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In addition to the inclusive cross sections discussed within the QCD-parton model, in the regime of

multiple parton interactions, different and more exclusive cross sections become experimentally viable

and may be suitably measured. Indeed, in its study of double parton collisions, the quantity measured by

the CDF was an ‘‘exclusive’’ rather than an inclusive cross section. The nonperturbative input to the

‘‘exclusive’’ cross sections is different with respect to the nonperturbative input of the inclusive cross

sections and involves correlation terms of the hadron structure already at the level of single parton

collisions. The matter is discussed in details keeping explicitly into account the effects of double and of

triple parton collisions.
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I. INTRODUCTION

The growing importance of multiple parton interactions
(MPI) at high energy has stimulated a lot of interest in the
phenomenon, in view of the forthcoming results at the
LHC [1,2]. MPI are essential to describe the features of
the minimum bias and of the underlying event [3–9] and
may represent an important background in many channels
of interest at the LHC [1,2], not only in processes where the
cross section is large, as the unitarity issue at the origin of
the effect might suggest, but also in cases where the cross
section is rather small, like for the search of the Higgs
boson [10,11] or in the case of the production of equal sign
W boson pairs [2,12,13]. On the other hand, MPI are by
themselves an interesting topic of research, since by study-
ing MPI one may obtain informations on the multiparton
structure of the hadron [1,2].

Up until now, the direct observation of MPI has not been
easy. The direct measurement of MPI requires in fact the
identification of the final fragments of the multiple pro-
cesses and the reduction of statistics, due to the request of
large momentum exchange in each hard interaction, has
restricted considerably the possibilities of a direct study of
the phenomenon. To measure the MPI one needs moreover
to separate the background due to hard radiation. A given
multiparton’s final state may in fact be produced either by a
multiple or by a single parton collision. The separation
between the two contributions has proven to be experimen-
tally feasible in the case of double parton collisions [14–
17]. The enhanced contribution of MPI at high energy will
facilitate considerably direct studies of the phenomenon
and one may reasonably expect that the separation of the
two different contributions will be done more easily at the
LHC, at least in the simplest cases of MPI.

In the regime where MPI may be observed directly, in
addition to the inclusive cross sections usually considered
in large momentum exchange processes, one has the pos-
sibility to measure diverse and more exclusive cross sec-
tions, computable in perturbation theory and linked
differently to the hadron structure [18]. In pp interactions,
MPI are dominated by independent collisions, initiated by
different pairs of partons [19,20]. A direct consequence is
that the multiparton inclusive cross sections are propor-
tional to the moments of the distribution in the number of
collisions [18]. On the other hand, a statistical distribution
may be characterized either by its moments or by its differ-
ent terms. While the moments of the distribution in the
number of collisions are measured by the multiparton
inclusive cross sections, the different terms of the distribu-
tion are measured by a different set of observables, which
one may call ‘‘exclusive’’ cross sections. Inclusive and
‘‘exclusive’’ cross sections result from independent mea-
surements and are linked in a different way to the hadron
structure. The two sets of cross sections are however con-
nected by sum rules. By testing the sum rules, namely, by
looking at the number of terms needed to saturate the sum
rules in a given phase space region, one measures the
effects of unitarity corrections, which allows one to control
the consistency of the analysis and provides an additional
handle to obtain information on the multiparton correla-
tions of the hadron structure.
Interestingly, in its study of MPI, the CDF experiment

did not measure the inclusive cross section of double
parton scattering. The events selected were in fact only
those which contained just double parton collisions, while
all events with triple scatterings (about 17% of the sample
of all events with double parton scatterings) where re-
moved [17]. The resulting quantity measured by CDF is
hence different with respect to the inclusive cross sections
usually discussed in large pt physics. In fact, it represents
precisely one of the ‘‘exclusive’’ cross sections recently
discussed [18].
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While the inclusive cross sections are linked directly to
the multiparton structure of the hadron, the link of the
‘‘exclusive’’ cross sections with the hadron structure is
much more elaborate. The requirement of having only
events with a given number of hard collisions implies
that the corresponding cross section (being proportional
to the probability of not having any further hard interac-
tion) depends on the whole series of multiple hard colli-
sions. The number of hard partonic collisions which can be
observed directly is nevertheless limited, which allows one
to discuss the ‘‘exclusive’’ cross sections by expanding in
the number of elementary interactions. Simple and directly
testable connections between inclusive and ‘‘exclusive’’
cross sections may hence be established by saturating the
sum rules, which link ‘‘inclusive’’ and exclusive cross
sections, with a finite number of terms.

The purpose of the present paper is to discuss the ‘‘ex-
clusive’’ multiparton scattering cross sections, going up to
the third order in the number of collisions and keeping two-

body parton correlations explicitly into account, while the
effects of the three-body parton correlations in the hadron
structure will be neglected. Explicit expressions in terms of
the two-body correlation parameters will be derived in a
few simplest cases, where correlations will be assumed to
depend only on the transverse coordinates.

II. ’’EXCLUSIVE’’ CROSS SECTIONS

In pp collisions, the inclusive cross sections are basi-
cally the moments of the distribution of the number of MPI
[18]. The most basic information on the distribution in the
number of collisions, the average number, is hence given
by the single scattering inclusive cross section of the QCD-
parton model. Analogously, the K-parton scattering inclu-
sive cross section �K gives the Kth moment of the distri-
bution in the number of collisions and is related directly to
the K-body parton distribution of the hadron structure:

�K ¼ 1

K!

