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The mesonic excitations and s-wave �-� scattering lengths at finite temperature are studied in the two-

flavor Polyakov–Nambu–Jona-Lasinio (PNJL) model. The masses of the � and � mesons, pion-decay

constant, the pion-quark coupling strength, and the scattering lengths a0 and a2 at finite temperature are

calculated in the PNJL model with two forms of Polyakov-loop effective potential. The obtained results

are almost independent of the choice of the effective potentials. The calculated results in the PNJL model

are also compared with those in the conventional Nambu–Jona-Lasinio model and indicate that the effect

of color confinement screens the effect of temperature below the critical one in the PNJL model.

Furthermore, the Goldberger-Treiman relation and the Gell-Mann–Oakes–Renner relation are extended

to the case at finite temperature in the PNJL model.
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I. INTRODUCTION

QCD thermodynamics and phase diagram, especially
about the restoration of the chiral symmetry and the de-
confinement phase transition which are expected to occur
in ultrarelativistic heavy-ion collisions [1–8] or in the
interior of neutron stars [9–12], has been a subject of
intense investigation in recent years. One significant aspect
to investigate the restoration of the chiral or axial symme-
try and the deconfinement phase transition is to study the
variation of properties of particles propagating in hot and/
or dense medium [13–15]. In this work, we focus on the
influence of a hot medium on the properties of light pseu-
doscalar (�) and scalar (�) mesons, and �-� scattering
lengths. Special attention is paid to their dramatic varia-
tions near the regime where the chiral phase transition and
the deconfinement phase transition occur. We expect to
extract the signals of phase transition from mesonic ex-
citations and �-� interactions in the hot medium.

A promising phenomenological approach to study the
low-energy processes involving the pseudoscalar and sca-
lar mesons at zero temperature and finite temperature is the
Nambu–Jona-Lasinio (NJL) model [16–21]. The most im-
portant advantage of the NJL model is that it introduces a
mechanism of the dynamical breaking of chiral symmetry
(due to the quark-antiquark condensate). However, the NJL
model has its disadvantage, which is the lack of the de-
scription of color confinement. To include some effects of
color confinement, a Polyakov-loop improved
Nambu–Jona-Lasinio (PNJL) model has been developed
in recent years [22–30]. In the PNJL model, the Polyakov
loop as a classical field couples to quarks and thus sup-
presses the contributions from wrong degrees of freedom

(color nonsinglet) to the thermodynamics below the critical
temperature. Therefore, the introduction of the Polyakov
loop represents some aspects of the color confinement, at
least on the level of statistics [29]. The validity of the PNJL
model has been confirmed in a series of works by con-
fronting the PNJL results with the lattice QCD data
[27,28,31–33]. The phase structure and thermodynamics
in the PNJL model have recently been explored extensively
[29,30,34–46], and the impact of Polyakov-loop dynamics
on the chiral susceptibility or quark number susceptibility
[34,35], QCD critical end point [40,41] and critical surface
[42], and the color superconductivity phase transition
[28,47–49] have attracted lots of interest. Furthermore,
fluctuations beyond the mean-field approximation have
been included in the PNJL model [50,51], and the PNJL
model has also been extended to the regime of imaginary
chemical potential [52–55] and 0þ 1 dimensions [56], and
applied to analyze the flavors of quark-gluon plasma [57]
and the isentropic trajectories on QCD phase diagram [58].
The properties of pseudoscalar and scalar mesons at

finite temperature for two- [14] and three-flavor systems
[15] have also been investigated in the PNJL model. In
Ref. [14], the mesonic correlators and spectral functions
for � and � mesons were obtained. It was found that the
�-� degeneracy in the chiral symmetry restored phase was
still satisfied after coupling quarks to the Polyakov loop
and the role of � meson as Goldstone boson was also
confirmed in the PNJL model. It was also found that,
although the PNJL model cannot cure the problem of the
conventional NJL model as for the unphysical width of the
� meson, the PNJL results on the decay width slightly
improved the NJL ones [14]. In order to further study the
broken chiral symmetry and its restoration in the mesonic
sector in the PNJL model which makes the investigation of
the interplay between the restoration of chiral symmetry
and the deconfinement phase transition possible, it is nec-
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essary to study the Goldberger-Treiman relation [59] and
the Gell-Mann–Oakes–Renner relation [60] which are di-
rect results due to the chiral symmetry breaking.
Furthermore, one of the most fundamental hadronic pro-
cesses of QCD at the mesonic level, the pion-pion scatter-
ing, �þ � ! �þ �, at finite temperature, which
provides a direct link between the theoretical formalism
of chiral symmetry and experiment, also deserves to be
investigated. In this work, we will then study the problems
mentioned above in the PNJL model.

The paper is organized as follows. In Sec. II we simply
review the formalism of the two-flavor PNJL model. In
Sec. III we discuss the mesonic excitations at finite tem-
perature in the PNJL model. The dependence of the pion-
decay constant, pion-quark coupling strength, and the re-
lation between the mass of the � meson and that of the �
meson on the temperature are studied in the PNJL model.
We also extend the Goldberger-Treiman relation and Gell-
Mann–Oakes–Renner relation to a formalism which is
appropriate at finite temperature. In Sec. IV we study the
s-wave � -� scattering lengths in the PNJL model and
compare the results in the PNJL model with those in the
conventional NJL. Finally, in Sec. V, we give a summary
and conclusions.

