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We present an exact calculation of S and P wave QQ �n �n states using different standard nonrelativistic

quark-quark potentials. We explore in detail the charm and bottom sectors looking for bound states that

could be measured within existing facilities. Against the proliferation of four-quark states sometimes

predicted in the literature, we found a small number of candidates to be stable. We analyze their properties

in a trial to distinguish between compact and molecular states. Possible decay modes are discussed.
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I. INTRODUCTION

The existence of stable QQ �n �n states has been a topic of
discussion since the early 1980s [1]. These states are of
particular interest since they are manifestly exotic, i.e.,
with heavy flavor quantum number�2 and baryon number
equal to 0. If they were to lie below the threshold for
dissociation into two ordinary hadrons, they would be
narrow and should show up clearly in the experimental
spectrum. There are already estimates of the production
rates indicating that they could be produced and detected at
present (and future) experimental facilities [2]. Four-quark
states seem to be necessary to tame the bewildering land-
scape of new meson states. Nonexotic four-quark states
embedded in the meson spectra have been proposed as a
thoughtful explanation of the proliferation and peculiar
properties of light scalar-isoscalar or open-charm mesons
[3]. There are recent indications of the possible existence
of molecular four-quark states, suggested from the obser-
vation of the Zþð4430Þ [4]. A step torward scrutinizing the
structure of low-energy hadrons would be to demonstrate
the existence of stable, manifestly exotic, multiquark
states, the QQ �n �n system being an ideal candidate.

To illustrate the theoretical landscape, we present in
Table I a summary of different approaches to the mani-
festly exotic four-quark spectroscopy [5–17]. Exotic multi-
quarks were examined in Ref. [5], where the four-body
problem was solved using three different variational meth-
ods with a nonrelativistic potential, considering explicitly
virtual meson-meson components in the wave function. In
Ref. [6] four-quark states were studied using a variational
approach with trial wave functions whose interaction en-
ergies are approximately given by known hadron masses.
Reference [7] used a potential derived from the MIT bag
model in the Born-Oppenheimer approximation. The cal-
culations were done by means of the Green’s function
Monte Carlo method. The b �n� b �n molecules loosely
bound by one-pion exchange were obtained in Ref. [8]
using chiral perturbation theory. Reference [9] analyzed
L ¼ 0 four-quark systems with the Bhaduri potential and a

variational method in a harmonic oscillator basis up to
N ¼ 8 quanta. Reference [10] discussed the stability of
multiquark systems using different parametrizations of a
Goldstone boson exchange model and a variational formal-
ism with Gaussian trial wave functions. In Ref. [11] the
Bhaduri potential was reexamined by means of a varia-
tional method that allows nonzero internal orbital angular
momentum in the subsystems of quarks and antiquarks.
The existence of a shallow tetraquark state, cc �u �d , was
discussed in Ref. [12] using semiempirical mass relations.
Reference [13] designed a powerful method, similar to the
stochastic variational approach [18], accommodating two
free-meson asymptotic states. It was applied to the Bhaduri
potential, fixing the results of Refs. [9,11]. Reference [14]
analyzed multiquark states with a variational formalism
using Gaussian trial wave functions with only quadratic
terms in the Jacobi coordinates. QCD sum rules were used
in Ref. [15] to study the possible existence of an axial
diquark-antidiquark bound state. In Ref. [16] the ground
states of tetraquarks were evaluated assuming a diquark-
antidiquark structure, reducing the relativistic four-body
problem to the solution of two relativistic two-body prob-
lems. Reference [17] discussed the possible existence of
four-quark bound states within the framework of the chiral
SUð3Þ quark model by means of a variational approach
using Gaussian trial wave functions.
As seen in Table I, there is a remarkable agreement on

the existence of an I ¼ 0, JP ¼ 1þ bb �n �n bound state and
also, although not so neatly, on the existence of a cc �n �n one
(in this work n stands for a light u or d quark). However,
among the different theoretical approaches only a few have
paid attention to other quantum numbers, trying to eluci-
date if a proliferation of four-quark states is predicted.
Hence, in this work our purpose will be twofold. On the
one hand, we shall try to shed some light on this topic by
making a detailed analysis of the QQ �n �n spectra, discus-
sing each set of quantum numbers. On the other hand, the
Achilles’ heel of almost all the approaches described above
is the lack of an exact numerical method to solve the four-
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body problem. Most of these works rely on variational
calculations with different types of trial wave functions
or on semiempirical mass relations. The importance of this
problem requires numerical methods that are able to pro-
vide exact solutions with controlled numerical
uncertainties.

To this end, we shall use a new approach based on the
hyperspherical formalism recently developed to solve ex-
actly the four-quark problem [19,20]. The idea is to per-
form an expansion of the trial wave function in terms of the
hyperspherical harmonics (HH) functions. This allows one
to generalize the simplicity of the spherical harmonic
expansion for the angular functions of a single particle
motion to a system of particles by introducing a global
length �, the hyper-radius, and a set of angles, �. For the
HH expansion to be practical, the evaluation of the poten-
tial energy matrix elements must be feasible. The main
difficulty of this method is to construct HH functions with
the proper permutational symmetry for a system of identi-
cal particles. This is a difficult problem that may be over-
come by means of the HH formalism based on the
symmetrization of the N-body wave function with respect
to the symmetric group using the Barnea and Novoselsky
algorithm [21]. For systems containing only two pairs of
identical particles, this problem is greatly simplified by
making the appropriate choice of Jacobi coordinates. In
Ref. [20] we have developed the HH formalism for the
Q �Qn �n system, and we will use it here with the appropriate
modifications to study the exotic QQ �n �n four-quark
spectra.

The manuscript is organized as follows. In Sec. II we
briefly revise the HH formalism for the QQ �n �n system and
present the quark models used. In Sec. III we introduce

observables that may allow one to distinguish between
unbound and compact or molecular four-quark bound
states. In Sec. IV the results and the analysis of the cc �n �n
and bb �n �n spectroscopy are presented. In Sec. V the pos-
sibility of measuring the predicted bound states within
current experimental facilities is discussed. Finally, we
summarize our conclusions in Sec. VI.

II. TECHNICAL DETAILS

Within the HH expansion, the four-quark wave function
can be written as a sum of outer products of color, isospin,
spin, and configuration terms:

j�CISRi ¼ jcolorijisospini½jspini � jRi�JM; (1)

such that the four-quark state is a color singlet with well-
defined parity, isospin, and total angular momentum. In the
following we shall assume that particles 1 and 2 are the Q
quarks and particles 3 and 4 are the n quarks. Thus,
particles 1 and 2 are identical, and so are 3 and 4.
Consequently, the Pauli principle leads to the following
conditions,

P̂ 12j�CISRi ¼ P̂34j�CISRi ¼ �j�CISRi; (2)

P̂ij being the permutation operator of particles i and j.

Coupling the color states of two quarks (antiquarks) can
yield two possible representations: the symmetric six-
dimensional, 6 (�6), and the antisymmetric three-
dimensional, �3 (3) representations. Coupling the color
states of the quark pair with that of the antiquark pair
must yield a color singlet. Thus, there are only two possible
color states for a QQ �q �q system [22],

TABLE I. Energy difference, in MeV, between four-quark states QQ �n �n (Q ¼ c or b) and the corresponding two-meson threshold
for different theoretical approaches.

cc �n �n bb �n �n

I ¼ 0 I ¼ 1 I ¼ 0 I ¼ 1

JP 0þ 1þ 2þ 0þ 1þ 2þ 0þ 1þ 2þ 0þ 1þ 2þ

[5] >0 �106
[6] & 0 <0
[7] >0 � �70
[8] �8:3
[9] >þ 60 þ19 >þ 60 >þ 60 >þ 60 >þ 60 >þ 60 �131 >þ 60 >þ 60 þ56 þ30
[10]a �185 (� 332) �226 (� 497)
[11] �99 þ156 þ117 þ86
[12] �ð30–60Þ
[13]b �0:6 (� 2:7) �132 (� 140)
[14] þ585 �129 þ830 þ384 þ293 þ192 þ258 �341 þ708 þ128 þ96 þ65
[15] þ125� 200 �400� 300
[16] þ64 þ327 þ208 þ104 �102 þ90 þ53 þ23

[17]b þ50 (þ 60) þ143 þ299 þ213 �32 (� 18) þ119 þ93 þ72

aResults for two different sets of parameters C1 (C2).
bResults for two different interacting potentials.
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jcolori ¼ fj�312334i; j612 �634ig: (3)

These states have well-defined symmetry under permuta-
tions, Eq. (2). The spin states with such symmetry can be
obtained in the following way,

jspini ¼ jððs1; s2ÞS12; ðs3; s4ÞS34ÞSi ¼ jðS12S34ÞSi: (4)

The same holds for the isospin, jisospini ¼ jði3; i4ÞI34i,
which applies only to the n quarks, and thus I ¼ I34.

