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The formalism developed recently to study vector meson-vector meson interaction, and applied to the

case of ��, is extended to study the interaction of the nonet of vector mesons among themselves. The

interaction leads to poles of the scattering matrix corresponding to bound states or resonances. We show

that 11 states (either bound or resonant) get dynamically generated in nine strangeness-isospin-spin

channels. Five of them can be identified with those reported in the PDG, i.e., the f0ð1370Þ, f0ð1710Þ,
f2ð1270Þ, f02ð1525Þ, and K�

2ð1430Þ. The masses of the latter three tensor states have been used to fine-tune

the free parameters of the unitary approach, i.e., the subtraction constants in evaluating the vector meson-

vector meson loop functions in the dimensional regularization scheme. The branching ratios of these five

dynamically generated states are found to be consistent with data. The existence of the other six states

should be taken as predictions to be tested by future experiments.
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I. INTRODUCTION

Although QCD has been generally accepted as the
underlying theory of the strong interaction, due to the
asymptotic freedom, its application at low energies around
1 GeV is highly problematic. Even in the case of lattice
QCD, one still has to face many problems. Therefore, one
often turns to various effective theories or models. Chiral
symmetry, related with the small masses of u, d, s quarks,
provides a general principle for constructing effective field
theories to study low-energy strong-interaction phe-
nomena. In this respect, chiral perturbation theory, �PT,
has been rather successful in studies of low-energy had-
ronic phenomena [1–6]. See, for instance, Ref. [7] for a
pedagogical introduction and Ref. [8] for recent develop-
ments in the one-baryon sector.

However, pure perturbation theory cannot describe the
low-lying resonances. The breakthrough came with the
application of unitary techniques in the conventional chiral
perturbation theory, enabling one to study higher energy
regions hitherto inaccessible, while employing chiral
Lagrangians. The unitary extension of chiral perturbation
theory, U�PT, has been successfully applied to study
meson-baryon and meson-meson interactions. Several uni-
tarization approaches have been developed over the years,
including the inverse amplitude method [9,10], dispersion
relations (the N=Dmethod) [11,12], or in terms of coupled
channel Bethe-Salpeter equation [13–15].

So far, the unitary chiral approach has been applied to
study the self-interaction of the octet of pseudoscalars of
the � [9,10,13,14,16], which provides the low-lying scalar
mesons, the interaction of the octet of pseudoscalars of the
� with the octet of baryons of the proton, which generates
JP ¼ 1=2� baryonic resonances [12,15,17–21], the inter-
action of the octet of pseudoscalars of the � with the
decuplet of baryons of the � [22,23], which leads to JP ¼
3=2� baryon resonances, and the interaction of the octet of

pseudoscalars of the � with the nonet of vector mesons of
the �, which leads to axial vector meson resonances
[24,25]. These studies sometimes report ‘‘surprising’’ re-
sults, such as the existence of two �ð1405Þ states and two
K1ð1270Þ states. Both have found some experimental sup-
port [26,27]. This approach has also been extended to study
systems including a heavy quark, charm or bottom, the so-
called heavy-light systems [28–31], and to study three-
body resonances [32,33].
The interaction of vector mesons with vector mesons or

vector mesons with baryons has received little attention.
One exception is the work of Ref. [34] where the vector-
vector interaction is used to provide collision rates of
vector mesons in heavy ion collisions. However, in a recent
work [35], the task of finding bound states of �� mesons
was undertaken, using unitary techniques with the interac-
tion vertices derived from the hidden-gauge Lagrangians
[36,37]. Using as input the vertices provided by these
Lagrangians and unitarizing the amplitudes via the
Bethe-Salpeter equation, two poles were found on the
complex plane: one in ðI; SÞ ¼ ð0; 0Þ and the other in
ðI; SÞ ¼ ð0; 2Þ sector, which were identified with the
f0ð1370Þ and the f2ð1270Þ states of the PDG [38]. The
formalism provides naturally a stronger attraction for the
tensor channel than for the scalar channel. A study of the
radiative decays of these two states based on this approach
has been performed [39].
The main purpose of the present paper is to extend the

formalism developed in Ref. [35] to study vector meson-
vector meson interaction in all possible strangeness-iso-
spin-spin channels.
This paper is organized as follows: In Sec. II, we write

down the hidden-gauge Lagrangians and briefly describe
the several mechanisms that contribute to tree-level tran-
sition amplitudes, including four-vector-contact interac-
tion, s, t, and u-channel vector exchange, and box
diagrams that provide decays to two pseudoscalars. We
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also explain in detail the approximations involved to make
calculations feasible and the arguments supporting these
approximations. In Sec. III, we look for poles on the
complex plane and present results channel by channel.
We show results both without and with the decay mecha-
nism to two pseudoscalars. We also calculate the residues
of these poles, which quantify the couplings of these states
to different coupled channels and play a role in studies of
their radiative decays. Section IV contains a brief summary
and our main conclusions.