II. THE PNJL MODEL

The Lagrangian density for the two-flavor PNJL model
is given as [27]

LPNJL ¼ �c ði��D
� � m̂0Þc þG½ð �c c Þ2 þ ð �c i�5 ~�c Þ2�

�Uð�½A�; ��½A�; TÞ; (1)

where c ¼ ðc u; c dÞT is the quark field,

D� ¼ @� � iA� with A� ¼ �u
0A

0;

A0 ¼ gA0
a

�a

2
¼ �iA4:

(2)

The gauge coupling g is combined with the SU(3) gauge
fieldA�

a ðxÞ to define A�ðxÞ for convenience and �a are the
Gell-Mann matrices in color space. m̂0 ¼ diagðmu;mdÞ is
the current quark mass matrix. Throughout this work, we
take mu ¼ md � m0, assuming the isospin symmetry is
reserved on the Lagrangian level. The four-fermion inter-
action with an effective coupling strength G for scalar and
pseudoscalar channels has SUVð2Þ � SUAð2Þ � UVð1Þ
symmetry, which is broken to SUVð2Þ � UVð1Þwhenm0 �
0. Here �a ða ¼ 1; 2; 3Þ in the Lagrangian density [Eq. (1)]
are Pauli matrices in flavor space.

The Uð�; ��; TÞ in the Lagrangian density is the
Polyakov-loop effective potential, which controls the
Polyakov-loop dynamics and can be expressed in terms
of the trace of the Polyakov loop � ¼ ðTrcLÞ=Nc and its

conjugate �� ¼ ðTrcLyÞ=Nc. Here the Polyakov-loop L is a
matrix in color space, which can be explicitly given as [27]

Lð ~xÞ ¼ P exp

�
i
Z �

0
d�A4ð ~x; �Þ

�
¼ exp½i�A4�; (3)

where � ¼ 1=T is the inverse of the temperature. The
Polyakov-loop effective potential has the Zð3Þ center sym-
metry like the pure-gauge QCD Lagrangian. When the
temperature is lower than a critical value (T0 ’ 270 MeV

in pure-gauge QCD [27]), the value of � (and ��) which
minimizes the Polyakov-loop effective potential is zero,
meaning that the phase is color confined and has the Zð3Þ
symmetry. However, when the temperature is above the
critical temperature T0, � develops a nonzero value which
minimizes the effective potential and the system is trans-
ited from a Zð3Þ symmetric, confined phase to a Zð3Þ
symmetry broken, deconfined phase. The temperature de-
pendent Polyakov-loop effective potential is chosen to
reproduce the lattice data for both the expectation value
of the Polyakov loop [61] and some thermodynamic quan-
tities [62]. In the PNJL Lagrangian in Eq. (1), the coupling
between the Polyakov loop and quarks is uniquely deter-
mined by the covariant derivative D�.

In previous works, two possible forms for the Polyakov-
loop effective potential have been well developed.
Following our previous work [29], we denote them as

Upolð�; ��; TÞ and Uimpð�; ��; TÞ, respectively. The for-

mer is a polynomial in � and �� [27] and the latter is an
improved effective potential in which the higher order

polynomial terms in � and �� are replaced by a logarithm
[28]. Both the effective potentials are taken in our work to
investigate whether our results depend on the details of the
Polyakov-loop effective potential. These two effective po-
tentials have the following forms:

Upolð�; ��; TÞ
T4

¼ � b2ðTÞ
2

���� b3
6
ð�3 þ ��3Þ

þ b4
4
ð ���Þ2; (4)

with

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
; (5)

and

Uimpð�; ��; TÞ
T4

¼ � 1

2
AðTÞ ���þ BðTÞ ln½1� 6 ���

þ 4ð ��3 þ�3Þ � 3ð ���Þ2�; (6)

with

AðTÞ ¼ A0 þ A1

�
T0

T

�
þ A2

�
T0

T

�
2
; BðTÞ ¼ B3

�
T0

T

�
3
:

(7)

A precise fit of the parameters in these two effective
potentials has been performed to reproduce some pure-
gauge lattice QCD data in Refs. [27,28]. The results are
listed in Tables I and II, respectively. The parameter T0 is
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the critical temperature for the deconfinement phase tran-
sition to take place in the pure-gauge QCD and T0 is
chosen to be 270 MeVaccording to the lattice calculations.

In the NJL sector of the model, three parameters need to
be determined: the three-momentum cutoff �, the current
quark mass m0, and the coupling strength G. In our work
we employ the zero-temperature values of the quark con-
densate, the pion-decay constant, and the mass of pion to
fix the parameters. The obtained results are given in
Table III.

III. MESONIC EXCITATIONS AT FINITE
TEMPERATURE

Before we study the properties of mesonic excitations at
finite temperature in the PNJL model, the gap equation
whose solution provides the constituent mass of the quark
should be given. As presented in Ref. [14], such a gap
equation in the Hartree approximation reads

m ¼ m0 þ 2GT Tr
Xþ1

n¼�1

Z
�

d3p

ð2�Þ3
�1

p6 �mþ �0ð�iA4Þ
;