Z
DAðx1 . . . xK;b1 . . . bKÞ�̂ðx1x01Þ . . . �̂ðxKx0KÞDBðx01 . . . x0K;b1 � � . . . bK � �Þdx1dx01d2b1 . . .dxKdx0Kd2bKd2�

¼ hNðN � 1Þ . . . ðN � K þ 1Þi
K!

�hard; (1)

where�hard represents the contribution to the total inelastic
cross section due to all events with at least one hard
interaction, while Dðx1 . . . xK;b1 . . .bKÞ is the K parton’s
density of the hadron structure, with transverse parton
coordinates b1 . . . bK and fractional momenta x1 . . . xK, �
is the hadronic impact parameter and �̂ the parton-parton
cross section.

An alternative way to the set of moments, to provide the
whole information of the distribution, is represented by the
set of the different terms of the probability distribution of
multiple collisions. Correspondingly, in addition to the set
of the inclusive cross sections�K, one may consider the set
of the ‘‘exclusive’’ cross sections ~�N , where one selects the
events where only N collisions are present. One hence has

�hard �
X1
N¼1

~�N;

�K � X1
N¼K

NðN � 1Þ . . . ðN � K þ 1Þ
K!

~�N;

(2)

which represents also a set of sum rules connecting the
inclusive and the ‘‘exclusive’’ cross sections.

While the nonperturbative input to the inclusive cross
section �K is given by the K-parton distributions of the

hadron structure, as implicit in Eq. (2), the nonperturbative
input to the ‘‘exclusive’’ cross sections is given by an
infinite set of multiparton distributions. The request of
being in a perturbative regime limits however the number
of partonic collisions and the sum rules in Eq. (2) are
saturated by a few terms, in such a way that the ‘‘exclu-
sive’’ cross sections can be expressed by finite combina-
tions of inclusive cross sections. A particular case is when
all correlations Cn with n > 2 are negligible (higher order
correlation terms may be introduced in the picture of the
interaction as sketched in the Appendix). In that instance,
all sums in Eq. (2) can be performed [21,22] and (neglect-
ing all rescatterings) the hard cross section �hard can be
expressed in the following functional form:

�hardð�Þ ¼
�
1� exp

�
�
Z

dudu0@J�̂ðu; u0Þ@J0
��

�ZA½J�ZB½J0�jJ¼J0¼1; (3)

where u � fx; bg, u0 � fx0; b0 � �g,and �̂ðu; u0Þ is the in-
teraction probability of the two partons with coordinates u
and u0. For simplicity, flavor indices are omitted and the
integration limits are set by the limits of the phase space
window where the MPI are observed. The two-body parton
correlations are introduced through the functional
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Z½J þ 1� � exp

�Z
DðuÞJðuÞduþ 1

2

Z
Cðu; vÞJðuÞJðvÞdudv

�

¼ X
n

1

n!

Z
Jðu1Þ . . . JðunÞDnðu1 . . . unÞdu1 . . . dun; (4)

which generates the nonperturbative input of the n-parton
inclusive cross sections, the inclusive n-body parton dis-
tributions Dnðu1 . . .unÞ. Under these conditions, Eq. (3)
can be worked out fully explicitly. One obtains [21,22]

�hardð�Þ ¼ 1� exp

�
� 1

2

X
n

an � 1

2

X
n

bn=n

�
; (5)

where

an ¼ ð�1Þnþ1
Z

DAðu1Þ�̂ðu1; u01ÞCBðu01; u02Þ�̂ðu02; u2Þ

� CAðu2; u3Þ . . . �̂ðun; u0nÞDBðu0nÞ
Yn
i¼1

duidu
0
i (6)

and the chain, which starts with A, may end either with A or
with B, depending whether n is odd or even. For bn one has

bn ¼ ð�1Þnþ1
Z

CAðun; u1Þ�̂ðu1; u01ÞCBðu01; u02Þ . . .

� CBðu0n�1; u
0
nÞ�̂ðu0n; unÞ

Yn
i¼1

duidu
0
i (7)

and in this case only even values of n are possible.
The exponential in Eq. (5) represents the probability of

no interaction at a given impact parameter �. All ‘‘exclu-
sive’’ cross sections can be obtained from the argument of
the exponential. One may start from the partonic interac-
tion probability

1� Yn
i;j¼1

ð1� �̂ijÞ; (8)

where in the product each index assumes a given value only
once, in such a way that possible reinteractions are not
included. The probability of having only a single interac-
tion is expressed by�
� @

@g

� Yn
i;j¼1

ð1� g�̂ijÞjg¼1 ¼
X
kl

�̂kl

Yn
ij�kl

ð1� g�̂ijÞjg¼1;

(9)

while the probabilities of a double and of a triple collision
are

1

2!

�
� @

@g

�
2 Yn
i;j¼1

ð1� g�̂ijÞjg¼1

¼ 1

2!

X
kl

X
rs

�̂kl�̂rs

Yn
ij�kl;rs

ð1� g�̂ijÞjg¼1

1

3!

�
� @

@g

�
3 Yn
i;j¼1

ð1� g�̂ijÞjg¼1

¼ 1

3!