We use the HH expansion to describe the spatial part of
the wave function. We choose, for convenience, theH-type
Jacobi coordinates (see Fig. 1),

� 1 ¼ �1;2ðr2 � r1Þ;

�2 ¼ �12;34

�
m3r3 þm4r4

m34

�m1r1 þm2r2
m12

�
;

�3 ¼ �3;4ðr4� r3Þ;

(5)

where mij ¼ mi þmj, �i;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mimj=mij

q
, and m1234 ¼

m1 þm2 þm3 þm4. Using these vectors, it is easy to
obtain basis functions that have well-defined symmetry
under permutations of the pairs (12) and (34). In the HH
formalism the three Jacobi vectors are transformed into a

single length variable, � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ �2

2 þ �2
3

q
, and eight

angular variables, �, that represent the location on the
eight-dimensional sphere. The spatial basis states are given
by

h��jRi ¼ Unð�ÞY½K�ð�Þ; (6)

where Y½K� are the HH functions, and ½K� �
fKK12LMLL12‘3‘2‘1g. The quantum number K is the
grand angular momentum, LML are the usual orbital an-
gular momentum quantum numbers, and ‘i is the angular
momentum associated with the Jacobi vector �i. The
quantum numbers K12, L12 correspond to the intermediate
coupling of �1 and �2. The Laguerre functions are used as
the hyper-radial basis functions Unð�Þ.
The Pauli principle, Eq. (2), leads to the following

restrictions on the allowed combinations of basis states:
(1) ð�1ÞS12þ‘1 ¼ þ1, ð�1ÞS34þIþ‘3 ¼ �1 for the

j612 �634i color state,
(2) ð�1ÞS12þ‘1 ¼ �1, ð�1ÞS34þIþ‘3 ¼ þ1 for the

j�312334i state.
Assuming nonrelativistic quantum mechanics, we solve

the four-body Schrödinger equation using the basis states
described above. The grand angular momentum K is the

FIG. 1. H-type Jacobi vectors.

TABLE II. D and B meson masses (in MeV) and the root mean square radius (in fm) obtained with the quark models described in
Sec. II. Experimental masses are taken from Ref. [29], except for the state denoted by a dagger, which has been taken from Ref. [30].

ðL; S; JÞ State Experiment CQC18 CQC BCN

E RMS E RMS E RMS

(0,0,0) D 1864:5� 0:4 1883 0.207 1936 0.220 1886 0.212

(0,1,1) D� 2006:7� 0:4 2010 0.237 2001 0.234 2020 0.235

(1,1,0) D�
0 2308:0� 17� 12y 2465 0.344 2498 0.373 2491 0.342

(1,0,1) D1 2422:3� 1:3 2492 0.370 2490 0.369 2455 0.332

(1,1,1) D�
1 2427� 40 2504 0.368 2498 0.373 2491 0.342

(1,1,2) D�
2 2461:1� 1:6 2496 0.380 2498 0.373 2491 0.342

(0,0,0) B 5279:0� 0:5 5281 0.139 5294 0.142 5301 0.141

(0,1,1) B� 5325:0� 0:6 5321 0.146 5318 0.145 5350 0.147

(1,1,0) B�
0 5698� 8a 5848 0.230 5810 0.232 5825 0.217

(1,0,1) B1 5698� 8 5768 0.239 5807 0.231 5811 0.214

(1,1,1) B�
1 5698� 8 5876 0.232 5810 0.232 5825 0.217

(1,1,2) B�
2 5698� 8 5786 0.231 5810 0.232 5825 0.217

aAccording to the Particle Data Group book [29], this signal can be interpreted as stemming from several narrow and broad resonances
in the range 5650–5750 MeV. No quantum numbers are given.
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main quantum number in our expansion, and the calcula-
tion is truncated at some K value.

For our study we will use two standard quark potential
models. The constituent quark cluster (CQC) model was
proposed in the early 1990s in an attempt to obtain a
simultaneous description of the nucleon-nucleon interac-
tion and the baryon spectra [23]. Later on it was general-
ized to all flavor sectors giving a reasonable description of
the meson [24] and baryon spectra [25]. This model con-
tains Goldstone boson exchange between quarks, a one-
gluon-exchange (OGE) potential, and a screened confined
interaction as dictated by unquenched lattice calculations
[26]. The model parameters have been taken from Ref. [24]
with the exception of the OGE regularization parameter;
see Ref. [20] for details. In the following we shall denote
this parametrization as CQC, and the standard parametri-
zation of Ref. [24] will be referred to as CQC18. Explicit
expressions of the interacting potentials and a detailed
discussion of the model can be found in Ref. [24]. The
Bhaduri-Cohler-Nogami (BCN) model was proposed in
the early 1980s in an attempt to obtain a unified description
of meson and baryon spectroscopy [27]. It was later on
applied to study the baryon spectra [28] and four-quark
systems [9]. The model retains the most important terms of
the OGE interaction, namely, coulomb and spin-spin terms,
and a linear confining potential. The parameters are taken
from Ref. [9].

A summary of the energies obtained with both models,
CQC and BCN, for selected meson states that may appear
in the thresholds of the four-quark systems studied are
given in Table II, together with the corresponding experi-
mental energies.

III. BOUND STATES, COMPACTAND
MOLECULAR

A. Threshold determination

As thoroughly discussed in Ref. [20], in order to dis-
criminate between four-quark bound states and simple
pieces of the meson-meson continuum, one has to carefully
determine the two-meson states that constitute the thresh-
olds for each set of quantum numbers. Dealing with
strongly interacting particles, the two-meson states should
have well-defined total angular momentum (J) and parity
(P), and a properly symmetrized wave function if two
identical mesons are considered (spin-statistics theorem).
When noncentral forces are not taken into account, orbital
angular momentum (L) and total spin (S) are also good
quantum numbers. We give in Tables III, IV, V, VI, and VII
the lowest threshold in both cases, which we will refer to as
coupled (CO) and uncoupled (UN) schemes, respectively,
together with the final-state relative orbital angular mo-
mentum of the decay products. We would like to empha-
size that, although we use central forces in our calculation,
the CO scheme is the relevant one for observations, since a
small noncentral component in the potential is enough to

produce a sizable effect on the width of a state. In Table III
we summarize the thresholds obtained using the experi-
mental energies given in Ref. [29]. In Tables IV and V we
quote the thresholds obtained with the CQC model for the
charm and bottom sectors, respectively, and in Tables VI
and VII we give those for the BCN model.
An important property of the QQ �n �n system that is

crucial for the possible existence of bound states is the
fact that only one physical threshold ðQ �nÞðQ �nÞ is allowed.
Consequently, particular modifications of the four-quark
interaction, for instance a strong color-dependent attraction
in theQQ pair, would not be translated into any asymptoti-
cally free two-meson state. As discussed in Ref. [31], this
is not a general property in the four-quark spectroscopy, as
the Q �Qn �n four-quark state has two allowed physical
thresholds: ðQ �QÞðn �nÞ and ðQ �nÞðn �QÞ.

B. Figures of merit

The relevant quantity for analyzing the stability of any
four-quark state is �E, the energy difference between the
mass of the four-quark system and that of the lowest two-
meson threshold,

�E ¼ E4q � EðM1;M2Þ; (7)

where E4q stands for the four-quark energy and EðM1;M2Þ
for the energy of the two-meson threshold. Thus, �E < 0
indicates that all fall-apart decays are forbidden, and there-
fore one has a proper bound state.�E � 0will indicate that
the four-quark solution corresponds to an unbound thresh-
old (two free mesons).
One of the main difficulties in studying four-quark

states, already discussed in Refs. [19,20], is the slow con-
vergence of unbound solutions. We show in Fig. 2 the
evolution of E4q=EðM1;M2Þ as a function of K for three

different states, two of them bound (solid and dash-dotted
lines) and one unbound (dashed line). Although all of them
converge for large enough values of K, the correct descrip-
tion of the two-meson threshold for unbound states is slow
and time-consuming. A helpful tool to minimize this prob-
lem was proposed in Ref. [19] through an extrapolation of
the four-quark energy using the expression

E4qðKÞ ¼ E4qðK ¼ 1Þ þ a

Kb
; (8)

where E4qðK ¼ 1Þ, a, and b are fitted parameters. When

this extrapolation is used for unbound states, one can
observe how the four-quark energies reproduce the thresh-
olds to within a few MeV.
A second important quantity to characterize the possible

existence of a bound state is the evolution of the root mean
square radius as a function of K. While for unbound states
the components of the four-quark state will tend to be far
away when increasing K, for a bound state the radius
should stabilize when increasing K. In order to compare
four-quark states against two free-meson states we define
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the root mean square radius for four- (two-) quark systems,

RMS 4qð2qÞ ¼
�P4ð2Þ

i¼1 mihðri � RÞ2iP4ð2Þ
i¼1 mi

�
1=2

; (9)

and its corresponding ratio

�R ¼ RMS4q
RMSM1

þ RMSM2

; (10)

where RMSM1
þ RMSM2

stands for the sum of the radii of

the mesons corresponding to the lowest threshold.

