain (and in fact in

the ergodic domain) the mass dependence of the one-flavor
QCD partition function in the sector of topological charge
� is given by [4,7]

Z�ðmÞ � I�ðmV�Þ: (8)

For large values of the argument the modified Bessel
function I� becomes insensitive to its index �, and thus
Eq. (8) implies that the average fermion determinant does
not depend on the topological charge when mV� � 1. In
terms of Dirac eigenvalues one way to realize this is when
only eigenvalues below this mass scale are affected by
topology [see Eq. (7)]. However, more exotic scenarios
are also possible. It could be that eigenvalues beyond the
microscopic domain are sensitive to the topological charge.
If m is in the microscopic domain, this might result in a
�-dependent overall factor N � that could depend on the
deformation parameter u and restores the � independence
of Z� for mV� � 1. To find out whether this scenario is
realized, it makes sense to introduce the notion of the
topological domain of the Dirac spectrum, which we define
to be the part of the Dirac spectrum that is sensitive to the
topological charge.
In QCDwe haveN � ¼ 1 and, from Eqs. (2) and (8), the

universal � dependence of the partition function is given by

ZQCDðm; �Þ � emV�cos�: (9)

It is plausible that the standard scenario discussed after
Eq. (8) applies in this case, i.e., the topological domain of
the Dirac spectrum does not extend beyond the micro-
scopic domain. Exotic scenarios such as the one discussed
above could occur in certain lattice formulations of QCD,
and it would be interesting to test this directly. We shall
further comment on this point in the conclusions.
The ergodic domain of QCD is given by random matrix

theory, but since the average fermion determinant is sensi-
tive to all eigenvalues, it could be that deformations of the
random matrix model result in a topological domain that
extends beyond the microscopic domain. In this paper we
will see that this may happen in random matrix models at
nonzero temperature/imaginary chemical potential.
The � dependence of random matrix theories at nonzero

temperature was discussed before in the literature [10]. In
that work the temperature was introduced such that it only
affects the eigenmodes corresponding to nonzero Dirac
eigenvalues. This resulted in the same � dependence as
in the zero-temperature random matrix model [1]. Among
others it was shown that the Oðm2Þ term in the chiral Ward
identity does not contribute in the chiral limit. This is not
always the case. It was recently shown in the framework of
chiral perturbation theory that in the superfluid phase of
QCD at nonzero chemical potentials the Oðm2Þ term can-
not be neglected [11]. In this paper we will see that the
Oðm2Þ term in the chiral Ward identity contributes to the
topological susceptibility for randommatrix partition func-
tions at nonzero temperature/imaginary chemical potential
if the u-dependent normalization factor N � is not
included.
The structure of this paper is as follows. Chiral random

matrix theories at zero and nonzero deformation parameter
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will be introduced in Sec. II. The random matrix models
are solved in Sec. III, where we also discuss the normal-
ization factor N � and the distribution of the topological
charge P �. In Sec. IV we show that the chiral condensate
for one flavor only has the correct behavior if the normal-
ization factorN � is included. The origin ofN � is studied
in Secs. Vand VI. In Sec. V we show that it is related to the
extent of the topological domain, and in Sec. VI we find
that the contribution of the pseudoscalar susceptibility does
not vanish if N � is not included. Concluding remarks are
made in Sec. VII.

II. CHIRAL RANDOM MATRIX MODELS

A. Definition of the random matrix model

The random matrix model for Nf ¼ 1 in the sector of

topological charge � is defined by [1]

Z�ðmÞ ¼ CN;�

Z
DW detðDþmÞe�ð1=2ÞN�2 trWyW (10)

with the random matrix Dirac operator defined by

D ¼ 0 iW
iWy 0

� �
: (11)

The integralDW is over the real and imaginary parts of the
elements of the random matrix W, which has dimension
p� q. The Dirac operator (11) has jp� qj exact zero
modes. For this reason we interpret

� ¼ p� q (12)

as the topological charge. The total number of modes

N ¼ pþ q (13)

will be interpreted as the volume. This corresponds to the
choice of mode density

N

V
¼ 1: (14)

The normalization factor CN;� is chosen such that the

quenched partition function is normalized to unity, i.e.,

C N;� ¼
�
N�2

2�

�ð1=4ÞðN2��2Þ
: (15)