X
kl

X
rs

X
tu

�̂kl�̂rs�̂tu

Yn
ij�kl;rs;tu

ð1� g�̂ijÞjg¼1

(10)

and the corresponding expressions for the ‘‘exclusive’’
cross sections are

�
� @

@g

�
e�XðgÞ

��������g¼1
¼ X0ðgÞe�XðgÞ

��������g¼1

1

2!

�
� @

@g

�
2
e�XðgÞ

��������g¼1
¼ 1

2!
f½X0ðgÞ�2 � X00ðgÞge�XðgÞ

��������g¼1

1

3!

�
� @

@g

�
3
e�XðgÞ

��������g¼1
¼ 1

3!
fX000ðgÞ þ ½X0ðgÞ�3

� 3X0ðgÞX00ðgÞge�XðgÞ
��������g¼1

(11)

where X ¼ 1
2 ð
P

an þP
bn=nÞ.

It is convenient to expand X and its derivatives in the
number of elementary collisions

X ¼ X1 þ X2 þ X3 þ . . . (12)

where

X1 ¼
Z

DAðuÞ�̂ðu; u0ÞDBðu0Þdudu0

X2 ¼ � 1

2

�Z
DAðu1Þ�̂ðu1; u01ÞCBðu01; u02Þ�̂ðu02; u2ÞDAðu2Þ

Y2
i¼1

duidu
0
i þ A $ B

�

� 1

2

Z
CAðu1; u2Þ�̂ðu1; u01ÞCBðu01; u02Þ�̂ðu02; u2Þ

Y2
i¼1

duidu
0
i

X3 ¼
Z

DAðu1Þ�̂ðu1; u01ÞCBðu01; u02Þ�̂ðu02; u2ÞCAðu2; u3Þ�̂ðu3; u03ÞDBðu03Þ
Y3
i¼1

duidu
0
i:

(13)
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The derivatives at g ¼ 1 give

X0
1ðv; v0Þ ¼ DAðvÞ�̂ðv; v0ÞDBðv0Þ

X0
2ðv; v0Þ ¼ �

�
DAðvÞ�̂ðv; v0Þ

Z
CBðv0; u01Þ�̂ðu01; u1ÞDAðu1Þdu1du01 þ A $ B

�

�
Z

CAðu1; vÞ�̂ðv; v0ÞCBðv0; u01Þ�̂ðu01; u1Þdu1du01

X0
3ðv; v0Þ ¼

�
DAðvÞ�̂ðv; v0Þ

Z
CBðv0; u01Þ�̂ðu01; u1ÞCAðu1; u2Þ�̂ðu2; u02ÞDBðu02Þ

Y2
i¼1

duidu
0
i

þ
Z

DAðu1Þ�̂ðu1; u01ÞCBðu01; v0Þ�̂ðv0; vÞCAðv; u2Þ�̂ðu2; u02ÞDBðu02Þ
Y2
i¼1

duidu
0
i

þ
Z

DAðu1Þ�̂ðu1; u01ÞCBðu01; u02Þ�̂ðu02; u2ÞCAðu2; vÞ�̂ðv; v0ÞDBðv0ÞY2
i¼1

duidu
0
i

�

(14)

and

X00
2 ðv1; v

0
1;v2; v

0
2Þ ¼ �½DAðv1Þ�̂ðv1; v

0
1ÞCBðv0

1; v
0
2Þ�̂ðv0

2; v2ÞDAðv2Þ þ A $ B�
� CAðv2; v1Þ�̂ðv1; v

0
1ÞCBðv0

1; v
0
2Þ�̂ðv0

2; v2Þ
X00
3 ðv1; v

0
1;v2; v

0
2Þ ¼ 2½DAðv1Þ�̂ðv1; v

0
1ÞCBðv0

1; v
0
2Þ�̂ðv0

2; v2Þ
Z

CAðv2; u1Þ�̂ðu1; u01ÞDBðu01Þdu1du01

þDAðv1Þ�̂ðv1; v
0
1Þ
Z

CBðv0
1; u

0
1Þ�̂ðu01; u1ÞCAðu1; v2Þdu1du01�̂ðv2; v

0
2ÞDBðv0

2Þ

þ
Z

DAðu1Þ�̂ðu1; u01ÞCBðu01; v0
1Þdu1du01�̂ðv0

1; v1ÞCAðv1; v2Þ�̂ðv2; v
0
2ÞDBðv0

2Þ�
X000
3 ðv1; v

0
1;v2; v

0
2;v3; v

0
3Þ ¼ 6DAðv1Þ�̂ðv1; v

0
1ÞCBðv0

1; v
0
2Þ�̂ðv0

2; v2ÞCAðv2; v3Þ�̂ðv3; v
0
3ÞDBðv0

3Þ:

(15)

By substituting the expansions in the number of elementary
collisions in the expressions of the interaction probabilities
and by expanding the exponential, one obtains the expres-
sions:

~�0
1 ¼ ðX0

1 þ X0
2 þ X0

3Þð1� X1 � X2 þ X1 � X1=2Þ
2� ~�00

2 ¼ ðX0
1 � X0

1 þ 2X0
1 � X0

2 � X00
2 � X00

3 Þð1� X1Þ
3� ~�000

3 ¼ 1
2ðX000

3 þ X0
1 � X0

1 � X0
1 � 3X0

1 � X00
2 Þ; (16)

where ~�0
1, etc. are the ‘‘exclusive’’ cross sections, differ-

entiated according with (14) and (15). The integrated
‘‘exclusive’’ cross sections hence are