II. FORMALISM

In this work, as in Refs. [35,39], we use the Bethe-
Salpeter equation method to unitarize the amplitudes. In
this approach, the unitarized T amplitudes in coupled
channels and s wave can be written as

T ¼ V þ VGT ¼ ð1� VGÞ�1V; (1)

where V stands for the tree-level transition amplitudes, and
G is a diagonal matrix with its element the vector meson-
vector meson loop function

G ¼ i
Z d4q

ð2�Þ4
1

q2 �M2
V1

1

q2 �M2
V2

; (2)

where MV1 and MV2 are the masses of the two vector-
mesons.

As explained in Ref. [35] and also shown in Fig. 1, four
possible mechanisms contribute to the tree-level transition
amplitudes V: (1) four-vector-contact term [Fig. 1(a)];
(2) tðuÞ-channel vector meson exchange [Fig. 1(b)];
(3) s-channel vector meson exchange [Fig. 1(c)]; (4) box
diagram with intermediate pseudoscalars (Fig. 1(d)). The
corresponding diagram to the one in Fig. 1(d) with crossed
pions was shown in Ref. [35] to provide much smaller
contribution than the direct box diagram (Fig. 1(d)) for ��
scattering and, hence, we ignore it here. Similarly, in
Ref. [35] the contribution of box diagrams with intermedi-
ate vector mesons involving anomalous couplings was also

found to be small and we shall also omit them in the
present work.
In our approach, the first two diagrams play the most

important role in the formation of resonances. The
s-channel vector meson exchange is mostly of p-wave
nature. In the case of the strangeness ¼ 1 channel, an
s-wave contribution appears, which is proportional to the
differences between the initial (final) vector meson masses
and is found to be numerically negligible compared to the
sum of the contact mechanism and the tðuÞ-channel vector
meson exchange mechanism. The box diagram depends
somewhat on a form factor that we shall discuss later on.
The real part of the amplitude is small compared to the sum
of the four-vector-contact amplitude and the tðuÞ channel
vector-exchange amplitude, but the imaginary part is rela-
tively large because there is a large phase space for the
decay into two pseudoscalars, as has been explicitly shown
in Ref. [35], where cancellations of the real part with that
from the box diagram involving anomolous couplings was
also found. Thus, we keep only its imaginary part.
We adopt the hidden-gauge formalism, consistent with

chiral symmetry, to describe the interactions between the
vector mesons and those between the vectors and the
pseudoscalars [36,37]. The hidden-gauge Lagrangian is

L ¼ �1
4h �V��

�V��i þ 1
2M

2
vh½V� � ði=gÞ���2i; (3)

where

�V �� ¼ @�V� � @�V� � ig½V�; V��;

�� ¼ 1
2fuy½@� � iðv� þ a�Þ�uþ u½@� � iðv� � a�Þ�uyg;

and hi stands for the trace in the SU(3) flavor space. V�

represents the vector nonet

V� ¼
!þ�0ffiffi

2
p �þ K�þ

�� !��0ffiffi
2

p K�0

K�� �K�0 �

0
BB@

1
CCA

�

; (4)

while u2 ¼ U ¼ expði
ffiffi
2

p
�

f Þ with� the octet of the pseudo-

scalars

� ¼
�ffiffi
6

p þ �0ffiffi
2

p �þ Kþ

�� �ffiffi
6

p � �0ffiffi
2

p K0

K� �K0 �
ffiffi
2
3

q
�

0
BBB@

1
CCCA: (5)

The value of the coupling constant g of the Lagrangian
[Eq. (3)] is

g ¼ MV

2f
; (6)

withMV the vector meson mass and f ¼ 93 MeV the pion
decay constant.
The Lagrangian of Eq. (3) provides the following two

interactions:

+

+

(c)

(a) (b)

(d)

+

FIG. 1. The mechanisms contributing to the tree-level vertex
of vector-vector scattering, which appears as V in the coupled
channel Bethe-Salpeter equation.

L. S. GENG AND E. OSET PHYSICAL REVIEW D 79, 074009 (2009)

074009-2



L VVVV ¼ 1
2g

2h½V�; V��V�V�i; (7)

L VVV ¼ ighð@�V� � @�V�ÞV�V�i
¼ ighV�@�V�V

� � @�V�V
�V�i

¼ ighðV�@�V� � @�V�V
�ÞV�Þi: (8)

The first one is responsible for the four-vector-contact
interaction and the second one leads to the s, t,
u-channel vector-exchange mechanisms.

To calculate the box diagram, one also needs the vector-
pseudoscalar-pseudoscalar interaction, which is also pro-
vided by Eq. (3) as

L V�� ¼ �ighV�½�; @���i: (9)

With the above vertices, one can then calculate the tree-
level transition amplitudes for each strangeness and isospin
channel. With the interaction of two spin-1 particles, the
final state could have either spin 0, spin 1, or spin 2. One
then has the following strangeness, isospin, and spin chan-
nels: (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2),
(0, 2, 0), (0, 2, 1), (0, 2, 2), ð1; 1=2; 0Þ, ð1; 1=2; 1Þ,
ð1; 1=2; 2Þ, ð1; 3=2; 0Þ, ð1; 3=2; 1Þ, ð1; 3=2; 2Þ, (2, 0, 0), (2,
0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 1), and (2, 1, 2). In total, there
are 21 channels. Proceeding further, we will see that not in
all of these channels the vector meson-vector meson inter-
action leads to resonances.