C. Compact vs molecular states

Besides trying to unravel the possible existence of bound
QQ �n �n states, one should try to understand whether it is
possible to differentiate between compact and molecular
states. A molecular state may be understood as a four-
quark state containing a single physical two-meson com-
ponent, i.e., a unique singlet-singlet component in the color
wave function with well-defined spin and isospin quantum
numbers. One could expect that these states are not deeply
bound and therefore have a size of the order of the two-
meson system, i.e., �R 	 1. On the contrary, a compact

state may be characterized by its involved structure on the
color space, its wave function containing different singlet-
singlet components with non-negligible probabilities. One
would expect that such states would be smaller than typical
two-meson systems, i.e., �R < 1. Let us note that while
�R > 1 but finite would correspond to a meson-meson

molecule,�R ���!K!11 would represent an unbound threshold.
One may illustrate the situation described above by the

deuteron and the H-dibaryon examples. Let us try to draw
the analogy between these states and the QQ �n �n system.
The deuteron has a small binding energy of �2:225 MeV
and a ratio between its root mean square charge radius
(2.139 fm) and the one of two protons (1.75 fm) of 1.222
[32], �R ¼ 1:22 and �E ¼ �2:225 MeV in our notation.
Should the deuteron be considered as a pure baryon-baryon
molecule? Although Ref. [33] emphasized the difficulties
identifying pure hadron-hadron molecules close to thresh-
olds, in the deuteron case this was justified a long time ago
[34]. The probability of physical two-baryon states other
than the nucleon-nucleon one is meaningless [23].
Therefore, this constitutes a clear example of a molecular
state. The postulated H-dibaryon would, however, fit into
the picture of compact states, its wave function presenting

TABLE III. Experimental lowest two-meson thresholds for charmed and bottom four-quark states in the uncoupled (UN) and
coupled (CO) schemes as defined in the text. M1M2jL indicates the lowest threshold and EðM1;M2Þ its energy. Energies are in MeV.

cc �n �n bb �n �n

UN CO UN CO

JPðIÞ M1M2jL EðM1;M2Þ M1M2jL EðM1;M2Þ M1M2jL EðM1;M2Þ M1M2jL EðM1;M2Þ
L ¼ 0

0þð0Þ D1DjP 4290 D1DjP 4290 B1BjP 10 977 B1BjP 10 977

0þð1Þ DDjS 3735 DDjS 3735 BBjS 10 558 BBjS 10 588

1þð0; 1Þ DD�jS 3877 DD�jS;D 3877 BB�jS 10 604 BB�jS;D 10 604

2þð0Þ D�D�
0jP 4317 DD�jD 3877 B�B�

0jP 11 023 BB�jD 10 604

2þð1Þ D�D�jS 4018 DDjD 3735 B�B�jS 10 650 BBjD 10 558

0�ð0; 1Þ D�
0D

�
1jP 4735 DD�jP 3877 B�

0B
�
1jP 11 396 BB�jP 10 604

1�ð0Þ D1D
�
0jP 4730 DDjP 3735 B1B

�
0jP 11 396 BBjP 10 558

1�ð1Þ D�
0D

�
0jP 4616 DD�jP 3877 B�

0B
�
0jP 11 396 BB�jP 10 604

2�ð0; 1Þ D�
0D

�
1jP 4735 DD�jP 3877 B�

0B
�
1jP 11 396 BB�jP 10 604

L ¼ 1 S ¼ 0

1�ð0Þ DDjP 3735 DDjP 3735 BBjP 10 558 BBjP 10 558

1�ð1Þ DD1jS;D 4290 DD�jP 3877 BB1jS;D 10 977 BB�jP 10 604

L ¼ 1 S ¼ 1

0�ð0; 1Þ DD�jP 3877 DD�jP 3877 BB�jP 10 604 BB�jP 10 604

1�ð0Þ DD�jP 3877 DDjP 3735 BB�jP 10 604 BBjP 10 558

1�ð1Þ DD�jP 3877 DD�jP 3877 BB�jP 10 604 BB�jP 10 604

2�ð0; 1Þ DD�jP 3877 DD�jP 3877 BB�jP 10 604 BB�jP 10 604

L ¼ 1 S ¼ 2

1�ð0Þ D�D�jP 4018 DDjP 3735 B�B�jP 10 650 BBjP 10 558

1�ð1Þ D�D�
0jS;D 4317 DD�jP 3877 B�B�

0jS;D 11 023 BB�jP 10 604

2�ð0Þ D�D�jP 4018 DD�jP 3877 B�B�jP 10 650 BB�jP 10 604

2�ð1Þ D�D�
0jD 4317 DD�jP 3877 B�B�

0jD 11 023 BB�jP 10 604

3�ð0Þ D�D�jP 4018 D�D�jP 4018 B�B�jP 10 650 B�B�jP 10 650

3�ð1Þ D�D�
0jD 4317 DD1jD 4290 B�B�

0jD 11 023 BB1jD 10 977
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relevant components of different singlet-singlet physical
channels: ��, N�, and �� at least [35].

This last aspect makes contact with the role played by
hidden-color configurations, color singlets built by non-
singlet constituents. There are three different ways for
coupling two quarks and two antiquarks in a colorless state,

½ðq1q2Þð �q3 �q4Þ� ¼ fj�312334i; j612 �634ig;
½ðq1 �q3Þðq2 �q4Þ� ¼ fj113124i; j813824ig;
½ðq1 �q4Þðq2 �q3Þ� ¼ fj114123i; j814823ig:

(11)

Each coupling scheme allows us to define a color basis
where the four-body problem can be solved. The first basis,
½ðq1q2Þð �q3 �q4Þ�, which is the most suitable one to deal with
the Pauli principle, is made entirely by hidden-color vec-
tors. The other two are hybrid bases that contain both
singlet-singlet (physical) and octet-octet (hidden-color)
components. It is possible to prove from simple group
theory arguments that once we have solved the four-body
problem for a system composed of two identical quarks
(QQ) and two identical antiquarks ( �n �n ), there is a mini-
mum value for the octet-octet component probability of the

wave function, either in the ½ðQ1 �n3ÞðQ2 �n4Þ� or the

½ðQ1 �n4ÞðQ2 �n3Þ� couplings: P13;24
88 , P14;23

88 2 ½1=3; 2=3�. It
can also be proved that for a four-quark threshold state

P13;24
88 ¼ P14;23

88 ¼ 4=9. Does this imply an important

hidden-color component in all QQ �n �n states? The answer
is no. In Ref. [36] it was proved that any physical state can
be expanded in terms of a basis constructed by the direct
product of mesonic and/or baryonic states that are not
necessarily linearly independent. Therefore one can ex-
press any QQ �n �n state in terms of the singlet-singlet com-
ponent of the ½ðQ1 �n3ÞðQ2 �n4Þ� and ½ðQ1 �n4ÞðQ2 �n3Þ� bases.
This discussion can be made more quantitative. Let us

assume that fP;Qg and fP̂; Q̂g are the projectors associated
with two orthonormal bases that are not orthogonal to each

other, i.e., PP̂ j �i � 0 and PQ̂ j �i � 0 for an arbitrary
state j �i. This would be the case for the two orthonormal
bases: fj113124i; j813824ig and fj114123i; j814823ig. Any ar-
bitrary state can be written as

j �i ¼ P j �i þQ j �i; (12)

and the probability of the state associated with P or P̂ will
be given by [37]

TABLE V. Same as Table IV for bb �n �n states.

UN CO

JPðIÞ M1M2jL EðM1;M2Þ RMS M1M2jL EðM1;M2Þ RMS

L ¼ 0

0þð0Þ B1BjP 11 101 0.373 B1BjP 11 101 0.373

0þð1Þ BBjS 10 588 0.284 BBjS 10 588 0.284

1þð0; 1Þ BB�jS 10 612 0.287 BB�jS;D 10 612 0.287

2þð0Þ B�B�
JjP 11 128 0.377 BB�jD 10 612 0.287

2þð1Þ B�B�jS 10 636 0.291 BBjD 10 588 0.284

0�ð0Þ B1B1jP 11 614 0.462 BB�jP 10 612 0.287

0�ð1Þ B�
JB

�
JjP 11 620 0.464 BB�jP 10 612 0.287

1�ð0Þ B1B
�
JjP 11 617 0.463 BBjP 10 588 0.284

1�ð1Þ B1B
�
JjP 11 617 0.463 BB�jP 10 612 0.287

2�ð0; 1Þ B�
JB

�
JjP 11 620 0.464 BB�jP 10 612 0.287

L ¼ 1 S ¼ 0

1�ð0Þ BBjP 10 588 0.284 BBjP 10 588 0.284

1�ð1Þ BB1jS;D 11 101 0.373 BB�jP 10 612 0.287

L ¼ 1 S ¼ 1

0�ð0; 1Þ BB�jP 10 612 0.287 BB�jP 10 612 0.287

1�ð0Þ BB�jP 10 612 0.287 BBjP 10 588 0.284

1�ð1Þ BB�jP 10 612 0.287 BB�jP 10 612 0.287

2�ð0; 1Þ BB�jP 10 612 0.287 BB�jP 10 612 0.287

L ¼ 1 S ¼ 2

1�ð0Þ B�B�jP 10 636 0.291 BBjP 10 588 0.284

1�ð1Þ B�B�
JjS;D 11 128 0.377 BB�jP 10 612 0.287

2�ð0Þ B�B�jP 10 636 0.291 BB�jP 10 612 0.287

2�ð1Þ B�B�
JjS;D 11 128 0.377 BB�jP 10 612 0.287

3�ð0Þ B�B�jP 10 636 0.291 B�B�jP 10 636 0.291

3�ð1Þ B�B�
JjS;D 11 128 0.377 B1BjD 11 101 0.373

TABLE IV. Same as Table III for cc �n �n states with the CQC
model. We have evaluated the RMS in fm.