(8)

where the imaginary time formalism is used and the tem-
poral component of the four-momentum is discretized, i.e.
p0 ¼ i!n and !n ¼ ð2nþ 1Þ�T is the Matsubara fre-
quency for a fermion; m is the constituent mass of the
quark; Tr is the trace which operates over Dirac, flavor, and
color spaces. Here the three-momentum cutoff is em-
ployed. After a sum of the Matsubara frequencies,
Eq. (8) can be written as

m ¼ m0 þ 2GNf

XNc

c¼1

Z
�

d3p

ð2�Þ3
2m

Ep

f1� f½Ep � ð�iA4ccÞ�

� f½Ep þ ð�iA4ccÞ�g; (9)

where Ep ¼ ðp2 þm2Þ1=2 and the summation over the

color index can be further written as

XNc

c¼1

f½Ep � ð�iA4ccÞ� ¼
XNc

c¼1

1

e�Epei�A4cc þ 1

¼ ½ðe�Epei�A422 þ 1Þðe�Epei�A433 þ 1Þ þ ðe�Epei�A411 þ 1Þðe�Epei�A433 þ 1Þ
þ ðe�Epei�A411 þ 1Þðe�Epei�A422 þ 1Þ�½ðe�Epei�A411 þ 1Þðe�Epei�A422 þ 1Þðe�Epei�A433 þ 1Þ��1

¼ Nc

��e��Ep þ 2�e�2�Ep þ e�3�Ep

1þ 3 ��e��Ep þ 3�e�2�Ep þ e�3�Ep
¼ Ncf

þ
�ðEpÞ; (10)

where the distribution function fþ�ðEpÞ in the PNJL model has been given in Ref. [14] with another method and we follow
their notations. We can find that, when � ¼ �� ¼ 1, fþ�ðEpÞ becomes the conventional Fermi-Dirac distribution function.
In the same way, the summation of the last term in Eq. (9) is

XNc

c¼1

f½Ep þ ð�iA4ccÞ� ¼ Nc

�e��Ep þ 2 ��e�2�Ep þ e�3�Ep

1þ 3�e��Ep þ 3 ��e�2�Ep þ e�3�Ep
¼ Ncf

�
�ðEpÞ: (11)

Finally, the gap equation is given by

TABLE II. Parameters for the improved effective potential Uimp.

A0 A1 A2 B3

3.51 �2:47 15.2 �1:75

TABLE I. Parameters for the polynomial effective potential Upol.

a0 a1 a2 a3 b3 b4

6.75 �1:95 2.625 �7:44 0.75 7.5

TABLE III. Parameters of the NJL sector of the model and the physical quantities being fitted.

� (MeV) G (GeV�2) m0 (MeV) jh �c uc uij1=3 (MeV) f� (MeV) m� (MeV)

659.28 4.773 5.32 250.0 92.4 139.3
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m ¼ m0 þ 2GNfNc

Z
�

d3p

ð2�Þ3
2m

Ep

½1� fþ�ðEpÞ

� f��ðEpÞ�: (12)

The gap equation in the PNJL model at finite temperature
can also be simply derived from the gap equation at zero
temperature, which is

m ¼ m0 þ 8GmNfNciI1; (13)

where

I1 ¼
Z d4p

ð2�Þ4
1

p2 �m2
: (14)

To calculate the integral I1 at finite temperature in the
PNJL model, we just need to replace the integral in p0

with iT
P

n
1
Nc

P
c with p0 ¼ i!n � iA4cc, i.e.

I1 ¼ iT
Xþ1

n¼�1

1

Nc

XNc

c¼1

Z
�

d3p

ð2�Þ3
1

ði!n � iA4ccÞ2 � E2
p

¼ �i
Z
�

d3p

ð2�Þ3
1

2Ep

½1� fþ�ðEpÞ � f��ðEpÞ�: (15)

We have shown that calculations at finite temperatures in
the PNJL model can be simply derived from calculations at
zero temperature above. Therefore, in the following we
investigate the mesonic excitations at finite temperature in
the PNJL model starting from those at zero temperature.
We follow the formalism in Ref. [18] and the � and �
mesons correspond to the pseudoscalar isovector modes
and the scalar isoscalar mode, respectively. For the pseu-
doscalar modes, defining the operators

�� ¼ 1ffiffiffi
2

p ð�1 � i�2Þ; (16)

we can reexpress the four-fermion term in the pseudoscalar
channel in the Lagrangian in Eq. (1) as

ð �c i�5 ~�c Þ2 ¼ 2ð �c i�5�
þc Þð �c i�5�

�c Þ
þ ð �c i�5�3c Þð �c i�5�3c Þ: (17)

The effective interaction resulting from the exchange of a
� meson can be obtained as an infinite sum of loops in the
random-phase approximation (RPA) [18] and the leading
order terms in Nc is shown diagrammatically in Fig. 1.

Using the symbols in Ref. [18], the left-hand side of the
equation in Fig. 1 can be denoted as iUijðk2Þ. Summing up

all the terms on the right-hand side, we obtain

iUijðk2Þ ¼ i�5Ti

2iG

1� 2G�psðk2Þ
i�5Tj: (18)

Comparing Eq. (18) with the equation in Fig. 1, one can
find that the mass of � mesons is related to the pole of
Eq. (18), which is the solution of the following equation
[18]:

1� 2G�psðk2Þ ¼ 0: (19)

Furthermore, the coupling strength between the � meson
and quarks g�qq can be obtained as

g2�qq ¼
�
@�psðk2Þ

@k2

��1
��������k2¼m2

�

: (20)

Therefore, the information of � mesons is included in the
pseudoscalar polarization �psðk2Þ, which reads

� i�psðk2Þ ¼ �
Z d4p

ð2�Þ4 Tr½i�5TiiSðkþ pÞi�5TjiSðpÞ�;
(21)

where iSðpÞ ¼ i=ðp6 �mÞ is the propagator of quarks.
After calculating the trace in Eq. (21), one has

� i�psðk2Þ ¼ 4NcNf

Z d4p

ð2�Þ4
1

p2 �m2

� 2NcNfk
2
Z d4p

ð2�Þ4

� 1

ðp2 �m2Þ½ðkþ pÞ2 �m2�
¼ 4NcNfI1 � 2NcNfk

2IðkÞ; (22)

where we have used the function I1 given in Eq. (14) and
also defined the function IðkÞ with the same symbols as
used in Refs. [18,63,64], i.e.