~�1 ¼ X1 �X2
1 �X1X2 þX3

1=2þ 2X2 � 2X2X1 þ 3X3

2� ~�2 ¼ X2
1 þ 4X1X2 � 2X2 � 6X3 �X3

1 þ 2X1X2

3� ~�3 ¼ 3X3 þðX1Þ3=2� 3X1X2: (17)

The sum rules of Eq. (2) are satisfied as follows:

~�1 þ 2� ~�2 þ 3� ~�3 ¼ X1 � X2
1 þ 2X2 þ X2

1 � 2X2 � X1X2 þ X3
1=2� 2X2X1 þ 3X3 þ 4X1X2 � 6X3 � X3

1 þ 2X1X2

þ 3X3 þ ðX1Þ3=2� 3X1X2 ¼ X1 � �S

2� ~�2 þ 6� ~�3 ¼ X2
1 � 2X2 þ 4X1X2 � 6X3 � X3

1 þ 2X1X2 þ 6X3 þ ðX1Þ3 � 6X1X2 ¼ X2
1 � 2X2

� 2� �D

6� ~�3 ¼ 6X3 þ ðX1Þ3 � 6X1X2 � 3!� �T; (18)

where �S, �D, and �T are, respectively, the single, double, and triple parton scattering inclusive cross sections. Explicitly,
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�S ¼ X1 ¼
Z

DA�̂DB

�D ¼ 1

2
½X2

1 � 2X2� ¼ 1

2

�Z
DA�̂DB �DA�̂DB þ

Z
DA�̂CB�̂DA þ

Z
DB�̂CA�̂DB þ

Z
CA�̂CB�̂

�

¼ 1

2

Z
½DADA þ CA��̂ �̂½DBDB þ CB�;

(19)

where ½DDþ C� � D2, the two-body parton distribution
as defined in Eq. (4). An analogous expression may be
written for �T .

The relations (18) may be inverted

~� 1 ¼ �S � 2�D þ 3�T ~�2 ¼ �D � 3�T

~�3 ¼ �T;
(20)

which allow one to express the scale parameters character-
izing the double and triple parton collisions in terms of the
single scattering inclusive cross section �S and of the
single and double parton ‘‘exclusive’’ cross sections ~�1

and ~�2:

�D ¼ �S � ~�1 � ~�2 ¼ 1

2

�2
S

�eff

�T ¼ 1

3
ð�S � ~�1 � 2 ~�2Þ ¼ 1

6
�3

S

1

��2
eff

;

(21)

where the scale factor of the triple parton scattering cross
section has been characterized by the dimensionless pa-
rameter �.

III. CORRELATIONS IN TRANSVERSE SPACE

Multiple parton collisions are most important in the
region of small fractional momenta, where the large popu-
lation of partons may dilute correlations and, e.g., correla-
tions due to energy conservation may not be of major
importance. The simplest possibility is hence to neglect
altogether correlations in fractional momenta and to work
out some case where only correlations in transverse space
are present and which allows an analytic treatment. To
disentangle the effect of correlations in transverse space
from other sources of correlation, we will consider the
instance where all correlation terms give zero, when inte-
grated on the transverse coordinates, in such a way that all
other variables remain uncorrelated and, in particular, the
distribution in the number of partons is Poissonian.

The actual dependence of the correlation on the trans-
verse variables is not prescribed by general principles, in
this section two choices are presented, a Gaussian shape
and an exponential shape, both were used in a previous
analysis [18]. The case of a multiparton distribution ex-
pressed by the superposition of Poissonians will also be
discussed.

A. Gaussian density

Using Gaussian distributions for the parton densities in
transverse space and for the correlations one obtains closed
analytic expressions:

Dðx; bÞ ¼ GðxÞfðbÞ
fðbÞ ¼ gðb; R2Þ

Cðx1; x2; b1; b2Þ ¼ Gðx1ÞGðx2Þhðb1; b2Þ
hðb1; b2Þ ¼ c � gðB; R2=2Þ �hðb; �2Þ
�hðb; �2Þ ¼ d

d�
�gðb; �2=�Þj�¼1;

(22)

where GðxÞ represents the usual one-body parton distribu-
tion, �gðb; �2=�Þ � � � gðb; �2=�Þ,

gðb; R2Þ ¼ 1

�R2
expð�b2=R2Þ

and

B ¼ ½b1 þ b2�=2 b ¼ ½b1 � b2� (23)

in such a way that the following relations hold

Z
d2bgðb; R2Þ ¼ 1;

Z
d2b2gðb1 � b2; R

2
1Þgðb2; R

2
2Þ ¼ gðb1; R

2
1 þ R2

2Þ
Z

hðb1; b2Þd2b ¼ 0:

(24)

One may define the correlation length rc as the value of b
where the correlation term �hðb; �2Þ changes sign. With our
definition of �hðb; �2Þ, one has rc ¼ �.
To define unambiguously the ‘‘correlation strength’’ c,

one needs to normalize properly the correlation term
�hðb; �2Þ (which integrates to zero). Our choice is

Z
jbj�rc

�hðb; �2Þd2b ¼ 1;

which gives � ¼ e, where e is the Euler’s number.
The integrations on the transverse variables of the terms

in Eqs. (16)–(18) give
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DA�̂DB !
Z

d2bd2�gðb��;R2
AÞgðb;R2

BÞ ¼ 1

DA�̂DB �DA�̂DB !
Z

d2b1d
2b2d

2�gðb1��;R2
AÞgðb1;R

2
BÞgðb2��;R2

BÞgðb2;R
2
BÞ ¼

1

2�ðR2
AþR2

BÞ
DA�̂DB �DA�̂DB �DA�̂DB !