UN CO

JPðIÞ M1M2jL EðM1;M2Þ RMS M1M2jL EðM1;M2Þ RMS

L ¼ 0

0þð0Þ D1DjP 4426 0.589 D1DjP 4426 0.589

0þð1Þ DDjS 3872 0.440 DDjS 3872 0.440

1þð0; 1Þ DD�jS 3937 0.454 DD�jS;D 3937 0.454

2þð0Þ D�D�
JjP 4499 0.607 DD�jD 3937 0.454

2þð1Þ D�D�jS 4002 0.468 DDjD 3872 0.440

0�ð0Þ D1D1jP 4980 0.738 DD�jP 3937 0.454

0�ð1Þ D�
JD

�
JjP 4996 0.746 DD�jP 3937 0.454

1�ð0Þ D1D
�
JjP 4988 0.742 DDjP 3872 0.440

1�ð1Þ D1D
�
JjP 4988 0.742 DD�jP 3937 0.454

2�ð0; 1Þ D�
JD

�
JjP 4996 0.746 DD�jP 3937 0.454

L ¼ 1 S ¼ 0

1�ð0Þ DDjP 3872 0.440 DDjP 3872 0.440

1�ð1Þ DD1jS;D 4426 0.589 DD�jP 3937 0.454

L ¼ 1 S ¼ 1

0�ð0; 1Þ DD�jP 3937 0.454 DD�jP 3937 0.454

1�ð0Þ DD�jP 3937 0.454 DDjP 3872 0.440

1�ð1Þ DD�jP 3937 0.454 DD�jP 3937 0.454

2�ð0; 1Þ DD�jP 3937 0.454 DD�jP 3937 0.454

L ¼ 1 S ¼ 2

1�ð0Þ D�D�jP 4002 0.468 DDjP 3872 0.440

1�ð1Þ D�D�
JjS;D 4499 0.607 DD�jP 3937 0.454

2�ð0Þ D�D�jP 4002 0.468 DD�jP 3937 0.454

2�ð1Þ D�D�
JjS;D 4499 0.607 DD�jP 3937 0.454

3�ð0Þ D�D�jP 4002 0.468 D�D�jP 4002 0.468

3�ð1Þ D�D�
JjS;D 4499 0.607 D1DjD 4426 0.589
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P j�ið½u�Þ ¼ 1

2ð1� cos2�Þ ½h� j PQ̂ j�i þ h� j Q̂P j�i�;

P j�ið½u0�Þ ¼ 1

2ð1� cos2�Þ ½h� j P̂Q j�i þ h� jQP̂ j�i�;
(13)

where P ¼j uihu j , P̂ ¼j u0ihu0 j , and cos� ¼ hu0 j ui.
For a molecular state, either P j�ið½u�Þ or P j�ið½u0�Þ would
be equal to zero, while for a compact state both will be
different from zero.

IV. RESULTS

A. Comparison to other numerical methods

To illustrate the performance of the numerical procedure
described in Sec. II, it is convenient to compare it with
other numerical methods in order to understand its capa-
bility and advantages, if any. As outlined in Sec. I, in the
past decades there have been several attempts to study
multiquarks containing explicit charm or bottom flavors.
Among them, we shall analyze the calculation of the

0 10 20 30

K

0.98

1

1.02

1.04

1.06

1.08

E
4q

 / 
E

(M
1
,M

2
)

FIG. 2. E4q=EðM1;M2Þ as a function of K for JPðL; S; IÞ ¼
1þð0; 1; 0Þ (solid line), 0þð0; 0; 0Þ (dashed line), and 1�ð1; 0; 1Þ
(dash-dotted line) with the CQC model.

TABLE VII. Same as Table V for the BCN model.

UN CO

JPðIÞ M1M2jL EðM1;M2Þ RMS M1M2jL EðM1;M2Þ RMS

L ¼ 0

0þð0Þ B1BjP 11 113 0.355 B1BjP 11 113 0.355

0þð1Þ BBjS 10 602 0.282 BBjS 10 602 0.282

1þð0; 1Þ BB�jS 10 651 0.288 BB�jS;D 10 651 0.288

2þð0Þ B�B�
JjP 11 176 0.364 BB�jD 10 651 0.288

2þð1Þ B�B�jS 10 700 0.294 BBjD 10 602 0.282

0�ð0Þ B1B1jP 11 624 0.428 BB�jP 10 651 0.288

0�ð1Þ B�
JB

�
JjP 11 652 0.434 BB�jP 10 651 0.288

1�ð0Þ B1B
�
JjP 11 638 0.431 BBjP 10 602 0.282

1�ð1Þ B1B
�
JjP 11 638 0.431 BB�jP 10 651 0.288

2�ð0; 1Þ B�
JB

�
JjP 11 652 0.434 BB�jP 10 651 0.288

L ¼ 1 S ¼ 0

1�ð0Þ BBjP 10 602 0.282 BBjP 10 602 0.282

1�ð1Þ BB1jS;D 11 113 0.355 BB�jP 10 651 0.288

L ¼ 1 S ¼ 1

0�ð0; 1Þ BB�jP 10 651 0.288 BB�jP 10 651 0.288

1�ð0Þ BB�jP 10 651 0.288 BBjP 10 602 0.282

1�ð1Þ BB�jP 10 651 0.288 BB�jP 10 651 0.288

2�ð0; 1Þ BB�jP 10 651 0.288 BB�jP 10 651 0.288

L ¼ 1 S ¼ 2

1�ð0Þ B�B�jP 10 700 0.294 BBjP 10 602 0.282

1�ð1Þ B�B�
JjS;D 11 176 0.364 BB�jP 10 651 0.288

2�ð0Þ B�B�jP 10 700 0.294 BB�jP 10 651 0.288

2�ð1Þ B�B�
JjS;D 11 176 0.364 BB�jP 10 651 0.288

3�ð0Þ B�B�jP 10 700 0.294 B�B�jP 10 700 0.294

3�ð1Þ B�B�
JjS;D 11 176 0.364 B1BjD 11 113 0.355

TABLE VI. Same as Table IV for the BCN model.

UN CO

JPðIÞ M1M2jL EðM1;M2Þ RMS M1M2jL EðM1;M2Þ RMS

L ¼ 0

0þð0Þ D1DjP 4341 0.544 D1DjP 4341 0.544

0þð1Þ DDjS 3772 0.424 DDjS 3772 0.424

1þð0; 1Þ DD�jS 3906 0.447 DD�jS;D 3906 0.447

2þð0Þ D�D�
JjP 4511 0.577 DD�jD 3906 0.447

2þð1Þ D�D�jS 4040 0.470 DDjD 3772 0.424

0�ð0Þ D1D1jP 4910 0.664 DD�jP 3906 0.447

0�ð1Þ D�
JD

�
JjP 4982 0.684 DD�jP 3906 0.447

1�ð0Þ D1D
�
JjP 4946 0.674 DDjP 3772 0.424

1�ð1Þ D1D
�
JjP 4946 0.674 DD�jP 3906 0.447

2�ð0; 1Þ D�
JD

�
JjP 4982 0.684 DD�jP 3906 0.447

L ¼ 1 S ¼ 0

1�ð0Þ DDjP 3772 0.424 DDjP 3772 0.424

1�ð1Þ DD1jS;D 4341 0.544 DD�jP 3906 0.447

L ¼ 1 S ¼ 1

0�ð0; 1Þ DD�jP 3906 0.447 DD�jP 3906 0.447

1�ð0Þ DD�jP 3906 0.447 DDjP 3772 0.424

1�ð1Þ DD�jP 3906 0.447 DD�jP 3906 0.447

2�ð0; 1Þ DD�jP 3906 0.447 DD�jP 3906 0.447

L ¼ 1 S ¼ 2

1�ð0Þ D�D�jP 4040 0.470 DDjP 3772 0.424

1�ð1Þ D�D�
JjS;D 4511 0.577 DD�jP 3906 0.447

2�ð0Þ D�D�jP 4040 0.470 DD�jP 3906 0.447

2�ð1Þ D�D�
JjS;D 4511 0.577 DD�jP 3906 0.447

3�ð0Þ D�D�jP 4040 0.470 D�D�jP 4040 0.470

3�ð1Þ D�D�
JjS;D 4511 0.577 D1DjD 4341 0.544
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ðL; S; IÞ ¼ ð0; 1; 0Þ cc �n �n state of Refs. [9,13] using the
BCN potential, and the results obtained in Ref. [14] with
the CQC model.