An important ingredient in the Bethe-Salpeter equation
method is the on-shell evaluation of the transition ampli-
tudes V, which reduces the coupled channel integral equa-
tions to coupled channel algebraic equations. This can be
justified using various methods, such as through a disper-
sion relation on T�1 after imposing unitarity [11,12], or in
a more transparent way, writing Vðq2Þ ’ Vðm2Þ þ @V

@q2
�

ðq2 �m2Þ. The off-shell part of the amplitude then cancels
one vector meson propagator, leading to a tadpole kind of
diagram. This diagram gets canceled with genuine tadpole
diagrams from the same chiral Lagrangian, or, can be taken
into account by redefining the couplings of the original
transition amplitude. In any case, one can evaluate the
transition amplitudes on shell.

Since we are only interested in the energy region close to
the vector meson-vector meson threshold, one can safely
ignore the three-momenta of the external vector mesons
relative to their masses and, hence, the zero component of
their polarization vectors. With the above mentioned on-
shell factorization, as explained in detail in Ref. [35], one
can prove that, after neglecting corrections of the order
j ~qj2=M2

V , the vector meson propagators in the loops of the
Bethe-Salpeter series can be simplified as

�ij

q2 �M2
V þ i	

; (10)

with i, j the spacial indices of the polarization vectors. On
the other hand, the propagator for the vector mesons ex-

changed in the t and u channels entering the evaluation of
the tree-level transition amplitudes is given by

� g�� 1

q2 �M2
V þ i	

: (11)

Within the approximations mentioned above of neglect-
ing the three-momenta of the vector mesons versus their
masses, the projection operators into spin 0, 1, and 2, in
terms of the four polarization vectors, are [35]

P ð0Þ ¼ 1
3	ð1Þ � 	ð2Þ	ð3Þ � 	ð4Þ;

P ð1Þ ¼ 1
2½	ð1Þ � 	ð3Þ	ð2Þ � 	ð4Þ � 	ð1Þ � 	ð4Þ	ð2Þ � 	ð3Þ�;

P ð2Þ ¼ 1
2½	ð1Þ � 	ð3Þ	ð2Þ � 	ð4Þ þ 	ð1Þ � 	ð4Þ	ð2Þ � 	ð3Þ�
� 1

3	ð1Þ � 	ð2Þ	ð3Þ � 	ð4Þ: (12)

In the following, we explain how to calculate the three
kinds of tree-level transition amplitudes, i.e., the four-
vector-contact amplitude (Fig. 1(a)), the tðuÞ-channel
vector-exchange amplitude (Fig. 1(b)), and the box ampli-
tude (Fig. 1(d)).

A. Four-vector-contact term

With the spin projectors and the LagrangianLVVVV , one
can easily obtain the Vij’s for different strangeness, iso-

spin, and spin channels. The results for the strangeness ¼
0, isospin ¼ 0 and spin ¼ 0 channel can be found in
Appendix A and those for other channels in the appendix
of Ref. [40] (the arXiv version of the present paper). One
thing to note is that for each pair of identical particles a
factor of 1ffiffi

2
p has to be multiplied, i.e., the unitarity renor-

malization, which originates from the fact that

1

2

X
q

jIð ~qÞIð� ~qÞihIð ~qÞIð� ~qÞj ¼ 1; (13)

where I denotes the identical particle [13]. One has to keep
in mind that the unitarity renormalization has to be used to
calculate the tðuÞ-channel vector-exchange diagrams and
the box diagrams.
To obtain the amplitudes in isospin space, we use the

following phase convention:

�þ ¼ �j1;þ1i; K�� ¼ �j1=2;�1=2i: (14)

B. Vector exchange in tðuÞ channel
To calculate the tðuÞ-channel vector meson exchange

diagrams, one has to project the vertices into s wave.
This can be done by the following replacements:
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k1 � k2 ¼ s�M2
1 �M2

2

2
;

k1 � k3 ¼ k01k
0
3 � ~p � ~q ! ðsþM2

1 �M2
2ÞðsþM2

3 �M2
4Þ

4s
;

k1 � k4 ¼ k01k
0
4 þ ~p � ~q ! ðsþM2

1 �M2
2Þðs�M2

3 þM2
4Þ

4s
;

k2 � k3 ¼ k02k
0
3 þ ~p � ~q ! ðs�M2

1 þM2
2ÞðsþM2

3 �M2
4Þ

4s
;

k2 � k4 ¼ k02k
0
4 � ~p � ~q ! ðs�M2

1 þM2
2Þðs�M2

3 þM2
4Þ

4s
;

k3 � k4 ¼ s�M2
3 �M2

4

2
;

where ! means the projection over s wave, and k1 ¼
ðk01; ~pÞ, k2 ¼ ðk02;� ~pÞ, k3 ¼ ðk03; ~qÞ, k4 ¼ ðk04;� ~qÞ are the

four-momenta of the particles 1, 2, 3, and 4 with masses
M1, M2, M3, and M4.