We will consider this random matrix model in the pres-
ence of an imaginary chemical potential iu. Using the
chiral representation of the � matrices, the u-deformed
Dirac operator is given by [12–15]

DðuÞ ¼ 0 iW þ iu1p�q

iWy þ iu1q�p 0

� �
; (16)

where ð1p�qÞk‘ ¼ �k‘. Alternatively, u can be interpreted

as a schematic temperature as was done in [12–14]. The
argument goes as follows. The temperature enters in the
Dirac operator through the matrix elements corresponding
to @0, with eigenvalues that are given by the Matsubara

frequencies. We include only the temperature dependence
given by the lowest two Matsubara frequencies by adding
the p� q temperature matrix iT to iW and iWy in
Eq. (11), where

T kk ¼
�
u for k � minfp; qg=2;
�u for k >minfp; qg=2; (17)

and T k‘ ¼ 0 for k � ‘. Using the invariance of the inte-
gration measure under unitary transformations W !
UWV�1 with U 2 UðpÞ and V 2 UðqÞ, the temperature
matrix can be transformed into a diagonal matrix with all
diagonal matrix elements equal to u, so that the Dirac
operator is given by Eq. (16).
In the following, we shall refer to the model defined by

Eq. (16) as model A.

B. Other random matrix models

Equation (16) is not the only way to introduce a nonzero
temperature. Another possibility [10] is to first partition the
N modes into N0 ¼ pþ q ‘‘zero’’ modes and a fixed
numberN1 of ‘‘nonzero’’ modes, with j�j ¼ jp� qj actual
zero modes of the Dirac operator. An N1 � N1 temperature
matrix is then added to the nonzero-mode component of
the Dirac operator, while the zero-mode matrix elements
remain temperature independent. In terms of the Dirac
operator (16) this means that we add to an ðN1=2þ pÞ �
ðN1=2þ qÞ random matrixW a diagonal matrix with N1=2
elements equal to iu and minfp; qg elements equal to zero.
(This is technically equivalent to the model considered in
Ref. [13], although the physics background is different.) In
the following, we shall refer to this model as model B.
A third possibility is to add to W a random matrix with

matrix elements that are proportional to u. This model was
introduced in Ref. [16] for imaginary u (i.e., real chemical
potential) to describe the microscopic domain of QCD at
nonzero baryon chemical potential. For real u, this results
in a model that differs from the original model (11) simply

by a rescaling of the parameter � according to � !
�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
. This model will be referred to as model C.

Note that this model does not have a chiral phase transition.
A less trivial model is obtained by introducing two or more
different imaginary chemical potentials [17], but we will
not discuss this possibility in this paper.

III. SOLUTION OF THE RANDOM MATRIX
MODELS AND NORMALIZATION FACTORS

In this section we solve the random matrix models that
were introduced in the previous section. We will find that
the universal � dependence is not recovered for model A at
u � 0 unless additional normalization factors are included.

A. Solution of model A

In this subsection we solve the random matrix model A
given by Eq. (10) with Dirac operator (16). The procedure
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is standard (see, e.g., [1,12]). We start by writing the
determinant as a Grassmann integral,

detðDðuÞ þmÞ ¼
Z

dc d �c

� exp

"
�c L

�c R

 !
T

ðDðuÞ þmÞ c R

c L

 !#
;

(18)

and perform the Gaussian average over the random matrix
elements. After a Hubbard-Stratonovich transformation
and integration over the Grassmann variables we obtain
the following � model:

ZA
�ðmÞ ¼

Z
d�d��ð1þ u2j�þmj�2Þn

� ð�þmÞpð�� þmÞqe�ð1=2ÞN�2���
; (19)

where n ¼ minfp; qg. Notice that the �-dependent normal-
ization constant introduced in Eq. (10) has canceled.