We present in Table VIII results for different L ¼ 0 spin-
isospin cc �n �n states within the CQCmodel. We quote in the
first column the results obtained with a variational calcu-
lation using Gaussian trial wave functions with only qua-
dratic terms in the Jacobi coordinates [14] (S wave
approximation). Such an approximation is recovered in
our formalism requiring ‘i ¼ 0 for all pairs. These results
are given in the second column up to K ¼ 10, and are fully
converged, reproducing exactly the variational results.1

The relevance of large relative orbital angular momenta
can be judged by looking at the last column, where almost
exact HH results up to K ¼ 24 are given, the difference in
some cases being larger than 200 MeV. This effect was not
appreciated in Ref. [14] since their importance was esti-
mated using only one Gaussian for the radial wave
function.

Using the variational method of Ref. [38], where non-
zero relative orbital angular momenta were considered, we
have obtained 3861.38 MeV for the energy and 0.363 fm
for the root mean square radius, respectively, of the
ðL; S; IÞ ¼ ð0; 1; 0Þ cc �n �n four-quark state. This result is
in perfect agreement with that obtained using the HH
formalism: 3860.65 MeV and 0.367 fm.

We have also reproduced the calculation of the
ðL; S; IÞ ¼ ð0; 1; 0Þ cc �n �n state of Refs. [9,13] using the
BCN model. In Table IX (second and third columns) we
present the energies and RMS obtained for this state for all
values of K. For K ¼ 26 we have obtained an energy of
3899.2 MeV as compared to 3904.7 MeV of Ref. [13] and
3931.0 MeVof Ref. [9]. Reference [13] designed a power-
ful method similar to the stochastic variational approach to
study this particular system. Although they are not fully
converged, the agreement gives confidence for both results.
Reference [9] uses a diagonalization in a restricted Hilbert
space, obtaining a larger value.

B. The QQ �n �n system

In Ref. [20] the following question was posed: Does the
quark model naturally predict the existence of Q �Qn �n

bound states?. The answer was clear: No compact bound
four-quark states were found for any set of quantum num-
bers if only two-body potentials in a complete basis were
used. One cannot discard that a modification of the Hilbert
space, like, for example, considering only diquark configu-
rations, or of the interacting Hamiltonian, like many-body
contributions, could give rise to bound states. Is the same
conclusion still valid in the QQ �n �n sector? To answer this
question we have performed an exhaustive analysis of the
QQ �n �n spectra by means of the quark models described
above. Some particular results were already presented in
Ref. [31], where we studied the possibility of the Xð3872Þ
being a c �cn �n tetraquark. We gave arguments that favored
the existence of QQ �n �n stable states in nature, while dis-
favoring the existence of Q �Qn �n stable states. To make the
physics clear, we compared two particular sets of quantum
numbers: JPCðIÞ ¼ 1þþð0Þ for c �cn �n and JPðIÞ ¼ 1þð0Þ for
cc �n �n . Based on a variational study with a confining mass-
independent many-body potential, we argued in
Refs. [31,39] that the binding would increase when in-
creasing the mass ratio of flavor-exotic four-quark systems.
Definitive conclusions can only be obtained based on
realistic calculations. For these purposes, in the present
work we have considered all isoscalar and isovector states
with total orbital angular momentum L 
 1. For positive
(negative) parity four-quark systems, the ground state cor-
responds to L ¼ 0 (L ¼ 1), since parity can be expressed
in terms of the relative orbital angular momenta associated
with the Jacobi coordinates as P ¼ ð�Þ‘1þ‘2þ‘3 . This
means that P ¼ �1 needs three units of relative orbital
angular momentum to obtain L ¼ 0 (‘1 ¼ ‘2 ¼ ‘3 ¼ 1),
while only one is needed for L ¼ 1. The same reasoning

TABLE VIII. Comparison among different numerical ap-
proaches to the cc �n �n system. Energies are in MeV.

ðL; S; IÞ Reference [14] HH (
P

i‘i ¼ 0) HH

(0,0,1) 4155 4154 3911

(0,1,0) 3927 3926 3860

(0,1,1) 4176 4175 3975

(0,2,1) 4195 4193 4031

TABLE IX. The BCN and CQC ðL; S; IÞ ¼ ð0; 1; 0Þ cc �n �n re-
sults.

BCN CQC

K E4q (MeV) RMS (fm) E4q (MeV) RMS (fm)

0 4100 0.310 4109 0.314

2 3999 0.326 3990 0.320

4 3954 0.345 3931 0.331

6 3933 0.364 3903 0.341

8 3921 0.382 3887 0.348

10 3914 0.398 3878 0.354

12 3910 0.414 3872 0.358

14 3907 0.428 3868 0.361

16 3904 0.441 3866 0.363

18 3903 0.453 3864 0.365

20 3901 0.464 3862 0.366

22 3900 0.474 3861 0.367

24 3900 0.484 3861 � � �
26 3899 0.492 � � � � � �
DD�jS 3906 0.447 3937 0.454

�E �7 �76
�R >1 0.808

1We have redone the calculation of Ref. [14] with the parame-
ters used in this work, for a proper comparison.
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applies for P ¼ þ1 states. Therefore, since the complexity
of the calculation and the computing time increase with L,
we have not considered L ¼ 1 positive parity states that
should be higher in energy. The calculation has been done
up to the maximum value of K within our computational
capabilities, Kmax.

In Table X we present the cc �n �n CQC final results
obtained for all possible L ¼ 0 isoscalar and isovector
states and for the negative parity L ¼ 1 states. We indicate
for each state the maximum value of K used, Kmax. A first
glance at this table gives two general conclusions. First,
opposite to the Q �Qn �n case, there exist bound states in the
QQ �n �n spectra when only two-body potentials are used.
Second, once the four-body problem is properly solved, the
number of bound states is small. Curiously, there are two
cases that do not converge to the lowest possible two-
meson threshold but to a higher one, (L ¼ 0, I ¼ 0) JP ¼
0� and 2�. These states get stuck in the lowest D wave
threshold, either the D1D2jD (5316 MeV) or the D�

JD
�
J0 jD

(5325 MeV), satisfying �E � 0.
As discussed in Sec. III the convergence of unbound or

molecular states close to the two-meson threshold is a
difficult numerical problem. In order to minimize this
problem we have introduced the extrapolation formula
(8). In Table XI, we compare the energies obtained for
Kmax and for K ! 1, using the extrapolation formula. For
unbound or loosely bound states we observe how the
extrapolation leads to four-quark energies within only a
few MeV of the corresponding threshold. Throughout this
manuscript we shall always refer to E4qðKmaxÞ as the four-
quark state energy, E4q. In particular cases we will use the

extrapolation to study the characteristics of some specific
states, mainly those that are close below threshold.
There are two ingredients that may alter the stability of

the QQ �n �n system: either the mass of the heavy quark or
the interacting potential. One should wonder if the char-
acteristic spectrum obtained in Table X would be greatly
influenced by them. It was pointed out in the early 1980s
that a QQ �Q0 �Q0 four-quark state should be stable against
dissociation into Q �Q0 þQ �Q0 if the ratio mQ=mQ0 is large

enough [1]. This was corroborated by chiral perturbation
theory and lattice QCD studies of the bb �n �n system [8,40].
Trying to determine if a proliferation of states is predicted
when the mass of the heavy quark is augmented, we
studied all ground states of the bottom sector using the
same interacting potential as above. The results are pre-
sented in Table XII. We observe that all bound states
become deeper than in the charm sector and a few new
states appear. Our results strengthen the conclusion that the
larger the ratio of the quark masses, the larger the binding
energies.
The second ingredient to be tested is the dependence of

the results on the particular choice of the quark-quark
interaction. To answer this question we have reanalyzed
all the predicted bound states using the BCN model. The
results are summarized in Tables XIII and XIV. The ex-
istence of bound states is also evident when the BCN
model is considered, although the characteristics of each
state depend on the model considered. Of particular inter-
est is the observation that the bottom sector presents,
independently of the quark model, bound states with bind-

TABLE X. cc �n �n CQC energy, E4q � E4qðKmaxÞ (in MeV), RMS (in fm), �R, and �E (in MeV) as defined in Eqs. (7) and (10).
M1M2jL indicates the lowest threshold and EðM1;M2Þ its energy as obtained from Table IV.