The last expression of Eq. (8) is particularly suitable for
the calculation of the vertices. Indeed, the vector field V�

must correspond necessarily to the exchanged vector me-
son. If it were an external vector meson, the � must be
spatial as we mentioned and then @� leads to a three-
momentum of an external vector, which is neglected in
the present approach. Given the structure of the last ex-
pression in Eq. (8) one can easily see that all terms corre-
sponding to the t channel ð1þ 2 ! 3þ 4Þ have the type

ðk1 þ k3Þ � ðk2 þ k4Þ	1 � 	3	2 � 	4; (15)

while those corresponding to u-channel diagrams ð1þ
2 ! 4þ 3Þ have the structure

ðk1 þ k4Þ � ðk2 þ k3Þ	1 � 	4	2 � 	3: (16)

It is interesting to note that the above structures of the tðuÞ
channel vector-exchange contributions, together with the
structures of the projection operators [Eq. (12)], imply that
they contribute equally to spin ¼ 0 and spin ¼ 2 states.

The resulting tree-level transition amplitudes for the
strangeness ¼ 0, isospin ¼ 0, and spin ¼ 0 channel are
summarized in Appendix A and those for other channels
can be found in the appendix of Ref. [40].

C. Box diagrams

The box diagrams provide a mechanism for the dynami-
cally generated resonances to decay into two pseudosca-
lars. With the LV�� Lagrangian of Eq. (9) and our
assumption that the external particles have small three-
momenta, these diagrams can be easily calculated, as
shown in Ref. [35] and explained in the following.

The box diagrams have the following generic structure
(with the notations shown in Fig. 2)

Vb � C
Z d4q

ð2�Þ4 	1 � ð2q� k1Þ	2 � ð2q� k3Þ	3
� ð2q� k3 � PÞ	4 � ð2q� k1 � PÞ
� 1

ðq� k1Þ2 �m2
1 þ i	

1

q2 �m2
2 þ i	

� 1

ðq� k3Þ2 �m2
3 þ i	

1

ðq� PÞ2 �m2
4 þ i	

; (17)

where C is the coupling of a certain transition. With the
approximation of neglecting the three-momenta of the
external particles, this can be simplified as

Vb � C0 Z d4q

ð2�Þ4 	
i
1	

j
2	

m
3 	

n
4q

iqjqmqn

� 1

ðq� k01Þ2 �m2
1 þ i	

1

q2 �m2
2 þ i	

� 1

ðq� k03Þ2 �m2
3 þ i	

1

ðq� P0Þ2 �m2
4 þ i	

¼ C0G; (18)

with C0 ¼ 16C. To calculate this integral, we first integrate
the q0 variable by use of the residue theorem and close the
integral below, as shown in Fig. 3, which leads to

G ¼ ð�2�iÞ 1

2�

Z d3q

ð2�Þ3 	
i
1	

j
2	

m
3 	

n
4q

iqjqmqn �Gn

Gd

;

(19)

with

FIG. 2. Kinematics of a generic box diagram, with m1, m2, m3,
and m4 denoting the masses of intermediate pseudoscalars and
k1, k2, k3, and k4 the four-momenta of the vector particles.
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Gd ¼ 1

2!1!2!3!4

1

ð�P0 �!2 �!4Þ
1

ðk01 þ!1 þ!2Þ
� 1

ðk03 þ!2 þ!3Þ
1

ðk04 þ!3 þ!4Þ
� 1

ðk02 þ!1 þ!4Þ
1

ðk01 �!1 �!2 þ i	Þ
� 1

ðk03 �!2 �!3 þ i	Þ
1

ðk02 �!1 �!4 þ i	Þ
� 1

ðk04 �!3 �!4 þ i	Þ
1

ðP0 �!2 �!4 þ i	Þ
� 1

ðk01 � k03 �!1 �!3 þ i	Þ
� 1

ðk03 þ k01 �!1 �!3 þ i	Þ ;

where different cuts contributing to the imaginary part of
the integral can be clearly seen (see also the dotted lines in

Fig. 2), and !1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1

q
, !2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

2

q
, !3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2
3

q
, !4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

4

q
, k01 ¼ sþM2

1
�M2

2

2
ffiffi
s

p , k02 ¼
sþM2

2
�M2

1

2
ffiffi
s

p , k03 ¼ sþM2
3
�M2

4

2
ffiffi
s

p , k04 ¼ sþM2
4
�M2

3

2
ffiffi
s

p , and P0 ¼ ffiffiffi
s

p
,

where m1, m2, m3, and m4 are the masses of intermediate
pseudoscalars, M1, M2, M3, and M4 are the masses of the
initial and final vector mesons, and

ffiffiffi
s

p
is the center of mass

of energy of the vector-vector pair. Gn is also a function of
these variables, whose explicit form is given in
Appendix C.