After changing variables � ! ��m and �� ! �� �
m in Eq. (19) and then expressing the integral over ð�;��Þ
in polar coordinates ðr; ’Þ, the angular integral results in a
modified Bessel function, and the partition function is
given by the remaining integral over r,

ZA
�ðmÞ ¼ 2�

Z 1

0
drI�ðmN�2rÞrj�jþ1ðr2 þ u2ÞðN�j�jÞ=2

� e�ð1=2ÞN�2ðr2þm2Þ: (20)

For large N, this partition function can be evaluated by a
saddle-point approximation. For m in the ergodic domain,
the saddle point in the broken phase is at �r2 ¼ 1=�2 � u2.
To leading order in 1=N the partition function is given by

ZA;as
� ðmÞ � I�ðmN�AðuÞÞ	j�j; (21)

where irrelevant prefactors have been ignored and

�AðuÞ ¼ �	ðuÞ with 	ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2u2

p
: (22)

A second-order phase transition to the chirally symmetric
phase occurs at uc ¼ 1=� [12].

The � dependence of the partition function is obtained
after performing the sum over � according to Eq. (6). As
will be explained in detail in the next subsection, for light
quarks the sum is not affected by the distribution function
P � [6]. We will therefore set P � ¼ 1.

Let us first consider the case u ¼ 0 and take N � ¼ 1.
Using the identity for Bessel functions given by ([18],
Eq. (9.6.33))

X1
�¼�1

I�ðxÞt� ¼ eð1=2Þxðtþ1=tÞ; (23)

we find the universal result [4,6]

ZAðm; �Þju¼0 � emN�cos�: (24)

This shows that we do not need nontrivial normalization
factors at u ¼ 0.

Now consider the case u � 0. Because of the factor 	j�j,
in this case Eq. (21) depends on � for mN�AðuÞ � 1. This
is a nonuniversal result and would also lead to a nonun-
iversal � dependence of ZA after summing over �.
However, these problems can be fixed by introducing a
u-dependent normalization factor

N � ¼ 	�j�j: (25)

Then with the replacement � ! �AðuÞ the sum over � is
the same as for u ¼ 0. Again the sum is not affected by the
distribution function P �, and we find the universal result

ZAðm; �Þ � emN�AðuÞ cos�: (26)

In QCD an imaginary chemical potential is equivalent to a
constant vector field and can be gauged into the temporal
boundary conditions of the fermion fields. This is not the
case in random matrix theory, and therefore it should not
come as a surprise that we need a �-dependent normaliza-
tion factor to recover the correct � dependence. In agree-
ment with universality properties of Dirac spectra at fixed
� [17,19–21] this normalization factor does not depend on
the quark mass.
When u approaches uc ¼ 1=�, higher-order terms in the

saddle-point approximation of Eq. (20) become important,
and the integral has to be performed exactly. We will not
further elaborate on this and only discuss the parameter
domain where the leading-order saddle-point approxima-
tion is appropriate.
We will discuss further properties of model A in later

sections but first turn to a discussion of the necessity of P �

and to a comparison with models B and C, where no
u-dependent normalization factors will be needed.

B. On the necessity of P �

For large j�j at fixed x the modified Bessel function can
be approximated by ([18], Eq. (9.3.1))

I�ðxÞ � ðx=2Þj�j
j�j! : (27)

Therefore, if m is in the microscopic domain, the sum over
� in Eq. (6) is convergent without the Gaussian factor (4).
The sum over � can be performed, up to exponentially

suppressed contributions, using the approximation [4]

I�ðxÞ � 1ffiffiffiffiffiffiffiffiffi
2�x

p ex��2=2x; (28)

which follows from the uniform large-order expansion of
the modified Bessel function and is valid for 1 � j�j � x
([18], Eq. (9.7.7)). It makes no differencewhether or not we
include the factor P � in Eq. (6) since

e�ð�2=2NÞðð1=m�ðuÞÞþð1=�qÞÞ � e�ð�2=2mN�ðuÞÞ (29)
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form in the ergodic domain. The topological susceptibility
at � ¼ 0 is therefore given by Eq. (5). From the approxi-
mation (28) we also see that all topological sectors with
�2 � mN�ðuÞ contribute equally to the partition function.

It was argued by Damgaard [6] that the factor P � should
be absent in the sum over � in Eq. (6), although he also
pointed out that the quenched limit could not be taken
properly in this case. Our point of view is that the presence
of P � is immaterial for m in the microscopic domain, but
that P � becomes important at length scales below the
inverse 
0 mass where it is believed to determine the local
topological susceptibility and leads to the Witten-
Veneziano formula for the 
0 mass [22–25]. Beyond this
scale the topological susceptibility at � ¼ 0 is given by
Eq. (5).