Z
d2b1d

2b2d
2b3d

2�gðb1��;R2
AÞgðb1;R

2
BÞgðb2��;R2

AÞgðb2;R
2
BÞgðb3��;R2

AÞgðb3;R
2
BÞ

¼ 1

3�2ðR2
AþR2

BÞ2

DA�̂CB�̂DA !
Z

d2b1d
2b2d

2�gðb1��;R2
AÞhBðb1;b2Þgðb2��;R2

AÞ ¼
cBe

�

�2
B

ð2R2
Aþ�2

BÞ2

DA�̂CB�̂DA �DA�̂DB !
Z

d2b1d
2b2d

2b3d
2�gðb1��;R2

AÞhBðb1;b2Þgðb2��;R2
AÞgðb3��;R2

AÞgðb3;R
2
BÞ

¼ cBe

3�2

2�2
B

ðR2
AþR2

BÞð2R2
Aþ�2

BÞ2

CA�̂CB�̂!
Z

d2b1d
2b2d

2�hAðb1��;b2��ÞhBðb1;b2Þ ¼ cAcBe
2

�

2�2
A�

2
B

ð�2
Aþ�2

BÞ3

CA�̂CB�̂ �DA�̂DB !
Z

d2b1d
2b2d

2b3d
2�hAðb1��;b2��ÞhBðb1;b2Þgðb3��;R2

AÞgðb3;R
2
BÞ

¼ cAcBe
2

3�2

4�2
A�

2
B

ðR2
AþR2

BÞð�2
Aþ�2

BÞ3

DA�̂CB�̂CA�̂DB !
Z

d2b1d
2b2d

2b3d
2�gðb1;R

2
AÞhBðb1��;b2��ÞhAðb2;b3Þgðb3��;R2

BÞ

¼ 16cAcBe
2

3�2R2
AR

2
B

Eðs2A;s2B;r2Þ (25)

where sA;B ¼ ð�=RÞA;B, r ¼ RA=RB, and

Eðs2A; s2B; r2Þ �
s2As

2
B½32r2 þ 100þ 32r�2 þ 6s2Bð1þ 4r�2Þ þ 3s2Að3s2B þ 2ð4r2 þ 1ÞÞ�

fs2A½3s2B þ 2ð4r2 þ 1Þ� þ 2½6þ s2Bð1þ 4r�2Þ�g3 :

Using Eqs. (20) and (21), all inclusive and ‘‘exclusive’’
cross sections, up to the triple order in the number of parton
collisions, are expressed in terms of the single scattering
inclusive cross section �S, of the ‘‘effective’’ cross section
�eff , and of the parameter �. In the case of collisions of two
identical hadrons, the explicit expressions of �eff and � are

1

�eff

¼ 3

8� �R2

�
1þ c � e 16� 3�s2

ð4þ 3�s2Þ2 þ c2 � e2 2

3�s2

�
(26)

and

1

��2
eff

¼ 3

16�2 �R4

�
1þ c � e 16� 9�s2

ð4þ 3�s2Þ2

þ c2 � e2
�
2

3�s2
þ 6� 64E

�
3�s2

2
;
3�s2

2
; 1

���
; (27)

where �s � �= �R (� ¼ rc is the correlation length) and
�R2 � 3

2R
2 is the square hadron radius measured in the

generalized parton distributions [23,24].

B. Exponential density

The case where the parton density has an exponential
shape is better displayed in Fourier-transform representa-
tion:

gðb; R2Þ ¼ 1

ð2�Þ2
Z

e�ik�b 1

ð1þ k2R2Þ2 d
2k; (28)

while all other terms defined in Eq. (22) are redefined
accordingly with this unique change. In particular, the
correlation term is

hðb1; b2Þ ¼ c � gðB; R2=2Þ �hðb; �2Þ
�hðb; �2Þ ¼ d

d�
�gðb; �2=�Þ

���������¼1

¼ 2�

ð2�Þ2
Z

e�ik�b ðk�Þ2
ð1þ k2�2Þ3 d

2k

and �gðb; �2=�Þ � � � gðb; �2=�Þ. As in the previous case,
one defines the correlation length rc as the value of the
distance jb1 � b2j where the correlation �hðb; �2Þ changes
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sign. The relation with the parameter � is rc ¼ x0� with
x0 ’ 2:387 [18]. The normalization parameter �, defined
by the requirement

Z
jbj�rc

�hðb; �2Þd2b ¼ 1

is now � ’ 3:456.