IðkÞ ¼
Z d4p

ð2�Þ4
1

ðp2 �m2Þ½ðkþ pÞ2 �m2� : (23)

Furthermore, we introduce another two functions as done
in Refs. [63,64], which will be used in the following:

FIG. 1. Schematic representation of the effective interaction for the pseudoscalar modes in the RPA, where the double dashed line
represents the effective propagator of the � mesons and the solid lines are quark lines; the black dots denote the effective coupling
between the � meson and quarks. Here, Ti ¼ Tj ¼ �3 for �0, and Ti ¼ ��, Tj ¼ �� for ��.
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KðkÞ ¼
Z d4p

ð2�Þ4
1

ðp2 �m2Þ2½ðkþ pÞ2 �m2� ; (24)

LðkÞ ¼
Z d4p

ð2�Þ4
1

ðp2 �m2Þ2½ðkþ pÞ2 �m2�2 : (25)

Then, substituting the expression of the pseudoscalar po-
larization in Eq. (22) into Eq. (19), we have

1� 8GNcNfiI1 þ 4GNcNfk
2iIðkÞ ¼ 0: (26)

Upon inserting the gap equation [in Eq. (13)] into the
above equation, one obtains [18]

m0

m
þ 4GNcNfk

2iIðkÞ ¼ 0; (27)

whose solution gives the mass of the pseudoscalar mode.
The explicit expression for the coupling between the �
meson and quarks can be easily obtained upon substituting
Eq. (22) into Eq. (20), and, in turn, it reads [63]

g2�qq ¼ i

NcNf

1

Iðm�Þ þ Ið0Þ �m2
�Kðm�Þ

: (28)

In the case of finite temperature in the PNJL model, we
need to extend the function IðkÞ in the same way as taken
for the function I1. When the three momentum is vanish-
ing, i.e. k ¼ ð!; 0Þ, Ið!; 0Þ at finite temperature in the
PNJL model is

Ið!; 0Þ ¼ �i
Z
�

d3p

ð2�Þ3
1

Epð!2 � 4E2
pÞ
½1� fþ�ðEpÞ

� f��ðEpÞ�: (29)

Then Eq. (27) at finite temperature can be rewritten as

m0

m
þ 4GNcNfm

2
�

Z
�

d3p

ð2�Þ3
1

Epðm2
� � 4E2

pÞ
� ½1� fþ�ðEpÞ � f��ðEpÞ� ¼ 0: (30)

Furthermore, we have

Kð!; 0Þ ¼ i
Z
�

d3p

ð2�Þ3
!2 � 12E2

p

4E3
pð!2 � 4E2

pÞ2
� ½1� fþ�ðEpÞ � f��ðEpÞ�; (31)

Lð!; 0Þ ¼ i
Z
�

d3p

ð2�Þ3
!2 � 20E2

p

2E3
pð!2 � 4E2

pÞ3
� ½1� fþ�ðEpÞ � f��ðEpÞ�: (32)

In the same way, properties of the � mesons can be
extracted from the scalar polarization �sðk2Þ, which is

� i�sðk2Þ ¼ �
Z d4p

ð2�Þ4 Tr½iSðkþ pÞiSðpÞ�

¼ 4NcNfI1 � 2NcNfðk2 � 4m2ÞIðkÞ: (33)

Therefore, employing the RPA approximation for the sca-
lar channel in the same procedure as for the effective
interaction in the pseudoscalar channel, one could deter-
mine the mass of the � meson which is the pole of its
corresponding effective propagator, i.e. 1� 2G�sðm2

�Þ ¼
0, explicitly given by

m0

m
þ 4GNcNfðm2

� � 4m2ÞiIðm�Þ ¼ 0: (34)

The relation between the mass of the � meson and that of
the�meson could be obtained by comparing Eqs. (27) and
(34) as

m2
� ¼ 4m2 þm2

�

Iðm�Þ
Iðm�Þ ; (35)

which returns to the relation given in Ref. [18] when the
difference between Iðm�Þ and Iðm�Þ is neglected.
In the following, we investigate the pion-decay constant

f� at finite temperature in the PNJL model starting with a
definition of f�

h0jJi5�ðxÞj�ji ¼ ik�f��
ij: (36)

Considering the explicit expression of the left-hand side in
the PNJL model

h0jJi5�ðxÞj�ji ¼ �
Z d4p

ð2�Þ4 Tr

�
i���5

�i

2
iSðkþ pÞ

� ig�qq�5�
jiSðpÞ

�
; (37)

we arrive at

f� ¼ �4iNcg�qqmIðm�Þ: (38)

Employing the expression of the pion-quark coupling in
Eq. (28) and considering the fact Nf ¼ 2 in the present

case, one has [63]

f2� ¼ �8iNcm
2 I2ðm�Þ
Ið0Þ þ Iðm�Þ �m2

�Kðm�Þ
; (39)

and

f2�g
2
�qq ¼ 4m2 I2ðm�Þ

½Ið0Þ þ Iðm�Þ �m2
�Kðm�Þ�2

� m2r2;