C. Comparison with models B and C

For fixed topological charge � the partition function of
model B is given by

ZB
� ðmÞ ¼

Z
d�d��ðj�þmj2 þ u2ÞN1=2ð�þmÞp

� ð�� þmÞqe�ð1=2ÞN�2���
; (30)

or, after introducing polar coordinates,

ZB
� ðmÞ ¼ 2�

Z 1

0
drI�ðmN�2rÞrN0þ1ðr2 þ u2ÞN1=2

� e�ð1=2ÞN�2ðr2þm2Þ: (31)

Note that this partition function becomes independent of �
for large mN�. Since the correct � dependence is obtained
at u ¼ 0 this model does not require additional normaliza-
tion factors. The sum over � with P � ¼ 1 results in

ZBðm; �Þ ¼ 2�
Z 1

0
dremN�2r cos�rN0þ1ðr2 þ u2ÞN1=2

� e�ð1=2ÞN�2ðr2þm2Þ: (32)

Using a saddle-point approximation for large N, we find
the universal � dependence

ZBðm; �Þ � emN�BðuÞ cos�; (33)

where [13]

�BðuÞ
�

¼
"
1��2u2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �2u2Þ2 � 4�2u2N1=N

p
2

#
1=2

:

(34)

The partition function of model C at deformation pa-

rameter u is equivalent to Eq. (19) at u ¼ 0 with � !
�CðuÞ ¼ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
, and we thus have the universal result

ZCðm; �Þ � emN�CðuÞ cos�: (35)

Hence we see that in order to obtain the universal �
dependence of the partition function neither model B nor

model C requires normalization factorsN � that depend on
the deformation parameter u. However, let us emphasize
again that the appearance of theN � is a generic feature in
RMT. In the remainder of this paper we will identify
mechanisms that are responsible for this behavior.

IV. CHIRAL CONDENSATE AND TOPOLOGY

The caseNf ¼ 1we address in this paper is special since

there is no SUðNfÞ � SUðNfÞ symmetry that could be

spontaneously broken. Nevertheless, there could still be a
chiral condensate, which can be calculated in the usual
way,

jh �c c ij ¼ 1

V
@m logZðm; �Þ: (36)

The parameter� introduced earlier is defined to be equal to
jh �c c ij at � ¼ 0 for m ! 0 and V ! 1. The functions
�ðuÞ computed in Secs. III A and III C correspond to the
u-dependent chiral condensate in the same limits. These
limits can be taken in different orders [26], either

�ð1Þ ¼ lim
V!1 lim

m!0

1

V
@m logZðm; � ¼ 0Þ (37)

or in the reverse order

�ð2Þ ¼ lim
m!0

lim
V!1

1

V
@m logZðm; � ¼ 0Þ: (38)

In Eq. (37), a nonzero chiral condensate implies the break-
ing of the UAð1Þ symmetry by instantons or the chiral
anomaly [27], whereas in Eq. (38) a nonzero chiral con-
densate implies ‘‘spontaneous symmetry breaking’’ in the
following sense. At fixed topology the QCD partition func-
tion has a UAð1Þ symmetry (in fact a covariance except at
� ¼ 0 where we have a symmetry). A nonzero chiral
condensate spontaneously breaks this UAð1Þ symmetry at
fixed topology.
From the universal expression (9) for the one-flavor

partition function it is clear that the order of limits should
not matter. We will now see that for model A this is only
the case if the normalization factors N � are included.
Because in this section we only consider model A we
omit the superscript A. Using Eq. (6) and the mass depen-

dence of Z�ðmÞ given by Eq. (21), we find that �ð1Þ of
model A is given by

�ð1Þ ¼ lim
N!1 lim

m!0

@m½N 1Z1ðmÞ þN �1Z�1ðmÞ�
NN 0Z0ðmÞ ; (39)

where the factor P � has dropped out of numerator and

denominator since it is essentially constant for � � ffiffiffiffi
N

p
.