The integrations on the transverse variables cannot al-
ways be displayed in closed form, a relevant simplification
is reached by taking the parameters R and � to be equal in
A and B.
In this case the integrations on the transverse variables of

the terms in Eqs. (16)–(18) give

DA�̂DB !
Z

d2bd2�gðb� �ÞgðbÞ ¼ 1

DA�̂DB �DA�̂DB !
Z

d2b1d
2b2d

2�gðb1 � �Þgðb1Þgðb2 � �Þgðb2Þ ¼ 1

4�R2

1

7

DA�̂CB�̂DA !
Z

d2b1d
2b2d

2�gðb1 � �Þhðb1;b2Þgðb2 � �Þ ¼ c

4�R2
�F

�
1

s2

�

FðaÞ � 3þ 44a� 36a2 � 12a3 þ a4 þ 12að2þ 3aÞ lnðaÞ
3ða� 1Þ6a

CA�̂CB�̂ !
Z

d2b1d
2b2d

2�hðb1 � �;b2 � �Þhðb1;b2Þ ¼ c2

4�R2

2�2

15s2

DA�̂DB �DA�̂DB �DA�̂DB ! 1

ð4�Þ2
1

R4

Z 1

0

ð1þ xþ yÞ½ð1þ xþ yÞ2 þ 6xy�dxdy
ð1þ xÞ4ð1þ yÞ4½ð1þ xþ yÞ2 � 4xy�7=2 ’

1

ð4�R2Þ2 � 0:030

DA�̂DB �DA�̂CB�̂DA ! c
�

ð4�Þ2
1

R4

Z 1

0
2

ð1þ x=4þ yÞ2 � xy=2

ð1þ x=2þ yÞ3½ð1þ xþ 2yþ ðx=2� yÞ2�3=2
s2y

ð1þ s2yÞ3

� dxdy

ð1þ xÞ4ð1þ x=2Þ2 �
c

ð4�R2Þ2 �H
�
1

s2

�

CA�̂CB�̂ �DA�̂DB ! c2�2 1

4�2

1

R4

1

s2

Z 1

0

dx

ð1þ xÞ4ð1þ x=2Þ4
y2dy

ð1þ yÞ6 ’
c2

ð4�R2Þ2
�2

s2
� 0:0256

DA�̂CB�̂CA�̂DB ! c2�2 1

ð4�R2Þ2
Z �

0
4
d�

�

Z 1

0

dx

ð1þ xÞ2ð1þ x=2Þ2
dy

ð1þ yÞ2ð1þ y=2Þ2
w

ð1þ wÞ3
w0

ð1þ w0Þ3

� c2

ð4�R2Þ2 �
2L

�
1

s2

�
; (29)

where s ¼ �=R, w ¼ s2½xþ y=4� ffiffiffiffiffi
xy

p
cos��, and w0 ¼

s2½x=4þ y� ffiffiffiffiffi
xy

p
cos��.

The functions F, H, and L defined above, are given in
Table I for four different values of the parameter s2.

The root mean square radius �R in now given by �R2 ¼
12R2, so a more meaningful reference parameter is �s �
rc= �R ¼ x0=

ffiffiffiffiffiffi
12

p � �=R. As a function of �R, �s, and of the
correlation strength c, the expressions of the effective cross
section and of the parameter � are

1

�eff

¼ 3

7� �R2

�
1þ c � 14�F

�
1

12

x20
�s2

�

þ c2 � 14
15

�2

�
1

12

x20
�s2

��
(30)

and

1

��2
eff

’ 0; 27

�2 �R4

�
1þ c � 400�H

�
1

12

x20
�s2

�

þ c2 � �2

�
x20
�s2

0; 64

3
þ 800L

�
1

12

x20
�s2

���
: (31)

C. Superposition of Poissonians

A particular case, where all n-body correlations are
important and which can be worked out explicitly, is
when the parton distribution is given by the superposition
of different Poissonians. The superposition of Poissonians

TABLE I. The functions F, H, and L in Eqs. (29) for three
different values of s2.

s2 0.5 1 2 3

�s2 0.2372 0.4744 0.9488 1.4232

F½1=s2� 0.0140 0.0667 0.2735 0.5834

H½1=s2� 0.0104 0.0120 0.0119 0.0110

L½1=s2� 0.0089 0.0094 0.0078 0.0064
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is naturally obtained when introducing diffraction in a
multichannel eikonal model of high energy hadronic inter-
actions [25–27]. To have some indication on this case, we
consider the simplest possibility where the probability Pn,
to find n partons within a given kinematical range, is given
by the sum of two Poissonians with average numbers n1
and n2

Pn ¼
�
�
nn1
n!

e�n1 þ ð1� �Þ n
n
2

n!
e�n2

�

n1;2 ¼
Z

n1;2ðx; bÞdxd2b;
n1;2ðx; bÞ ¼ GðxÞgðb; R2

1;2Þ;

(32)

where � gives the relative weight of the two Poissonians
and the integration limits in x are defined by the kinemati-
cal range relevant to the case of interest. Notice that, as we
want to disentangle the effect of correlations in the trans-
verse coordinates, while n1ðx; bÞ � n2ðx; bÞ, the integrated
values n1 and n2 are equal. The average density of partons
with fractional momentum x and transverse coordinate b is

hni ¼ X1
n¼1

nPn ¼ ½�n1 þ ð1� �Þn2�

¼
Z

Dðx; bÞdxd2b;
Dðx; bÞ � GðxÞ½�gðb; R2

1Þ þ ð1� �Þgðb; R2
2Þ�

(33)

while for the average density of pairs of partons with
coordinates x1, b1 and x2, b2 one obtains

hnðn� 1Þi ¼ X1
n¼1

nðn� 1ÞPn ¼ ½�n21 þ ð1� �Þn22�

¼
Z

D2ðx1; b1; x2; b2Þdx1dx2d2b1d2b2;
D2ðx1; b1; x2; b2Þ � Gðx1ÞGðx2Þ½�gðb1; R2

1Þgðb2; R2
1Þ

þ ð1� �Þgðb1; R2
2Þgðb2; R2

2Þ� (34)

and analogously

Dnðx1; b1 . . . xn; bnÞ
� Gðx1Þ . . .GðxnÞ½�gðb1; R2

1Þ . . . gðbn; R2
1Þ

þ ð1� �Þgðb1; R2
2Þ . . .gðbn; R2

2Þ�: (35)