(40)

where we have defined a symbol r as

r � 2Iðm�Þ
Ið0Þ þ Iðm�Þ �m2

�Kðm�Þ
: (41)

When the temperature is approaching zero, Iðm�Þ � Ið0Þ,
Kðm�Þ � 0, r ! 1. Equation (40) returns then to the quark
level version of the Goldberger-Treiman relation at zero
temperature [59]. As we show below, when the temperature
is near some critical temperature, r deviates from 1 evi-
dently. Furthermore, from Eq. (27), one has the mass of the
� meson as
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m2
� ¼ �m0

m

1

4GNcNfiIðm�Þ : (42)

One may also combine this equation with Eq. (39). It gives
consequently

m2
�f

2
� ¼ m0m

G

Iðm�Þ
Ið0Þ þ Iðm�Þ �m2

�Kðm�Þ
: (43)

And the constituent mass of the quark m is related to the
condensate of the quark by

m ¼ �2GNfh �uui þm0 ¼ �2Gh �c c i þm0: (44)

Replacing the constituent mass in Eq. (43) with the quark
condensate in Eq. (44), we obtain

m2
�f

2
� ¼ �m0h �c c irþ m2

0

2G
r

¼ �m0h �c c ir
�
1þ m0

2Gjh �c c ij
�
: (45)

As mentioned above, at zero temperature r ! 1.
Considering the lowest-order contribution in m0, one ob-
tains then m2

�f
2
� ’ �m0h �c c i, which is the lowest-order

approximation to the Gell-Mann–Oakes–Renner relation
[60].

Before our numerical calculations, we need to give the
equations to determine the values of the Polyakov-loop �

and its conjugate ��. In the mean-field approximation or
equivalently the Hartree approximation, the thermodynam-
ical potential density for the Lagrangian density in Eq. (1)
is given as [14]

�ð�; ��; m; TÞ ¼ ðm0 �mÞ2
4G

þUð�; ��; TÞ � 2NfNc

�
Z
�

d3p

ð2�Þ3 Ep � 2NfT
Z
�

d3p

ð2�Þ3
� ½lnð1þ Nc

��e��Ep þ Nc�e�2�Ep

þ e�3�EpÞ þ lnð1þ Nc�e��Ep

þ Nc
��e�2�Ep þ e�3�EpÞ�: (46)

Minimizing this thermodynamical potential with respect to

� and ��, we obtain equations

@�

@�
¼ 0;

@�

@ ��
¼ 0: (47)

In the absence of a chemical potential, these two equations

are identical, and so � ¼ �� [27]. In the same way, mini-
mizing the thermodynamical potential in Eq. (46) with
respect to the value of the constituent quark mass m, the
gap equation in Eq. (12) can also be obtained.

In the following, we present our numerical results. First
of all, we give our calculated values for several character-
istic temperatures. These characteristic temperatures in-
clude the pseudotransition temperature for chiral

crossover, T	, corresponding to the maximum of

�dm=dT [14,27,29], the pseudotransition temperature
for deconfinement crossover, TP, corresponding to the
maximum of d�=dT, the Mott temperature TM for �
meson, defined by

m�ðTMÞ ¼ 2mðTMÞ; (48)

meaning that the pion can dissociate into a constituent
quark and an antiquark above the Mott temperature, and
the dissociation temperature for � meson T�

d [64], defined

by

m�ðT�
d Þ ¼ 2m�ðT�

d Þ: (49)

These characteristic temperatures, except for TP, can also
serve in the conventional NJL model. Numerical results for
these characteristic temperatures in the PNJL model with
two Polyakov-loop effective potentials are shown in
Table IV. Here, for comparison we also list the results in
the conventional NJL model.
In Fig. 2 we illustrate our calculated results of the

masses of � and � mesons, the mass of the constituent
quark, and the Polyakov loop as functions of the tempera-
ture. Figure 2 shows evidently that at a temperature not
very high, the masses of the constituent quark, the pion,
and the � mesons maintain the same as the corresponding
one at zero temperature. As the temperature is around the
critical one, these masses vary abruptly. And further, if the
temperature is very high, the masses of � and � mesons
become degenerate, which indicates that the chiral sym-
metry is restored at high temperature. Such a feature is
consistent with that given in the framework of the Bethe-
Salpeter equation combining with the Dyson-Schwinger
equations (see, for example, Ref. [65]). We also find that
two different Polyakov-loop effective potentials do not
result in qualitative differences but only slightly quantita-
tive deviations as the left panel of Fig. 2 shows.
Furthermore, looking at the right panel of Fig. 2, we notice
that the chiral phase transition occurs at relatively lower
temperature in the conventional NJL model.
In order to compare the obtained results in the PNJL

model with those in the conventional NJL model more
conveniently, we scale the temperature in units of Mott
temperature TM and redisplay the results in Fig. 3. One can
recognize that, in the PNJL model, only when the tempera-
ture is very near the phase transition temperature, masses

TABLE IV. Several critical temperatures in the conventional
NJL model and the PNJL model with two Polyakov-loop effec-
tive potentials (T0 ¼ 270 MeV is chosen for these two effective
potentials).