Since

Z
d3qqiqjqmqnfðqÞ

¼ 1

15

Z
d3qq4fðqÞð�ij�mn þ �im�jn þ �in�jmÞ; (20)

the four-point integral G becomes

G ¼ ð�iÞ 1
15

1

2�2

Z
dqq6

Gn

Gd

� ½	ð1Þ � 	ð2Þ	ð3Þ � 	ð4Þ þ 	ð1Þ � 	ð3Þ	ð2Þ � 	ð4Þ
þ 	ð1Þ � 	ð4Þ	ð2Þ � 	ð3Þ�

¼ ð�iÞ 1
15

1

2�2

Z
dqq6

Gn

Gd

� ð5Pð0Þ þ 2Pð2ÞÞ: (21)

As one can see from the above result, there is no contri-
bution to spin ¼ 1 channels from the box diagrams. This
should be the case since two vectors in L ¼ 0 have positive
parity. To have J ¼ 1 with two pseudoscalars one needs
L0 ¼ 1 in the two pseudoscalars system, which, however,
has negative parity. It is interesting to note that the box
diagrams contribute 2.5 times more to the spin zero states
than to the spin 2 states. This is one of the reasons why the
scalar resonances develop a larger width than the tensor
ones. The fact that the tensor resonances are more bound
than the scalar ones reinforces this trend.
The explicit forms of the transition amplitudes are given

in Appendix B with the following structure:

vi;j ¼
X

cG4ðm1; m2; m3; m4; s; k
0
1; k

0
2; k

0
3; k

0
4Þ;

þX
~cG4ðm1; m2; m3; m4; s; k

0
1; k

0
2; k

0
4; k

0
3Þ; (22)

with c and ~c the couplings and G4 the four-point function
defined as

G4 ¼ 1

15

1

2�2

Z
dqq6

Gn

Gd

; (23)

with Gd given in Eq. (20) and Gn given in the Appendix C.
As in Ref. [35], we evaluate the G4 loop function with a

cutoff of �� 1 GeV. To avoid the appearance of double
poles, we replace the k0i ’s in the denominator Gd by

k01 ! k01 þ
�1

4
; k03 ! k03 �

�3

4
; (24)

k02 ! k02 þ
�2

4
; k04 ! k04 �

�4

4
: (25)

This was found to be a good approximation in Ref. [35] to
the more accurate method of removing the double poles,
which consists in making a convolution over the mass
distributions of the external vector mesons to account for
their widths.
We also multiply the vertices by the following form

factors:

F1ðq2Þ ¼ �2
b �m2

1

�2
b � ðk01 � q0Þ2 þ j ~qj2 ; (26)

F3ðq2Þ ¼ �2
b �m2

3

�2
b � ðk03 � q0Þ2 þ j ~qj2 ; (27)

FIG. 3. The contour to evaluate a generic box diagram.
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with q0 ¼ sþm2
2�m2

4

2
ffiffi
s

p , ~q the running variable, and �b ¼
1:4 GeV [35]. These form factors are inspired by the fact
that the largest piece of the imaginary part of G4 comes
from the cut at P0 ¼ !2 þ!4 and inspired by the empiri-
cal form factors used in the decay of vector mesons
[41,42]. The final form of the four-point function is then

G4 ¼ 1

15

1

2�2

Z �

0
dqq6

Gn

Gd

F1ðq2Þ2F3ðq2Þ2: (28)

Using the explicit expressions of vi;j of Eq. (22) in

Appendix B, we can also calculate the partial decay widths
into two pseudoscalars selecting only the particular chan-
nels. Technically, this implies keeping only the relevant
terms in each vi;j of Appendix B. For instance, take the

case of the strangeness ¼ 0, isospin ¼ 0, and spin ¼ 0
channel as one example. If we want to have the �� decay
mode we keep only the terms that have m�, m� in the

second and fourth arguments of each ~G ( ~GðuÞ) function.