Kmax JPðL; S; IÞ M1M2jL EðM1;M2Þ E4q RMS4q �R �E

28 0þð0; 0; 0Þ D1DjP 4426 4441 0.624 >1 þ15
28 0þð0; 0; 1Þ DDjS 3872 3905 0.752 >1 þ33
24 1þð0; 1; 0Þ DD�jS 3937 3861 0.367 0.808 �76
24 1þð0; 1; 1Þ DD�jS 3937 3972 0.779 >1 þ35
30 2þð0; 2; 0Þ D�D�

JjP 4499 4526 0.987 >1 þ27
30 2þð0; 2; 1Þ D�D�jS 4002 4025 0.879 >1 þ22
25 0�ð0; 0; 0Þ D1D1jP 4980 5374 0.738 >1 þ394
25 0�ð0; 0; 1Þ D�

JD
�
JjP 4996 5012 0.982 >1 þ16

25 1�ð0; 1; 0Þ D1D
�
JjP 4988 5021 0.944 >1 þ33

25 1�ð0; 1; 1Þ D1D
�
JjP 4988 5018 0.982 >1 þ30

25 2�ð0; 2; 0Þ D�
JD

�
JjP 4996 5387 1.237 >1 þ391

25 2�ð0; 2; 1Þ D�
JD

�
JjP 4996 5025 0.991 >1 þ29

21 1�ð1; 0; 0Þ DDjP 3872 3938 0.726 >1 þ66
23 1�ð1; 0; 1Þ DD1jS;D 4426 4426 0.527 0.894a þ0
21 ð0; 1; 2Þ�ð1; 1; 0Þ DD�jP 3937 3996 0.739 >1 þ59
21 ð0; 1; 2Þ�ð1; 1; 1Þ DD�jP 3937 4004 0.814 >1 þ67
21 ð1; 2; 3Þ�ð1; 2; 0Þ D�D�jP 4002 4052 0.817 >1 þ50
19 ð1; 2; 3Þ�ð1; 2; 1Þ D�D�

JjS;D 4499 4461 0.465 0.766 �38

aIn this case the radius has yet to converge for K ¼ Kmax. Its extrapolation gives a value larger than 1 but finite.
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ing energies of the order of 100 MeV that should be
possible to observe.

In connection with the interacting potential used, the
stability of QQ �n �n and Q �Qn �n systems has recently been
analyzed in Ref. [39] in a simple string model, considering
only a multiquark confining interaction given by the mini-
mum of a flip-flop or butterfly potential in an attempt to
discern whether confining interactions that are not factor-
izable as two-body potentials would influence the stability
of four-quark states. The ground state of systems made of
two quarks and two antiquarks of equal masses was found
to be below the dissociation threshold. While for the
cryptoexoticQ �Qn �n the binding decreases when increasing
the mass ratio mQ=mn, for the flavor-exotic QQ �n �n the

effect of mass symmetry breaking is the opposite.
Although more realistic calculations are needed before

establishing a definitive conclusion, the findings of
Ref. [39] corroborate our results.

C. Charm sector

In the following we will study more closely those cc �n �n
quantum numbers, JPðL; S; IÞ, that may host a bound state
(�E < 0 in Tables X and XIII), trying to unveil states that
might be a consequence of model and computational ap-
proximations. Expected bound states are summarized in
Table XV.

1. 1þð0; 1; 0Þ
The possible existence of a four-quark state with these

quantum numbers was predicted more than 20 years ago by
Zouzou and collaborators [5]. Since then, several works
have been devoted to studying these particular quantum
numbers by means of different methods and interactions,
either in the charm sector or in the bottom sector [6,7,10–
13,15]. In Table IX we show the results obtained in this
work with the BCN and CQC models. In both cases the
state converges below threshold. For the CQC model the
predicted binding energy is large, �76 MeV, and �R < 1,
which would fit into the defined compact states. On the
contrary, the BCN model predicts a rather small binding,
�7 MeV, and the RMS is larger than 1 but still not con-
verged, although it is not increasing linearly. This state
would naturally correspond to a molecule.
Although this state would be stable against dissociation

into two mesons, it may decay electromagnetically or
weakly. The electromagnetic transition ðQQ �n �nÞ !
ðQ �nÞðQ �nÞ� would be allowed if E4q is larger than the

mass of two D mesons. The process is illustrated in the
upper part of Fig. 3. For the CQC model the four-quark
energy is below the DD threshold, and therefore the pre-
dicted state could only decay via a second order weak
process into either two kaons (Cabibbo allowed) or two
light mesons (Cabibbo suppressed). The process is illus-
trated in the bottom part of Fig. 3. On the contrary, the

TABLE XI. cc �n �n CQC energies and �E, in MeV, evaluated
for Kmax and using the extrapolation (8) in the limit K ! 1.

JPðL; S; IÞ E4qðKmaxÞ �E E4qðK ¼ 1Þ �E

0þð0; 0; 0Þ 4441 þ15 4429 þ3
0þð0; 0; 1Þ 3905 þ33 3862 �10
1þð0; 1; 0Þ 3861 �76 3856 �81
1þð0; 1; 1Þ 3972 þ35 3914 �14
2þð0; 2; 0Þ 4526 þ27 4501 þ2
2þð0; 2; 1Þ 4024 þ22 3991 �9
0�ð0; 0; 0Þ 5374 þ394 5323 þ343
0�ð0; 0; 1Þ 5012 þ16 4983 �13
1�ð0; 1; 0Þ 5021 þ33 4993 þ5
1�ð0; 1; 1Þ 5018 þ30 4992 þ4
2�ð0; 2; 0Þ 5387 þ391 5307 þ311
2�ð0; 2; 1Þ 5025 þ29 5000 þ4
1�ð1; 0; 0Þ 3938 þ66 3865 �7
1�ð1; 0; 1Þ 4426 þ0 4420 �6
ð0; 1; 2Þ�ð1; 1; 0Þ 3996 þ59 3927 �10
ð0; 1; 2Þ�ð1; 1; 1Þ 4004 þ67 3918 �19
ð1; 2; 3Þ�ð1; 2; 0Þ 4052 þ50 3993 �9
ð1; 2; 3Þ�ð1; 2; 1Þ 4461 �38 4461 �38

TABLE XII. Same as Table X for the bb �n �n system.

Kmax JPðL; S; IÞ M1M2jL EðM1;M2Þ E4q RMS4q �R �E

30 0þð0; 0; 0Þ BB1jP 11 101 10 952 0.328 0.881 �149
26 0þð0; 0; 1Þ BBjS 10 588 10 606 0.365 >1 þ18
22 1þð0; 1; 0Þ BB�jS 10 612 10 398 0.220 0.765 �214
24 1þð0; 1; 1Þ BB�jS 10 612 10 623 0.310 >1 þ11
28 2þð0; 2; 0Þ B�

JB
�jP 11 128 11 144 0.627 >1 þ16

30 2þð0; 2; 1Þ B�B�jS 10 635 10 636 0.314 >1 þ1
23 1�ð1; 0; 0Þ BBjP 10 588 10 577 0.335 >1 þ11
19 1�ð1; 0; 1Þ BB1jS;D 11 101 10 980 0.276 0.740 �121
21 ð0; 1; 2Þ�ð1; 1; 0Þ BB�jP 10 612 10 650 0.493 >1 þ38
21 ð0; 1; 2Þ�ð1; 1; 1Þ BB�jP 10 612 10 666 0.517 >1 þ54
21 ð1; 2; 3Þ�ð1; 2; 0Þ B�B�jP 10 635 10 677 0.483 >1 þ42
19 ð1; 2; 3Þ�ð1; 2; 1Þ B�B�

JjS;D 11 128 10 988 0.276 0.732 �140
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results of the BCN model allow for an electromagnetic
decay with the emission of a photon with an energy lower
than 127 MeV in the cc �n �n rest frame.

2. ð1; 2; 3Þ�ð1; 2; 1Þ and 1�ð1; 0; 1Þ
Bound states have been obtained either with the CQC or

the BCN model or with both. In these cases a detailed
analysis of the possible thresholds is required. As previ-
ously noticed, the interacting models only consider central
terms, with L and S being proper quantum numbers.
However, as illustrated is Sec. III A the thresholds may
be different in the coupled or uncoupled schemes, the
former being the relevant one when trying to compare
with experiment. We show in the upper part of
Table XVI the results obtained compared to the threshold
in the uncoupled and coupled schemes. The differences are
noticeable: When the coupled scheme is used, both inter-
acting models give results above the corresponding lowest
threshold, which discards these quantum numbers as prom-
ising candidates for being observed experimentally.