T	 (MeV) TP (MeV) TM (MeV) T�
d (MeV)

PNJL (Upol) 253.2 245.4 264.6 253.0

PNJL (Uimp) 245.0 232.0 259.6 246.3

NJL 184.4 � � � 201.2 181.9
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of mesons and constituent quark begin to deviate from their
values at zero temperature obviously. While in the conven-
tional NJL model, these masses begin to deviate from their
zero-temperature values at much lower temperature, about
0:4TM. This phenomenon can be attributed to the fact that,
in the low temperature, chiral symmetry is broken and the
quark and antiquark are in the confined hadronic phase in
the PNJL model. Contributions from thermal excitations of

one and two quarks or antiquarks are suppressed as the
distribution functions in Eqs. (10) and (11) show when the
Polyakov-loop � approaches zero. This is a manifestation
of color confinement on the level of statistics. While in the
conventional NJL model, due to the lack of the appearance
of color confinement, contributions from one and two
quarks or antiquarks become significant even at low tem-
perature, which results in the phenomenon mentioned
above.
In Fig. 4 we show the square of the pion-quark coupling

strength g2�qq and the pion-decay constant f� as functions

of the temperature in units of Mott temperature in the PNJL
model with polynomial and improved effective potentials
and in the conventional NJL model. As Eq. (31) shows,
when temperature approaches the Mott temperature TM

from below, i.e. when the mass of the � meson is about
twice the mass of the constituent quark, iKðm�Þ ! 1.
Therefore, the pion-quark coupling strength and pion-
decay constant vanish at TM, as Eqs. (28) and (39) show.
Furthermore, one can also find in Fig. 4 that, in the PNJL
model, g2�qq and f� almost keep invariant with the increase

of the temperature when the temperature is not high and
these two quantities decrease rapidly only when the tem-
perature is above 0:8TM. While in the conventional NJL

FIG. 3. Calculated masses of the � meson, the � meson, and
the constituent quark as functions of the temperature in units of
Mott temperature TM in the PNJL model with Uimp (thick lines)

and in the conventional NJL model (thin lines).

FIG. 4. Left panel: calculated results of the square of the pion-quark coupling strength g2�qq [in Eq. (28)] as a function of the
temperature in units of Mott temperature TM in the PNJL and the conventional NJL model. Right panel: calculated results of the pion-
decay constant f� [in Eq. (38)] as a function of the temperature in units of Mott temperature.

FIG. 2. Left panel: calculated masses of the � meson, the � meson, the constituent quark, and the Polyakov loop as functions of the
temperature. Here, thick and thin curves correspond to the results with the polynomial Polyakov-loop effective potential Upol, and the

improved effective potentialUimp, respectively. Right panel: masses of �, �, andm as functions of the temperature in the PNJL model

with Uimp (thick curves) and in the conventional NJL model (thin curves).
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model these two quantities begin to decrease at about
0:4TM. This behavior is also due to the lack of the color
confinement in the conventional NJL model as the same as
the behavior of masses of mesons and constituent quark as
functions of temperature shown in Fig. 3.

We have shown above that the Goldberger-Treiman
relation and the Gell-Mann–Oakes–Renner relation at fi-
nite temperature are different from those at zero tempera-
ture in that a factor r defined in Eq. (41) is introduced. The
calculated behavior of r as a function of temperature is
displayed in Fig. 5 and one can find that, when the tem-
perature is below 0:9TM, r is almost a constant very near 1,
which indicates that these two important relations at vac-
uum still serve well in the large region of temperature 0	
0:9TM. However, when the temperature is above 0:9TM, r
decreases very rapidly and vanishes at T ¼ TM. In the
region of the temperature 0:9TM 	 TM, the Goldberger-
Treiman relation and the Gell-Mann–Oakes–Renner rela-
tion at vacuum should be extended to Eqs. (40) and (45),
respectively.

IV. �-� SCATTERING LENGTHS

The formalism of s-wave �-� scattering lengths at zero
temperature in the conventional NJL model has been es-
tablished in Refs. [63,66,67], and it has been extended to
the case at finite temperature by Quack et al. [64]. In this
work we follow the notation and calculation given in
Ref. [63]. The invariant amplitude of �-� scattering has
the form:

hcpc; dpdjiMjapa; bpbi ¼ iAðs; t; uÞ�ab�cd

þ iBðs; t; uÞ�ac�bd

þ iCðs; t; uÞ�ad�bc; (50)

where a, b, c, and d are the isospin labels, and s, t, and u
are the Mandelstam variables, s ¼ ðpa þ pbÞ2, t ¼ ðpa �
pcÞ2, and u ¼ ðpa � pdÞ2. The amplitude of definite total
isospin I, defined by AI, can be projected out, given by
Ref. [63]

A0 ¼ 3Aþ Bþ C;

A1 ¼ B� C; and A2 ¼ Bþ C:
(51)

When the scattering is at the kinematic threshold, we
obtain the scattering lengths, i.e.

aI ¼ 1

32�
AIðs ¼ 4m2

�; t ¼ 0; u ¼ 0Þ: (52)