Using the result (21), we obtain

�ð1ÞðuÞ ¼ ðN 1=N 0Þ�	2 ¼ ðN 1=N 0Þ�ð1� �2u2Þ:
(40)

TOPOLOGYAND CHIRAL RANDOM MATRIX THEORYAT . . . PHYSICAL REVIEW D 79, 074016 (2009)

074016-5



Next we calculate the chiral condensate using the re-
verse order of limits. Based on the discussion in Sec. III B

we find that for j�j � ffiffiffiffiffiffiffiffiffiffiffiffi
mN�

p
the condensate for fixed �

does not depend on �. Its value is therefore equal to the
value in the � ¼ 0 sector. This was calculated in Ref. [12],
resulting in

�ð2ÞðuÞ ¼ �	 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2u2

p
: (41)

We thus see that the two condensates are only equal if

the normalization factor N 1=N 0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2u2

p
from

Eq. (25) is included. Therefore we have a nice consistency
check of Eq. (25).

So far, we have assumed that we can choose p and q to
have arbitrary � ¼ p� q. Let us now fix the total number
of states N. In this case the Dirac operator with � zero
modes has nonzero off-diagonal blocks of dimension ðN þ
�Þ=2� ðN � �Þ=2; see Eqs. (12) and (13). This implies
that the parity of the topology is the same as the parity of
N. In the following we assume thatN, and therefore also �,
is even. Equation (9) shows that the chiral condensate can
be extracted from

ð�ð1ÞÞ2 ¼ lim
N!1 lim

m!0

1

N2

@2mZðm; � ¼ 0Þ
Zðm; � ¼ 0Þ : (42)

Form ! 0, the numerator receives contributions from � ¼
0 and � ¼ 	2, while only the � ¼ 0 sector contributes to
the denominator. For the � ¼ 0 contribution we find [4]

ð�ð1ÞÞ2�¼0 ¼ lim
N!1 lim

m!0

1

N2

@2mZ0ðmÞ
Z0ðmÞ

¼ lim
N!1

2

N2

�XN=2

k¼1

1

ð��¼0
k Þ2

�
Nf¼1

; (43)

where the average includes the fermion determinant. The
right-hand side of Eq. (43) is dominated by the smallest
eigenvalues. Note that this contribution is independent of
the normalization of the partition function. The contribu-
tions of � ¼ 	2 to the condensate are the same and can be
written in terms of the Dirac eigenvalues as

ð�ð1ÞÞ2�¼	2 ¼ lim
N!1

2

N2

N 2

N 0

�QN=2�1
k¼1 ð��¼2

k Þ2
�

�QN=2
k¼1ð��¼0

k Þ2
� ; (44)

where averages without subscript are with respect to the
quenched partition function. This is essentially the ratio of
the fermion determinants in the sectors � ¼ 2 and � ¼ 0.
In the random matrix model A the expressions (43) and
(44) evaluate to

ð�ð1ÞÞ2�¼0 ¼
1

2
�2	2; (45)

ð�ð1ÞÞ2�¼	2 ¼
1

4
�2	4

N 2

N 0

; (46)

so that the correct result for the chiral condensate is ob-
tained with the normalization factors from Eq. (25).
The question we wish to address in the sections below is

why model A requires the u-dependent normalization fac-
tors (25). We will relate this question to the properties of
the Dirac eigenvalues. As we have already discussed in the
introduction, the requirement that Z�ðmÞ be independent of
� for mV� � 1 can explain why a normalization factor
N � � 1 is needed if the topological domain of the Dirac
spectrum extends beyond the microscopic domain.

Equation (44) shows that the consistency relation �ð1Þ ¼
�ð2Þ should also be related to the properties of the Dirac
eigenvalues, to which we turn now.