As already discussed in Sec. IVB, increasing the mass
of the heavy quark will favor the binding. This is illustrated
in Fig. 4 which compares the four-quark energy of the

1�ð1; 0; 1Þ state to its uncoupled threshold in the CQC
model. As can be seen, the CQC model predicts a tiny
binding energy, but the extrapolation gives a very stable
value around �E � �6 MeV. Opposite to the case of un-
bound states, the RMS does not grow linearly with K. We
observe the changes in �E when increasing mQ, noting

how �E crosses zero for masses slightly below the charm
quark mass. As a consequence, all the states discussed in
this section might be candidates to be stable in the bottom

TABLE XIII. Same as Table X for the BCN model. In all cases the value obtained for the radius has yet to converge for K ¼ Kmax.

Kmax JPðL; S; IÞ M1M2jL EðM1;M2Þ E4q RMS4q �R �E

26 1þð0; 1; 0Þ DD�jS 3906 3899 0.492 >1 �7
21 1�ð1; 0; 1Þ DD1jS;D 4341 4380 0.640 >1 þ39
21 ð1; 2; 3Þ�ð1; 2; 1Þ D�D�

JjS;D 4511 4502 0.492 0.853 �9

TABLE XIV. Same as Table XIII for the bb �n �n system.

Kmax JPðL; S; IÞ M1M2jL EðM1;M2Þ E4q RMS4q �R �E

28 0þð0; 0; 0Þ BB1jP 11 113 11 061 0.334 0.941 �52
28 1þð0; 1; 0Þ BB�jS 10 651 10 507 0.220 0.764 �144
28 2þð0; 2; 1Þ B�B�jS 10 700 10 723 0.353 >1 þ23
19 1�ð1; 0; 0Þ BBjP 10 602 10 639 0.433 >1 þ27
19 1�ð1; 0; 1Þ BB1jS;D 11 113 11 037 0.265 0.746 �76
19 ð1; 2; 3Þ�ð1; 2; 1Þ B�B�

JjS;D 11 176 11 057 0.264 0.727 �119

TABLE XV. Summary of bound states.

Quark content JPðL; S; IÞ Model Decay mode

cc �n �n 1þð0; 1; 0Þ CQC Weak

BCN Electromagnetic

bb �n �n 1þð0; 1; 0Þ CQC Weak

BCN Weak

3�ð1; 2; 1Þ CQC Electromagnetic

BCN Electromagnetic

0þð0; 0; 0Þ CQC Electromagnetic

BCN Electromagnetic

1�ð1; 0; 0Þ CQC Weak

FIG. 3. Possible electromagnetic (upper figure) and weak
(lower figure) decays for cc �n �n bound states. The electromag-
netic decay takes place through an intermediate virtual meson
(gray box) whose quantum numbers will depend on those of the
initial four-quark state, virtual D� for the case of JP ¼ 1þ. We
show a Cabibbo-allowed weak decay into two kaons that incor-
porates two vertices ðcþ �uÞ ! ðsþ �dÞ or ðcþ �dÞ ! ð�sþ uÞ.
Other diagrams involving two W’s may also contribute as for
example ðcc �q �qÞ ! ðs �qÞ þ ðs �qÞ þ ðu �dÞ þ ðu �dÞ [49].
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sector due to the binding gained with the heavy quark
mass.

D. Bottom sector

We repeat the same analysis as before for the bottom
sector. Expected bound states are summarized in Table XV.

1. 1þð0; 1; 0Þ
Opposite to the charm sector, in the bottom sector both

quark models offer the same prediction, a compact, deeply
bound, four-quark state. Within the CQC model the bind-
ing energy gets a value of �214 MeV while the BCN
predicts a somewhat smaller value of �144 MeV.
Concerning the possible decays, both of them are also
below the threshold for electromagnetic decays into BB

(10 588 MeV for CQC and 10 602 MeV for the BCN), and
therefore the only allowed decay mode for this state will
involve a second order weak process into two open-charm
mesons (Cabibbo allowed) or two light mesons (Cabibbo
suppressed).

2. 0þð0; 0; 0Þ and 3�ð1; 2; 1Þ
The existence of a positive parity QQ �n �n bound state

with quantum numbers S ¼ 0 and I ¼ 0 was proposed in
Ref. [5] using the BCN model if the ratio between the
masses of the heavy and light quarks was larger than 5–10,
i.e., bc �n �n and heavier. We have obtained a similar limit for
the CQC model, mb=mn � 15.
For the JP ¼ 3� state, a bound state has also been found

using both models: �E ¼ �140 MeV and �E ¼
�119 MeV, respectively. As can be seen in Table XVI it
is the only member of a multiplet below all possible thresh-
olds, and therefore all strong decays are forbidden.
No bound states were observed in the charm sector with

these quantum numbers, which is therefore a consequence
of the binding gained due to the larger heavy quark mass.
Both states could present electromagnetic decays, the for-
mer one through ðbb �n �nÞ ! ðBBjPÞ�, with a photon energy
in the range of & 400 MeV, and the latter through
ðbb �n �nÞ ! ðBBjDÞ� or ðbb �n �nÞ ! ðB�B�jSÞ�, emitting a
photon of the order of & 400–450 MeV.

3. 1�ð1; 0; 0Þ
Although no bound state is observed in the cc �n �n spec-

tra, a bound state, �E ¼ �11 MeV, appears in the bottom
sector with the CQC model. The structure of the wave
function, �R � 1:182, clearly points to an extended
meson-meson molecule instead of a compact four-quark
state. Concerning its possible decay channels, since this
state is below all possible thresholds, it could only undergo
a weak decay.

4. 1�ð1; 0; 1Þ, 2þð0; 2; 1Þ and ð1; 2Þ� ð1; 2; 1Þ
All these states are predicted to be bound in the un-

coupled scheme, but none of them survive the coupled
thresholds. Although interesting from a theoretical point

TABLE XVI. �E, in MeV, in the uncoupled (�UN
E ) and coupled (�CO

E ) schemes for different states with the CQC and BCN models.
See text for details.

CQC BCN

JPðL; S; IÞ M1M2jLS �UN
E M1M2jJ �CO

E M1M2jJ �UN
E M1M2jJ �CO

E

cc �n �n 1�ð1; 2; 1Þ 4499 �38 3937 þ524 4511 �9 3906 þ596
2�ð1; 2; 1Þ 4499 �38 3937 þ524 4511 �9 3906 þ596
3�ð1; 2; 1Þ 4499 �38 4426 þ35 4511 �9 4341 þ161
1�ð1; 0; 1Þ 4426 0 3937 þ489 4341 þ39 3906 þ474

bb �n �n 1�ð1; 2; 1Þ 11 128 �140 10 612 þ376 11 176 �119 10 651 þ406
2�ð1; 2; 1Þ 11 128 �140 10 612 þ376 11 176 �119 10 651 þ406
3�ð1; 2; 1Þ 11 128 �140 11 101 �113 11 176 �119 11 113 �56
1�ð1; 0; 1Þ 11 101 �121 10 612 þ368 11 113 �76 10 651 þ386

1250 2250 3250 4250 5250
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FIG. 4. �E as a function of the heavy quark mass, mQ, for
1�ð1; 0; 1Þ with the CQC model. The gray bands take into
account the differences between the values obtained for Kmax

(upper band) and the result obtained with the extrapolation
(black squares).
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of view to carefully test our calculating framework, they
are not expected to be observed in nature.

E. Beyond QQ �n �n

Once the QQ �n �n (Q ¼ c, b) states have been discussed,
a few avenues remain to be explored. Among them, the
consideration of QQ�s �s and QQ0 �n �n states would be of
interest. Concerning the strangeness �2 states, only those
containing b quarks seem likely candidates to accommo-
date bound states. We have redone the calculation for the
most promising states, those with quantum numbers
IðJPÞ ¼ 0ð1þÞ and Q ¼ c or b. In both cases the four-
quark system is above the corresponding threshold. This
can be easily understood because the mass ratio MQ=mq

has diminished due to the large mass of the strange quark,
thus increasing the contribution of the kinetic energy.
Besides, the attractive one-pion exchange does not contrib-
ute. Our conclusions coincide with those of Ref. [16]: The
binding energy decreases when decreasing the mass ratio
MQ=mq. The second system, QQ0 �n �n , is made of distin-

guishable heavy quarks, i.e., bc �n �n among others, and
therefore demands a modification of the current formalism;
namely, we should consider all possible combinations of
‘1, S12. This would lead to an increase in the basis size and,
consequently, in computing time. However, one can draw a
simple conclusion in light of Ref. [16], or the first six lines
of Table III. The binding energy increases with the reduced
mass of the heavy quark pair. Thus, one would expect a
bound state with quantum numbers 1þð0; 1; 0Þ for the
bc �n �n system, while the others appearing in the doubly
bottom sector would not be clear candidates for bound
states with a bc heavy diquark.