For simplicity, the pion momenta can be chosen as

pa ¼ pb ¼ pc ¼ pd ¼ p; and p2 ¼ m2
�; (53)

which can be verified to fulfill the threshold condition in
Eq. (52). To lowest order in 1=Nc, there are two types of
Feynman diagrams contributing to the s-wave �-� scat-
tering [63,66], i.e. the box diagram and the �-propagation
diagram. Here we also present them in Fig. 6. The three
diagrams in the first row of Fig. 6 are the box diagrams and
the ones in the second row are the�-propagation diagrams.
Following the calculation of Ref. [63], we obtain re-

spective amplitude for each diagram in Fig. 6 as

iMa ¼ ð�ab�cd þ �ac�bd � �ad�bcÞð�4NcNfg
4
�qqÞ

� ½Ið0Þ þ IðpÞ � p2KðpÞ�
� ð�ab�cd þ �ac�bd � �ad�bcÞiTa; (54)

iMb ¼ ð�ab�cd � �ac�bd þ �ad�bcÞð�4NcNfg
4
�qqÞ

� ½Ið0Þ þ IðpÞ � p2KðpÞ�
� ð�ab�cd � �ac�bd þ �ad�bcÞiTb; (55)

iMc ¼ ð��ab�cd þ �ac�bd þ �ad�bcÞð�8NcNfg
4
�qqÞ

�
�
Ið0Þ þ p4

2
LðpÞ � 2p2KðpÞ

�

� ð��ab�cd þ �ac�bd þ �ad�bcÞiTc; (56)

iMd ¼ �ab�cdð8NcNfg
4
�qqÞ I2ðpÞ

ð1� p2

m2ÞIð2pÞ þ m2
�

4m2 Iðm�Þ
� �ab�cdiTd; (57)

iMe ¼ �ac�bdð8NcNfg
4
�qqÞ ½Ið0Þ � p2KðpÞ�2

Ið0Þ þ m2
�

4m2 Iðm�Þ
� �ac�bdiTe; (58)

iMf ¼ �ad�bcð8NcNfg
4
�qqÞ ½Ið0Þ � p2KðpÞ�2

Ið0Þ þ m2
�

4m2 Iðm�Þ
� �ad�bciTf: (59)

From the above equations, one can notice Tb ¼ Ta, and
Tf ¼ Te. Substituting Eqs. (54)–(59) into Eq. (50), one

obtains

FIG. 5. Calculated factor r defined in Eq. (41) as a function of
the temperature in units of Mott temperature in the PNJL and the
conventional NJL model.
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A ¼ 2Ta � Tc þ Td; B ¼ C ¼ Tc þ Te: (60)

Therefore, employing Eq. (51) we have

A0 ¼ 6Ta � Tc þ 3Td þ 2Te; A1 ¼ 0;

A2 ¼ 2ðTc þ TeÞ:
(61)

In Fig. 7 we present our calculated results of the scat-
tering amplitudes Ta, Tc, Td, and Te as functions of the
temperature in units of TM in the PNJL model with the
polynomial Polyakov-loop effective potential and im-

proved effective potential and in the conventional NJL
model. The results of the conventional NJL model in our
work are roughly consistent with those given in Ref. [64].
However, there exists a difference which reads that our
present calculation indicates that the scattering amplitude
Ta approaches zero at the Mott temperature TM, the calcu-
lation in Ref. [64] gives that Ta is divergent at TM.
Recalling the analysis above, we emphasize that, when
the temperature approaches TM, iKðm�Þ in Eq. (31) and
iLðm�Þ in Eq. (32) are divergent and the degree of diver-
gence of iLðm�Þ is higher than that of iKðm�Þ. Substituting
the expression of the coupling between � meson and

FIG. 7. Calculated scattering amplitudes Ta, Tc, Td, and Te as functions of the temperature in units of Mott temperature in the PNJL
and the conventional NJL models.

FIG. 6. Feynman diagrams contributing to the s-wave �-� scattering (see also Refs. [63,66]). Here the external momenta for pions
are chosen to be the special case in Eq. (53).
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quarks g2�qq in Eq. (28) into Eq. (54), we find Ta /
1=ð�iKðm�ÞÞ when the temperature is near the Mott tem-
perature; therefore, Ta approaches zero at TM. In the same
way, we find that Td approaches zero, Tc is divergent, and
Te approaches a finite value at the Mott temperature.
Furthermore, when the temperature is equal to the disso-
ciation temperature of � meson, i.e. T ¼ T�

d , we have

m� ¼ 2m�, which results in the fact that the � propagator
in Fig. 6(d) and also the amplitude Td (see Fig. 7) are
divergent at T�

d . Comparing the results of the PNJL model

with those of the conventional NJL model, one can also
recognize the similar behavior as obtained previously,
which reads that the T-matrix amplitudes calculated in
the PNJL model deviate from their values at zero tempera-
ture only when the temperature is near the critical tem-
perature, while the deviation occurs much earlier in the
conventional NJL model. Taking amplitude Td for ex-
ample, since the mass of the � meson decreases with the
increase of the temperature much earlier in the conven-
tional NJL model than that in the PNJL model, as Fig. 3
shows, we expect that the divergence in Td also occurs
earlier in the conventional NJL model, which is verified in
Fig. 7. In addition, we find that the value of T�

d =TM

calculated in the conventional NJL model is about 0.90,
smaller than 0.96 in the PNJL model with polynomial
effective potential, and 0.95 in the PNJL model with im-
proved effective potential.