III. RESULTS AND DISCUSSIONS

Since the vector mesons, particularly the � and the K�,
are rather broad, one has to take into account their widths.
We follow Ref. [35] and convolute the vector-vector G
function with the mass distributions of the two vector
mesons, i.e., by replacing the G function appearing in the

Bethe-Salpeter equation [Eq. (2)] by ~G

~GðsÞ ¼ 1

N2

Z ðM1þ2�1Þ2

ðM1�2�1Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �M2

1 þ i~�1 ~m1

�
Z ðM2þ2�2Þ2

ðM2�2�2Þ2
d ~m2

2

�
� 1

�

�
Im

1

~m2
2 �M2

2 þ i~�2 ~m2

�Gðs; ~m2
1; ~m

2
2Þ; (29)

with

N2 ¼
Z ðM1þ2�1Þ2

ðM1�2�1Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �M2

1 þ i~�1 ~m1

�
Z ðM2þ2�2Þ2

ðM2�2�2Þ2
d ~m2

2

�
� 1

�

�
Im

1

~m2
2 �M2

2 þ i~�2 ~m2

;

whereM1,M2, �1, and �2 are the masses and widths of the
two vector mesons in the loop. We only take into account
the widths of the � and the K�. In the case of the ! or �,
one or both of the kernels of these integrals will reduce to a

delta function �ð ~m2 �M2Þ. The ~�i function is energy
dependent and has the form of

~�ð ~mÞ ¼ �0

q3off
q3on

�ð ~m�m1 �m2Þ; (30)

with

qoff ¼ 
ð ~m2; m2
�;m

2
�Þ

2 ~m
; qon ¼


ðM2
�; m

2
�;m

2
�Þ

2M�

(31)

and m1 ¼ m2 ¼ m� for the � or

qoff ¼ 
ð ~m2; m2
K;m

2
�Þ

2 ~m
; qon ¼


ðM2
K� ; m2

K;m
2
�Þ

2MK�
;

(32)

m1 ¼ m� and m2 ¼ mK for the K�, where 
 is the Källen
function, 
ðx; y; zÞ ¼ ðx� y� zÞ2 � 4yz, and �0 is the
nominal width of the � or the K�.
To regularize the loop functions, one can use either the

cutoff method with a natural cutoff of �1 GeV or the
dimensional regularization method with a��2 for
meson-baryon scattering [12]. This means that by using
these parameter values one should get the basic physics,
providing a global description of the resonances generated
dynamically in the approach. This is indeed the case here.
Yet, in order to take into account possible correcting terms
in the approach, we perform a fine-tuning of these parame-
ters, such as to get a few resonances more precisely. Then,
the results for other resonances are predictions. In practice,
we adopt the following three-steps approach:
(1) First we use the cutoff method with �� 1 GeV to

obtain the amplitudes on the real axis.
(2) Once peaks and bumps are observed, and persist

with reasonable changes of the value of the cutoff
�, we then use the dimensional regularization
method with � ¼ 1000 MeV and a adjusted to
reproduce the cutoff results. More specifically, we
reproduce the real part of the rho-rho loop function
at the two � threshold. This gives a ¼ �1:65.

(3) Then we fine-tune the a’s for different isospin chan-
nels to fix the masses of some well-known reso-
nances. In the present work, we use the masses of
the f2ð1270Þ, the f02ð1525Þ, and the K�

2ð1430Þ for
this purpose. This leads to a�� ¼ �1:636, aK� �K� ¼
�1:726, a�K� ¼ �1:85. For the rest of the channels

involving ! or �, in the strangeness ¼ 0 channel
we use ai ¼ a�� ¼ �1:65; in the strangeness ¼ 1

channel we use ai ¼ a�K� ¼ �1:85; and in the

strangeness ¼ 2 channel, we use ai ¼ aK� �K� ¼
�1:726. These channels play a secondary role and
moderate changes of these parameters barely affect
the results. Hence, in practice, we are fine-tuning
three parameters.
We should mention that our main conclusions would
remain the same if we had used, for instance, the
same value of ai ¼ �1:85 for all the channels, and
we find only moderate changes in the masses of the
resonances. For instance, with this choice of ai, we
would obtain the f2ð1270Þ at ð1206;�i0Þ MeV on
the complex plane without including the box dia-
grams, compared to ð1275;�i1Þ MeVwith the fine-
tuned subtraction constants, and the 1�ð0þþÞ state
at ð1770;�i50Þ MeV instead of ð1780;�i66Þ MeV
(see Tables I and II). This means that we get the bulk
of the resonances using a natural subtraction con-
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stant (cutoff) for the effective field theory. Once this
is done, fine-tuning of parameters will provide a
better description of these resonances. Since we
get 11 dynamically generated resonances and have
fine-tuned three parameters to get the masses of the
three resonances, we are making predictions for
eight of them.
As to the total widths of the resonances, they are
sensitive to the form factors given in Eqs. (26) and
(27). The form factors used were inspired by the
study of Refs. [41,42] and the precise value for �b

was taken from the study of Ref. [35]. Later in this
section we mention the sensitivity of the widths to
changes in the �b value. Once again we can invoke
the same fine-tuning strategy discussed above and
say that a certain value of�b is taken to get the total
width of one of the fitted resonances, such that the
widths of the others are predictions.
We should also note that the couplings of the reso-
nances to the coupled channels are rather indepen-
dent of the �b parameter, which was already found
in Ref. [39].
Finally, let us mention that our approach also pre-
dicts branching ratios to different channels. The

parameters of the approach have not been fine-tuned
to these observables and, hence, all the branching
ratios obtained are genuine predictions of our ap-
proach, which seem to be consistent with data as
shown in the following sections.