F. Meson-meson probabilities

We present in Table XVII the meson-meson probabil-
ities for some selected four-quark states according to
Eqs. (13). These calculations were done by means of the
variational method in Ref. [38]. As can be seen, there is
perfect agreement with the HH results, but the variational
formalism allows one to evaluate the probabilities of the
different physical components in a simpler manner.
Unbound states converge to two isolated mesons, the low-
est threshold of the system, its RMS and �R being very
large. In contrast, bound states have a radius smaller than

the threshold and they present probabilities different from
zero for several physical states, the lowest two-meson
threshold being contained in the physical four-quark sys-
tem. Such states would be called compact in our notation.
When the binding energy approaches the threshold, the
probability of a single physical channel converges to 1,
which we defined as a molecular state.

G. BCN vs CQC

The delicate interplay between the OGE and the chiral
interactions in the description of the hadron spectra and
baryon-baryon interaction has been widely discussed in the
literature [41]. In theQQ �n �n spectra the relative strength of
these interactions is even more important since �E is very
sensitive to any modification in the chiral/OGE rate. The
reason is that the threshold is not affected by the chiral part
of the interaction since it is made of two Q �n mesons, and
there are no boson exchanges between heavy and light
quarks. This is not the case for the QQ �n �n systems, where
bosons may be exchanged between the two light anti-
quarks. Therefore, an arbitrary modification in the strength
of the chiral part of the interaction in any four-quark state
where it is attractive could bind the system.
We therefore emphasize the importance of testing any

model against as many observables as possible in order to
constrain its parameters and ingredients. In this respect the
heavy-light four-quark states are ideally suited for this
task. Since only the total energy, and not the threshold,
depends on the boson exchanges, the comparison between
the predicted and measured �E would provide us with

TABLE XVII. Probability of the lowest threshold PM1M2
for

different bound and unbound four-quark states. Energies are in
MeV and radii are in fm.

Quark content JPðL; S; IÞ E4q �E RMS �R PM1M2

cc �n �n 0þð0; 0; 1Þ 3877 þ5 30.49 60.29 1.00

1þð0; 1; 0Þ 3861 �76 0.37 0.81 0.50

bb �n �n 0þð0; 0; 0Þ 10 948 �153 0.33 0.89 0.25

1þð0; 1; 0Þ 10 397 �217 0.22 0.77 0.50

TABLE XVIII. Energies and RMS of the bb �n �n 2þð0; 2; 1Þ as a
function of K for the CQC model with (A) and without (B) boson
exchange potentials.

A B
K E4q (MeV) RMS (fm) E4q (MeV) RMS (fm)

0 10 763.0 0.2131 10 793.3 0.2173

2 10 701.8 0.2201 10 740.6 0.2250

4 10 670.6 0.2283 10 712.2 0.2337

6 10 658.0 0.2360 10 700.3 0.2425

8 10 650.1 0.2436 10 692.2 0.2521

10 10 645.6 0.2509 10 687.2 0.2628

12 10 642.6 0.2580 10 683.5 0.2743

14 10 640.7 0.2647 10 680.7 0.2874

16 10 639.4 0.2712 10 678.6 0.3025

18 10 638.5 0.2775 10 676.6 0.3203

20 10 637.8 0.2836 10 674.9 0.3415

22 10 637.3 0.2897 10 673.3 0.3670

24 10 636.8 0.2957 10 671.7 0.3973

26 10 636.5 0.3021 10 670.1 0.4325

28 10 636.2 0.3077 10 668.4 0.4720

30 10 636.0 0.3136 10 666.8 0.5146

B�B�jS 10 635.5 0.2906 10 635.5 0.2906
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precise information regarding the role played by these
interactions in the meson spectra.

Amazingly, as observed in Table XV almost all bound
states are predicted independently of the dynamics. In
other words, whenever a bound state is found with the
CQC model, the BCN potential predicts a similar state.
In general, predicted binding energies are smaller for
gluon-based interactions. Only the 1�ð1; 0; 0Þ bb �n �n state
is predicted by one of the models, the CQC. To illustrate
the larger binding predicted by models considering boson
exchanges, we have selected one of the states whose bind-
ing energy in the uncoupled scheme has been found to be
smaller than 10 MeV, the bb �n �n 2þð0; 2; 1Þ state. Once
boson exchanges are switched off, there is not enough
attraction to bind the system, and it behaves as two isolated
mesons. These results are illustrated in Table XVIII. To
illustrate the difference in the structure induced by the
boson exchanges, we have plotted in Fig. 5 the evolution
with K of�R in both cases. In the unbound case the system
separates very rapidly while the bound one starts to con-
verge to a large, but finite, value.

V. EXPERIMENTAL OBSERVATION

The most promising mechanism for the production of a
four-quark state is the independent formation of two cc and
�q �q pairs that will later merge into a cc �q �q state. Following
this idea the rate of cc �q �q production was estimated in
Ref. [12] as Rcc �q �q=Rccq � 1=10. Therefore, any facility

able to produce double charm baryons in sizable quantities
should be able, in principle, to observe four-quark states.

So far, double charmed baryons have only been ob-
served by SELEX Collaboration [42], although its limited
statistics, � 50 events, makes it doubtful that four-quark
states can be produced in quantities large enough to be
statistically significant. In Ref. [43] the production rate of
double charmed baryons by the COMPASS experiment
was estimated to be of the order of 104 to 1:7� 104 events;
this indicates that up to 1500 four-quark events may be
produced by the COMPASS 200 GeV proton beam [44].
The number of ccq and bbq events at Tevatron was esti-
mated in Ref. [45], obtaining values of 105 and 104 events,
respectively. This would yield values of the order of 104

four-quark events to be produced in the second run of
Tevatron. Although, so far, Belle Collaboration has not
reported the observation of double charmed baryons, their
production cross section was estimated in Ref. [46], where
values of the order of 104 events/year were obtained. This
will translate into 1000 four-quark events/year. Theoretical
predictions about the production cross section of double
charmed baryons have been estimated by BABAR, giving
diverse values from hundreds to tens of thousands of events
[47]. This indicates that BABAR could produce up to 5000
four-quark events/year. In this respect, it is worth mention-
ing that theoretical cross-section predictions for double c �c
production have been found to be 1 order of magnitude too
low as compared with experimental data [48]. This implies
that the predicted rate for double charmed baryon produc-
tion may have been underestimated, and therefore the
expected number of four-quark events could be larger. In
Ref. [2], the cc �q �q production rate at different facilities was
estimated assuming that the dominant mechanism for
double charm production at high energy colliders would
be a disconnected double gluon-gluon fusion, ðgþ gÞ þ
ðgþ gÞ ! ðcþ �cÞ þ ðcþ �cÞ. The predicted number of
four-quark events produced at LHC by either LHCb or
ALICE and at Tevatron is found to be very large, 9700,
20 900, and 600 events/hour, respectively, while for RHIC
a smaller value of 12 events/hour is expected.
The picture that seems to emerge from these estimations

is that, nowadays, we are on the verge of actual experi-
mental facilities being capable of starting to disentangle
the properties of cc �q �q bound states. If this is not so, the
facilities that will be in operation in the next decade, if not
sooner, at CERN and Fermilab will be able to provide a
definitive answer to the existence of four-quark flavor-
exotic states in nature.

VI. SUMMARY

In this work we have performed a systematic analysis of
all cc �n �n and bb �n �n ground states within the framework of
the hyperspherical harmonic method. In order to distin-
guish between unbound, compact, and molecular four-
quark states, we have considered two different quark mod-
els widely used in the literature. We have analyzed both
isoscalar and isovector systems with S ¼ 0, 1, and 2. We
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FIG. 5. �R as a function of K for the 2þð0; 2; 1Þ bb �n �n with
(solid line) and without (dashed line) boson exchange potentials
for the CQC model.
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have considered L ¼ 0 states with positive and negative
parity, as well as L ¼ 1 states with negative parity. The
relevance of a careful analysis of the numerical thresholds,
together with the numerical approximations involved, has
been emphasized in order to avoid the misidentification of
bound states. Estimations about the possibility of detecting
these states in the next generation of experimental facilities
have been performed.

Our results are summarized in Table XV. We have found
five four-quark states that should be narrow and therefore
possible to detect. Four of them are predicted indepen-
dently of the interacting potential used, either the CQC or
BCN model. The 1�ð1; 0; 0Þ state is found only with the
CQC model. The cc �n �n system would only have one bound
state, while up to four could be stable in the bb �n �n system.
All predicted states are compact, and only the 1�ð1; 0; 0Þ
state is molecular. Unfortunately, only one of them, the
cc �n �n state with quantum numbers 1þð0; 1; 0Þ, is within the
scope of the experimental facilities that will be available in
the near future.

Theoretical models point out the existence of a double
charmed isoscalar four-quark bound state with quantum
numbers JP ¼ 1þ, its properties depending on the quark
model considered. The experimental detection and analysis
of four-quark double charmed states will undoubtedly
prove to be an invaluable testing ground to severely con-
straint the different theoretical models and, therefore, will
allow one to refine the theoretical predictions over all the
hadronic spectra.
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