The expression of the inclusive cross section of N inde-
pendent parton collisions �N hence is

�N ¼ 1

N!
�N

S �
�
�2

Z
½gð�; 2R2

1Þ�Nd2�þ 2�ð1� �Þ

�
Z
½gð�;R2

1 þ R2
2Þ�Nd2�

þ ð1� �Þ2
Z
½gð�; 2R2

2Þ�Nd2�
�
: (36)

The actual calculations are carried out for the case of the

Gaussian parton density, where the effective cross section
and the parameter � of the triple scattering inclusive cross
section are given by

1

�eff

¼ 3

4� �R2

�
�2 � 1

2	
þ 2�ð1� �Þ � 1

2

þ ð1� �Þ2 � 1

2ð2� 	Þ
�

(37)

and

1

��2
eff

¼ 3

4� �R4

�
�2 �

�
1

2	

�
2 þ 2�ð1� �Þ �

�
1

2

�
2

þ ð1� �Þ2 �
�

1

2ð2� 	Þ
�
2
�
; (38)

where we made the positions

R2
1 ¼ 	R2; R2

2 ¼ ð2� 	ÞR2 and R2 ¼ 2

3
�R2

with �R2 the mean square hadron radius measured in the
generalized parton distributions.
One recognizes that the three different terms in the curly

brackets are the contributions to the scale factors due to all
possible combinations of the different sizes of the two
interacting hadrons (R1 � R1, R1 � R2 þ R2 � R1 and
R2 � R2)[26].
To make contact with the general formalism previously

discussed, one may identify the correlation term by the
relation

D2ðx1; b1; x2; b2Þ ¼ ½Dðx1; b1ÞDðx2; b2Þ
þ Cðx1; b1; x2; b2Þ�; (39)

which gives

Cðx1; b1; x2; b2Þ ¼ Gðx1ÞGðx2Þf½�gðb1; R2
1Þgðb2; R2

1Þ
þ ð1� �Þgðb1; R2

2Þgðb2; R2
2Þ�

� ½�gðb1; R2
1Þ þ ð1� �Þgðb1; R2

2Þ�
� ½�gðb2; R2

1Þ þ ð1� �Þgðb2; R2
2Þ�g

¼ �ð1� �ÞGðx1ÞGðx2Þ
� f½gðb1; R2

1Þ � gðb1; R2
2Þ�

� ½gðb2; R2
1Þ � gðb2; R2

2Þ�g: (40)

The correlation strength c is hence expressed as a function
of the relative weight of the two Poissonians � by the
relation

c ¼ �ð1� �Þ; (41)

while the correlation length rc, now defined by the change
of sign of the correlation terms for b1 or b2 ¼ rc, is given
below as a function of the mean square root hadron radius
�R and of the parameter 	, which controls the relative value
of the two transverse radii R1 and R2:
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rc ¼ �R

�
1

3
	ð2� 	Þ ln

�
2� 	

	

��
1=2

: (42)

The case discussed in [27] corresponds to c ¼ 1
4 and rc ¼

�R
2

ffiffiffiffi
ln

p
3 ’ 0:52 �R. With �R2 ¼ 0:42 fm2 [28] one obtains

�eff ’ 30 mb, too large to explain the value of �eff ob-
served by CDF [16,17].

Notice that in the two-channel eikonal model discussed
in [25], one obtains a value of �eff in agreement with the
experimental indication. The reason is that, in the model,
compact hadronic configurations are characterized by a
stronger Pomeron coupling, which corresponds associating
a higher partonic population to the compact configurations.
In the present case, the distribution in the number of
partons is, on the contrary, the same in the two configura-
tions with transverse distances R1 and R2 (namely, n1 ¼
n2, after integrating on b). One may hence conclude that
the experiment indicates that the fluctuation of the whole
hadron structure in its transverse size, to the extent sug-
gested by diffraction, is not enough to explain the value of
�eff , which may, on the contrary, require the introduction
of correlation terms of the kind discussed above in
subsecs. III A and III B, or/and of correlations in fractional
momenta. In this last instance the multiparton distribution
of the hadron structure is different from a Poissonian, also
after integrating on the parton’s kinematical variables.

IV. CONCLUDING REMARKS

Multiple parton interactions are going to play an impor-
tant role at the LHC, both in the description of the prop-
erties of the minimum bias and of the underlying event and
as a background to various channels of interest for the
search of new physics. The study of MPI represents more-
over the basic handle to obtain information on unknown
nonperturbative features of the hadron structure, namely,
the correlations between partons.