The combination of the cutoff method and the dimen-
sional regularization method has the following advantage:
The use of the cutoff method is physically more transpar-
ent: the value of the cutoff should be around 1 GeV in order
for the results to make sense. The use of the dimensional
regularization method, on the other hand, enables one to go
to the second Riemann sheet to obtain the pole positions
and the residues. The results shown below are obtained in
the dimensional regularization scheme. For the masses and
widths of the vector mesons, we use the following values
[38]: M� ¼ 775:49 MeV, �� ¼ 149:4 MeV, MK� ¼
893:83 MeV, �K� ¼ 50:55 MeV, M! ¼ 782:65 MeV,
M� ¼ 1019:455 MeV. For the masses of the pseudosca-

lars, the following values are used: m� ¼ 138:04 MeV,
mK ¼ 495:66 MeV, m� ¼ 547:51 MeV [38]. The cou-

pling constant g ¼ MV

2f is evaluated with MV ¼ M� and

f ¼ 93 MeV. Of course, one could also use an averaged
mass for MV and an averaged f. In this case, both the
numerator and the denominator will become somewhat
larger, and the ratio is only slightly changed. Otherwise,
in the potentials and in theGðsÞ functions we have used the
physical masses of the particles, as mentioned above. This,
in particular, the large� and �mass difference, introduces
a certain source of SU(3) breaking, which might not be the
only one present in the problem. However, the considera-
tion of the physical masses is absolutely necessary to
guarantee unitarity in coupled channels and to respect the
positions of the thresholds, and this is the main reason to
stick to physical masses in our approach.
The free parameters are then the subtraction constants

used to regularize the vector-vector loop functions. In fact,
the values can be different for each isospin channel, and

TABLE II. The same as Table I, but for the strangeness ¼ 0
and isospin ¼ 1 channel.

ð1780;�i66Þ [spin ¼ 0]

K� �K� �� �! ��
g ð7525;�i1529Þ 0 ð�4042; i1391Þð4998;�i1872Þ

ð1679;�i118Þ [spin ¼ 1]
K� �K� �� �! ��

g ð1040;�i1989Þ ð6961;�i4585Þ 0 0

ð1569;�i16Þ [spin ¼ 2]
K� �K� �� �! ��

gð10 208;�i337Þ 0 ð�4598; i451Þ ð6052;�i604Þ

TABLE I. Pole positions and residues in the strangeness ¼ 0 and isospin ¼ 0 channel. All quantities are in units of MeV.

ð1512;�i26Þ [spin ¼ 0]

K� �K� �� !! !� ��
g ð1208;�i419Þ ð7920;�i1071Þ ð�39; i31Þ ð33;�i43Þ ð12; i24Þ

ð1726;�i14Þ [spin ¼ 0]
K� �K� �� !! !� ��

g ð7124; i96Þ ð�1030; i1086Þ ð�1763; i108Þ ð3010;�i210Þ ð�2493;�i204Þ
ð1802;�i39Þ [spin ¼ 1]

K� �K� �� !! !� ��
g ð8034;�i2542Þ 0 0 0 0

ð1275;�i1Þ [spin ¼ 2]
K� �K� �� !! !� ��

g ð4733;�i53Þ ð10 889;�i99Þ ð�440; i7Þ ð777;�i13Þ ð�675; i11Þ
ð1525;�i3Þ [spin ¼ 2]

K� �K� �� !! !� ��
g ð10 121; i101Þ ð�2443; i649Þ ð�2709; i8Þ ð5016;�i17Þ ð�4615; i17Þ
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may even be different for different spins, but only slight
changes can be expected [35]. Since the main purpose of
this paper is to extend the work of Ref. [35] and to see
whether in other strangeness-isospin-spin channels reso-
nances can be dynamically generated, we do not use that
freedom to fine-tune all the subtraction constants, which
only leads to small changes in the masses of the resonances
obtained.

In the following, we present our results channel by
channel and compare with available data. We plot results
for jTj2 for different amplitudes, and in addition, we cal-
culate the pole position and residues of the pole, which are
presented in Tables I, II, and III. In the absence of the box
diagrams, one can easily go to the complex plane. Around
the pole position, the amplitude can be approximated by

Tij ¼
gigj

s� spole
; (33)

where gi (gj) are the couplings to channel i (j).

The resonance parameters can be obtained from both the
pole positions on the complex plane and the amplitudes
squared on the real axis, as explained in the caption of
Table IV. In Table IV, we summarize the resonance pa-
rameters for the dynamically generated states obtained
both ways. Available data [38] are also given for compari-
son. All the results including the box diagrams shown in
this paper are calculated with�b ¼ 1:4 GeV [see Eqs. (26)
and (27)], unless otherwise stated. On the other hand, in
Table IV, we also provide the resonance parameters calcu-
lated with �b ¼ 1:5 GeV. The comparison with those
calculated with �b ¼ 1:4 GeV serves to quantify the un-
certainties inherent in the calculation of the box diagrams,
which provides a mechanism for the resonances to decay
into two pseudoscalars.