V. EIGENVALUE FLUCTUATIONS AND
MICROSCOPIC UNIVERSALITY

In the numerical calculation of this section we keep N
fixed as discussed at the end of the previous section.
Motivated by Eq. (44), we consider the ratio Rn of the
products of eigenvalues for � ¼ 2 and � ¼ 0 as a function
of the number of eigenvalues included in the product,

Rn 
 1

N2

�Q
n�1
k¼1ð��¼2

k Þ2
�

�Q
n
k¼1ð��¼0

k Þ2
� : (47)

For n ¼ N=2 all eigenvalues are included in the product,
and for model A the value of this ratio follows from
Eqs. (44) and (46),

R1 ¼ lim
N!1RN=2 ¼ 1

8
�2	4: (48)

We have evaluated the ratio Rn numerically for model A,
using an ensemble of 106 random matrices (16) of dimen-
sion N ¼ 400 distributed according to the Gaussian factor
in Eq. (10). The mass has been set to zero. In Fig. 1 we plot
the ratio Rn=R1 versus n for u ¼ 0, u ¼ 0:5, and u ¼ 0:8.
We observe that for u ¼ 0 the ratio of determinants satu-

rates in the ergodic domain (n &
ffiffiffiffi
N

p ¼ 20). This is not the
case for u ¼ 0:5 and u ¼ 0:8, where all eigenvalues con-
tribute to the ratio of the two determinants.
This is further illustrated in Fig. 2, where we plot the

ratio

��n 
 h��¼2
n i � h��¼0

nþ1i
h��¼0

n i � h��¼0
nþ1i

(49)

versus n. The motivation for constructing this particular
ratio is as follows. The microscopic eigenvalues are ex-
pected to behave universally after rescaling with the chiral
condensate and the volume. The universal result for the
spectral density of microscopic eigenvalues in the
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quenched case and in the topological sector � is [28]

�sð�Þ ¼ �

2
½J�ð�Þ2 � J�þ1ð�ÞJ��1ð�Þ�; (50)

where J� is a Bessel function and � 
 �N�. Its large-�
behavior is given by

�sð�Þ ¼ 1

�
� cosð��� 2�Þ

2��
(51)

so that for �nN� � 1we have h��¼2
n i � h��¼0

nþ1i and there-
fore ��n ! 0. This is indeed what we find in Fig. 2 for
u ¼ 0. Notice that Eq. (50) has been obtained by taking the
microscopic limit and is only valid for eigenvalues well
below the chiral scale. For u ¼ 0 we find that ��n ¼ 0
also beyond the microscopic domain and conclude that in

this case the topological domain does not extend beyond
the microscopic domain. For u � 0, however, the situation
is completely different. All eigenvalues are in the topologi-
cal domain and only the first few eigenvalues show uni-
versal behavior. Comparing the results for N ¼ 400 and
N ¼ 800 in Fig. 2, we observe that the universal domain,
i.e., the domain where the eigenvalue ratio ��n does not

depend on u, increases with N proportional to
ffiffiffiffi
N

p
. This is

in agreement with microscopic universality for u < uc ¼
1=�, which states that the distribution of low-lying eigen-
values is universal after rescaling them by the chiral con-
densate. If we consider the Dirac spectrum around x, the
correction terms to this universal behavior are of the order
Nx2. This implies that the number of eigenvalues with

universal fluctuations around � ¼ 0 scales with
ffiffiffiffi
N

p
.

Based on Fig. 2, a plausible explanation for the behavior
of the ratio of the determinants seen in Fig. 1 can be given
in terms of the u dependence of the average position of the
eigenvalues. For this reason we plot in Fig. 3 the same
ratios as in Fig. 1, but normalized with respect to the
average positions of the eigenvalues. The ratio ~Rn defined
by

~R n 


�Q
n�1
k¼1ð��¼2

k =h��¼2
k iÞ2

�
�Q

n
k¼1ð��¼0

k =h��¼0
k iÞ2

� (52)

is shown for u ¼ 0:0, u ¼ 0:5, and u ¼ 0:8.
We conclude that the u dependence of the ratio of the

determinants is almost exclusively due to the effect of u on
the average position of the eigenvalues.
In the theory of disordered systems, a frequently used

measure to test the breakdown of universality is the number
variance [9]. This is the variance of the number of levels in
an interval containing �n eigenvalues on average. In Fig. 4
we display the number variance �2 versus the average
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FIG. 2 (color online). Topological shift ��n of the eigenvalues for (a) an ensemble of 106 400� 400 matrices and (b) an ensemble
of 105 800� 800 matrices. The shaded areas correspond to the statistical errors.
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FIG. 1 (color online). Convergence of the ratio Rn of determi-
nants for � ¼ 2 and � ¼ 0 as a function of the number n of
eigenvalues included for an ensemble of 106 400� 400 matri-
ces. Results are shown for u ¼ 0:0, u ¼ 0:5, and u ¼ 0:8. The
shaded areas correspond to the statistical errors.
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number �n of eigenvalues in an interval starting at zero. The
curves for u ¼ 0:0 and u ¼ 0:5 coincide for �n � 15, while
the deviations between u ¼ 0:0 and u ¼ 0:8 are already
significant for �n � 5. This is in agreement with the dis-
cussion of Fig. 2.
In Fig. 5 we show the behavior of the Dirac eigenvalues