In Fig. 8, we show the calculated results of the s-wave
�-� scattering lengths a0 and a2 as functions of the
temperature in units of TM in the PNJL model with two
Polyakov-loop effective potentials and in the conventional
NJL model. Since a0 and a2 contain a contribution from
the T-matrix amplitude Tc as Eq. (61) shows, they are both
divergent at T ¼ TM. Furthermore, a0 also contains Td, so
it diverges at T ¼ T�

d as well. At zero temperature, we have

a0 ¼ 0:173 and a2 ¼ �0:045, which are consistent with
the Weinberg values ða0ÞW ¼ 7m2

�=ð32�f2�Þ ¼ 0:158 and
ða2ÞW ¼ �2m2

�=ð32�f2�Þ ¼ �0:045 [64,66]. On the ex-
perimental side, the Geneva-Saclay Collaboration pro-

vided the often quoted values a0 ¼ 0:26� 0:05 and
a2 ¼ �0:028� 0:012 [68,69], and in recent years experi-
ment E865 at Brookhaven National Laboratory, USA, has
given new values a0 ¼ 0:203� 0:033� 0:004 and a2 ¼
�0:055� 0:023� 0:003 [70], and also a0 ¼ 0:216�
0:013� 0:004� 0:005 [71]. The scattering lengths a0
and a2 are almost independent of the temperature until
the temperature is increased to 0:9TM in the PNJL model,
and after that they vary drastically with temperature. While
in the conventional NJLmodel a0 and a2 begin to vary with
temperature at about 0:6TM and the temperature at which
a0 diverges due to the �-meson dissociation is also lower
in the conventional NJL model. From the above analysis,
one can recognize that the physical meaning of the diver-
gence of the s-wave�-� scattering lengths a0 and a2 at the
Mott temperature TM for the � meson is clear and consis-
tent with that shown in Ref. [64]. At T ¼ TM, the � meson
can dissociate into a constituent quark and an antiquark,
and the � meson is then unbound and its radius becomes
infinite. Mathematically, the geometrical size of the pion
meson can be described by its charge radius r which is
related to f� through f2� / 1=hr2i [64]. Employing the
Weinberg relations cited above, we have the relation be-
tween the scattering lengths and the charge radius of the �
meson as jaj / hr2i, which clearly indicates that the diver-
gence of �-� scattering lengths at the pion Mott tempera-
ture is closely related to the melting of the pion meson. The
relation between the divergence of the s-wave �-� scat-
tering lengths and the delocalization of the pion meson at
TM is then confirmed not only in the conventional NJL
model but also in the PNJL model. As for the divergence of
the s-wave �-� scattering length a0 at the dissociation
temperature for � meson T�

d , we should note that this

divergence corresponds with the situation that the propa-
gator for the � meson displayed in Fig. 6(d) is on shell,
which means that the �-� scattering in the s channel
couples resonantly with the � meson field. The divergence
(from positive infinite to negative infinite) of the a0 and the
mass relation m� ¼ 2m� suggests that, in a general point

FIG. 8. Calculated s-wave �-� scattering lengths a0 and a2 as functions of the temperature in units of Mott temperature in the PNJL
and the conventional NJL models.
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of view, a very loosely bound state may appear at the
dissociation temperature T�

d . However, a detailed investi-

gation is required to clarify its mechanism.

V. SUMMARY

In summary, we have studied the mesonic excitations at
finite temperature in the two-flavor PNJL model. The
masses of the � and � mesons, pion-decay constant, and
the pion-quark coupling strength at finite temperature are
calculated in the PNJL model with two forms of Polyakov-
loop effective potential. Their variation behaviors with
temperature, especially when the temperature takes a value
near the critical one, are investigated in detail. We find that
the results calculated in the PNJL model are almost inde-
pendent of the choice of the Polyakov-loop effective po-
tential. We also compare our calculated results in the PNJL
model with those in the conventional NJL model. We find
that, since in the PNJL model, the Polyakov loop which is
coupled with quarks suppresses the unwanted degrees of
freedom below the critical temperature, all quantities de-
scribing the properties of mesons deviate from their values
at zero temperature only when the temperature is very near
the critical temperature, for example, the Mott tempera-
ture, and they vary with temperature rapidly in a very
narrow region near the critical one. In the conventional
NJL model, these quantities begin to vary with temperature
much earlier. Therefore, we conclude that the effect of
color confinement screens the effect of temperature below
the critical temperature. Furthermore, we have investigated
the Goldberger-Treiman relation and the Gell-Mann–
Oakes–Renner relation at finite temperature in the PNJL
model, and we find that when the temperature is below
about 0:9TM, where TM is the Mott temperature for the �

meson, these two important relations are hardly changed
by the effect of temperature. However, the Goldberger-
Treiman relation and the Gell-Mann–Oakes–Renner rela-
tion should be corrected once the temperature is in the
region of 0:9TM 	 TM.
In this work, we have also investigated the s-wave �-�

scattering lengths at finite temperature in the PNJL model.
The obtained results in the PNJL model are also compared
with those in the conventional NJL model. We find that
scattering length a0 is divergent at Mott temperature for the
� meson, TM, and at dissociation temperature for the �
meson, T�

d , and scattering length a2 is divergent at TM,

which are consistent with the results in the conventional
NJL model. Because of the effect of color confinement, the
dissociation temperature for the � meson T�

d calculated in

units of TM in the PNJL model is relatively larger than that
given in the conventional NJL model. In the same way, the
influence of the temperature on the scattering lengths a0
and a2 below the critical temperature is suppressed by the
color confinement in the PNJL model. In addition, the
characteristic of the scattering amplitude Ta at the Mott
temperature calculated in the PNJL model is different from
that given previously in the conventional NJL model.
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M. Lügemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[63] H. J. Schulze, J. Phys. G 21, 185 (1995).
[64] E. Quack, P. Zhuang, Y. Kalinovsky, S. P. Klevansky, and
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