In the present paper, we have tried to identify the quan-
tities which are most suitable to obtain the information on
the nonperturbative features associated to the presence of
MPI, in the case where the MPI are dominated by inde-
pendent collisions initiated by different pairs of partons. To
this purpose, in addition to the inclusive cross sections
considered until now in hard processes, we made use also
of the information provided by the ‘‘exclusive’’ cross
sections. Following a previous article where the ‘‘exclu-
sive’’ cross sections were introduced [18], we have hence
analyzed MPI considering systematically all terms up to
triple scatterings. The inclusive and the exclusive MPI
cross sections are linked by the sum rules of Eq. (2) and,
by checking the number of terms needed to saturate the
sum rules, one has a direct control on the importance of the
unitarity corrections. The case where no more that three
parton collisions give significant contributions leads to
very simple relations between inclusive and ‘‘exclusive’’
cross sections, the relations (18) and (20) which, being a

consequence of the definitions of the cross sections, hold
rather in general. One may thus obtain the values of the
relevant parameters, �eff for the double parton collisions
and the dimensionless parameter � for the triple (having
defined in that case the scale factor as ��2

eff).

A convenient way to measure the scale factors may be
through Eqs. (21), which make use only of single and
double collisions terms. Notice that if the sum rules of
Eq. (2) are saturated with three terms in a given phase
space window (and hence in a given interval of x values)
Eqs. (21) must hold. By measuring �S, ~�1, and ~�2 as a
function of x in the given interval, one may hence obtain
reliable information on the dependence of the correlation
terms on x.
In our approach, correlations are introduced in the most

general way, as deviations of the multiparton distributions
from the Poissonian. Rather than trying to propose definite
correlation models, our philosophy is hence to identify the
observable quantities which are most suitable to obtain
information on the correlation terms of the hadron struc-
ture. To have an idea of where the correlation parameters
(correlation length and correlation strength) may be most
relevant, we have considered a few simplest cases. Of
course correlations will depend on all variables and, in
particular, on fractional momenta, because of conservation
laws. Nevertheless, conservation laws may not play a very
important role when the parton population is large, namely,
at small x. In Sec. III, we have worked out in full detail
three simplified instances, where the dependence of corre-
lations on x may be neglected and which allows a full (or
almost full) analytic treatment (Gaussian and exponential
parton densities and correlations, multiparton distribtuions
given by a superposition of Poissonian). The relevant non-
perturbative information, namely the quantities �eff and �,
are given as a function of the correlation parameters in
Eqs. (26) and (27), in Eqs. (30) and (31), and in Eqs. (37)
and (38) in the three different cases. Notice that the hy-
pothesis of a negligible dependence of correlations on
fractional momenta is easily tested experimentally by
looking at the dependence of �eff and � on x.
In our discussion, we did not allow for the differences

between partons (gluons and quarks, different flavors, va-
lence and sea). When considering definite reaction chan-
nels, the relations obtained have hence to be adapted,
taking into account that the information on correlations
will have to be related to the different kinds of initial state
partons involved in the interactions.

APPENDIX

When looking at the effects of the correlation terms of
the original multiparton distribution in processes where
three or more partons undergo hard scattering, a natural
question is how to deal with higher order correlation terms.
In this Appendix we sketch the procedure to deal with this
problem. When taking in consideration three-body corre-
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lations the starting point is

Z ½J þ 1� � exp

�Z
DðuÞJðuÞduþ 1

2

Z
Cðu; vÞJðuÞJðvÞdudvþ 1

6

Z
Tðu; v; wÞJðuÞJðvÞJðwÞdudvdw

�

¼ X
n

1

n!

Z
Jðu1Þ . . . JðunÞDnðu1 . . . unÞdu1 . . . dun:

Although it is not possible any more to obtain a closed form for �hardð�Þ, a general expansion procedure is available and
well known [29]: every functional admitting a formal series expansion can be expressed as

�½J� ¼ �½
=
�� exp
Z

JðuÞ�ðuÞdu
���������¼0

;

so the previous expression may be rewritten in the following form:

Z½J þ 1� � exp

�
1

6

Z
Tðu; v; wÞ 



�ðuÞ




�ðvÞ




�ðwÞ dudvdw
�

� exp

�Z
½DðuÞ þ �ðuÞ�JðuÞduþ 1

2

Z
Cðu; vÞJðuÞJðvÞdudv

����������¼0
:

The second exponential will give rise to terms similar to the ones in Eqs. (6) and (7), the only difference is in the terms an,
which contain Dþ � instead of D. The whole expression is suitable for an expansion in T. When acting with the
derivatives one finds that every term T is connected either with three termsMðu; vÞ, defined by the relation below, ending
in turn on a density D or with two of them, one of which ends on one D and the other is closed on the same term T.

an ¼ ð�1Þnþ1
Z

DAðu1Þ�̂ðu1; u01ÞCBðu01; u02Þ�̂ðu02; u2ÞCAðu2; u3Þ . . . � � � �̂ðun; u0nÞDBðu0nÞ
Yn
i¼1

duidu
0
i

� ð�1Þnþ1
Z

DAðu1Þ�̂ðu1; u01ÞMnðu01; u0nÞ�̂ðun; u0nÞDBðu0nÞ
Yn
i¼1

duidu
0
i:

In particular, the first two terms are

Z
Tðu; v; wÞ�̂ðu; u0ÞDðu0Þ�̂ðv; v0ÞDðv0Þ�̂ðw;w0ÞDðw0Þdudvdwdu0dv0dw0 and

Z
Tðu; v; wÞ�̂ðu; u0Þ�̂ðv; v0ÞCðu0; v0Þ�̂ðw;w0ÞDðw0Þdudvdwdu0dv0dw0;

and one expects the first to be the most important.
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