in model B. We observe that in this model the topological
domain does not extend beyond the microscopic domain
even for u � 0. This is also the case for model C, which at
u � 0 is equivalent to model A at u ¼ 0 after rescaling the
chiral condensate � ! �CðuÞ. The results for model C are
therefore identical to the u ¼ 0 results in Figs. 1–4. We
thus have a further piece of evidence that nontrivial nor-
malization factors N � only appear if the topological
domain extends beyond the microscopic domain.

VI. TOPOLOGICAL AND PSEUDOSCALAR
SUSCEPTIBILITY

As mentioned in the introduction, the � dependence of
the QCD partition function is obtained by introducing left-
handed and right-handed quark masses according to z ¼
mei� and z� ¼ me�i�, respectively; see Eq. (1). Denoting
the left-hand side of Eq. (2) by Zðz; z�Þ, with the superscript
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FIG. 3 (color online). Convergence of the ratio ~Rn of determi-
nants for � ¼ 2 and � ¼ 0 as a function of the number n of
eigenvalues included. Results are for an ensemble of 106 400�
400 matrices. The shaded areas correspond to the statistical
errors.
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FIG. 4 (color online). Number variance versus the average
number �n of levels in the interval ½0; n� for an ensemble of
106 400� 400 matrices. The curves for u ¼ 0:0 and u ¼ 0:5
only start to deviate from each other at �n � 15.
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FIG. 5 (color online). Topological shift ��n and the ratio
Rn=R1 for an ensemble of 106 400� 400 matrices with
N1=N ¼ 0:75 for model B [10].
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QCD omitted for simplicity, the topological susceptibility
at arbitrary � angle is given by

�t ¼ 1

V
ðh�2i � h�i2Þ ¼ � 1

V
@2� logZðz; z�Þ

¼ 1

V
ðz@z þ z�@z� Þ logZðz; z�Þ

þ 1

V
½z2@2z þ z�2@2z� � 2zz�@z@z� � logZðz; z�Þ: (53)

Because m@m ¼ z@z þ z�@z� , the first term on the right-
hand side of this equation is equal to mjh �c c ij; see
Eq. (36). The second term on the right-hand side of
Eq. (53) is equal to m2 times the pseudoscalar (PS) sus-
ceptibility given by

m2�PS ¼ Vhðz �c Lc R � z� �c Rc LÞ2iNf¼1

� Vhz �c Lc R � z� �c Rc Li2Nf¼1: (54)

Thus Eq. (53) becomes

�t ¼ mjh �c c ij þm2�PS: (55)

This is the well-known chiral Ward identity relating �t to
the chiral condensate and the pseudoscalar susceptibility
[5]. Note that jh �c c ij ¼ �cos�þOðmÞ.
The randommatrix partition function ZAðm; �Þwithm in

the ergodic domain can be calculated explicitly from
Eq. (6), setting P � ¼ 1 according to the discussion in

Sec. III B. We will set N � ¼ 	�j�jð1�"Þ, where setting "
to 0 or 1 allows us to switch between including or not
including N �.
We first replace the Bessel function I� in Eq. (20) by the

integral representation

I�ðxÞ ¼ 1

2�

Z 2�

0
d’ei�’þx cos’; (56)

sum the resulting geometric series in �, and perform a
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FIG. 6 (color online). Contributions to �A
t for N ¼ 103 and m ¼ 5  10�2 (a) and (b), and m ¼ 5  10�5 (c) and (d), with or without

the normalization factor N �. We set � ¼ 0 and � ¼ 1. The curves were obtained by numerical evaluation of Eq. (57) in connection
with Eq. (53).
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saddle-point approximation of the radial integral including
next-to-leading order corrections in m to find

ZAðm; �Þ �
Z 2�

0
d’

1� 	2"

1� 2	" cos’þ 	2"

� exp½mN�	 cosð’� �Þ�
� exp

�
1

4	2
Nm2�2cos2ð’� �Þ

�
: (57)

Note that

lim
u!0

1� 	2"

2�ð1� 2	" cos’þ 	2"Þ ¼ �ð’Þ (58)

but also

lim
"!0

1� 	2"

2�ð1� 2	" cos’þ 	2"Þ ¼ �ð’Þ: (59)

Therefore for " ! 0 or u ! 0 we find

ZAðm; �Þ � exp

�
mN�	 cos�þ 1

4	2
Nm2�2cos2�

�
(60)

and thus by Eq. (53)

�A
t ðuÞ ¼ m�AðuÞ cos�þOðm2Þ; (61)

which is consistent with results obtained by Crewther [5].
We conclude that for u ¼ 0 or if we include the normal-
ization factor (25) the contribution of the pseudoscalar
susceptibility vanishes in the chiral limit.

The situation is different, however, if we do not include
the N �. For mN� � 1 the contribution of the pseudo-
scalar susceptibility to the topological susceptibility be-
comes comparable to that of the chiral condensate but with
opposite sign and thus leads to a significant suppression of
the topological susceptibility (see Fig. 6). Because the
saddle-point approximation breaks down close to u ¼ 1
we do not plot the curves of Fig. 6 in this region. For
mN� � 1 the exponent in Eq. (57) can be expanded, and
after evaluating the integral analytically we find

ZAðm; �Þ � 1þmN�	1þ" cos�: (62)

This result agrees with Fig. 6 and shows that in this limit
the contribution of the pseudoscalar susceptibility at u � 0
is small also without N �.

Metlitski and Zhitnitsky have recently found another
situation in which the Oðm2Þ term in Eq. (55) becomes
important, i.e., the superfluid phase of QCD with two or
three colors [11]. Of course, if we include the N � in
model A (as we should) we do not see this effect.
Nevertheless, our observation may potentially be of im-
portance; see the conclusions.

For models B and C no normalization factors N � are
needed to ensure a vanishing contribution of the pseudo-
scalar susceptibility.

The vanishing of the contribution of the pseudoscalar
susceptibility also imposes constraints on the � depen-
dence of pseudoscalar correlators and can be used as a
check of results that were recently derived for the " domain
[29,30].

VII. CONCLUSIONS

It is well-known that random matrix models for QCD at
zero imaginary chemical potential (or temperature) u have
the correct � dependence. In this paper we have shown that
this is not automatically the case for u � 0. We obtain the
correct � dependence only after introducing �-dependent
normalization factors N � in the sum over topologies.
To explain this we have introduced the topological do-

main of the Dirac spectrum, which is defined as the part of
the Dirac spectrum that is sensitive to the topological
charge. We have shown that for u ¼ 0 the topological
domain coincides with the microscopic domain. This is
also the case at u � 0 for models for which no �-dependent
normalization factors are needed to obtain the correct �
dependence. However, for the model we analyzed that
requires nontrivial normalization factors, the complete
Dirac spectrum is inside the topological domain. This
results in a partition function that gives universal behavior
for small Dirac eigenvalues, but has bulk spectral correla-
tions that depend both on u and on the topological charge.
In the thermodynamic limit this leads to an additional
u-dependent factor in the partition function at fixed topo-
logical charge which results in an incorrect � dependence
of the partition function. To obtain a partition function with
the usual behavior in the chiral limit, one has to introduce
additional �-dependent normalization factors in the sum
over topologies.
Our observations are of potential importance for lattice

QCD at nonzero imaginary chemical potential or tempera-
ture. Depending on, e.g., the fermion formulation or the
algorithm used, it could be that nontrivial normalization
factors are needed in the sum over topological sectors, and
these could even persist in the continuum limit. To find out
whether such normalization factors might be necessary, it
would be interesting to determine the topological domain
as a function of the deformation parameters. This is fea-
sible with current lattice technology. To be consistent with
the general properties of QCD, the topological domain
should not extend beyond the microscopic domain.
Future work will tell us if this interesting picture prevails.
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