A. Strangeness ¼ 0 and Isospin ¼ 0

In Fig. 4, all the jTiij2’s for the strangeness ¼ 0 and
isospin ¼ 0 channel are shown as a function of the invari-
ant mass of the vector-vector pair. The upper, middle, and
bottom panels show the results for spin ¼ 0, spin ¼ 1, and
spin ¼ 2 channels. Since the box diagrams only contribute
to spin ¼ 0 and spin ¼ 2 channels, there are two plots in
each panel for these spin channels. The left one shows the
results without including the box diagrams, while the right
one shows the results including the box diagrams. The
comparison gives us an idea of the partial decay widths
of the dynamically generated resonances decaying into two
pseudoscalars. It should be noted that because we only
consider the imaginary parts of the box diagrams, the
pole positions on the real axis are almost the same in the
two plots.

TABLE III. The same as Table I, but for the strangeness ¼ 1
and isospin ¼ 1=2 channel.

ð1643;�i24Þ [spin ¼ 0]

�K� K�! K��
g ð8102;�i959Þ ð1370;�i146Þ ð�1518; i209Þ

ð1737;�i82Þ [spin ¼ 1]
�K� K�! K��

g ð7261;�i3284Þ ð1529;�i1307Þ ð�1388; i1721Þ
ð1431;�i1Þ [spin ¼ 2]

�K� K�! K��
g ð10 901;�i71Þ ð2267;�i13Þ ð�2898; i17Þ

TABLE IV. The properties, (mass, width) [in units of MeV], of the 11 dynamically generated states and, if existing, of those of their
PDG counterparts. Theoretical masses and widths are obtained from two different ways: ‘‘pole position’’ denotes the numbers obtained
from the pole position on the complex plane, where the mass corresponds to the real part of the pole position and the width corresponds
to 2 times the imaginary part of the pole position (the box diagrams corresponding to decays into two pseudoscalars are not included);
‘‘real axis’’ denotes the results obtained from real axis amplitudes squared, where the mass corresponds to the energy at which the
amplitude squared has a maximum and the width corresponds to the difference between the two energies, where the amplitude squared
is half of the maximum value. (In this case, the box amplitudes corresponding to decays into two pseudoscalars are included). The two
entries under ‘‘real axis’’ are obtained with different �b as explained in the main text.

IGðJPCÞ Theory PDG data

Pole position Real axis Name Mass Width

�b ¼ 1:4 GeV �b ¼ 1:5 GeV
0þð0þþÞ (1512, 51) (1523, 257) (1517, 396) f0ð1370Þ 1200� 1500 200� 500
0þð0þþÞ (1726, 28) (1721, 133) (1717, 151) f0ð1710Þ 1724� 7 137� 8
0�ð1þ�Þ (1802, 78) (1802, 49) h1
0þð2þþÞ (1275, 2) (1276, 97) (1275, 111) f2ð1270Þ 1275:1� 1:2 185:0þ2:9

�2:4

0þð2þþÞ (1525, 6) (1525, 45) (1525, 51) f02ð1525Þ 1525� 5 73þ6
�5

1�ð0þþÞ (1780, 133) (1777, 148) (1777, 172) a0
1þð1þ�Þ (1679, 235) (1703, 188) b1
1�ð2þþÞ (1569, 32) (1567, 47) (1566, 51) a2ð1700Þ??
1=2ð0þÞ (1643, 47) (1639, 139) (1637, 162) K�

0

1=2ð1þÞ (1737, 165) (1743, 126) K1ð1650Þ?
1=2ð2þÞ (1431, 1) (1431, 56) (1431, 63) K�

2ð1430Þ 1429� 1:4 104� 4
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FIG. 4 (color online). jTj2 in ðs; IÞ ¼ ð0; 0Þ for different spin channels without (left panel) and with the contributions of the box
diagrams (right panel).
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1. Spin ¼ 0; 0þð0þþÞ
Two poles are found in this channel: one at

ð1512;�i26Þ MeV and another at ð1726;�i14Þ MeV,
which we associate to the states f0ð1370Þ and f0ð1710Þ
for the reasons given below. The couplings of these two
states to the different coupled channels indicate that the
f0ð1370Þ is mainly a �� state, while the f0ð1710Þ is mainly
a K� �K� state.

From the plots with the contributions of the box dia-
grams, the peak positions and the widths are estimated to
be ð1523; 257Þ MeV and ð1721; 133Þ MeV with the num-
bers in the parenthesis being (mass, width), respectively.

The relevant information from the PDG [38] is summa-
rized in the following:

(i) The f0ð1370Þ has a mass of 1200� 1500 MeV and a
width of 200� 500 MeV. The debate about its mass
continues nowadays; while a recent analysis advo-
cates a mass around 1370 MeV [43], preliminary
results from the Belle Collaboration rather point to
a value around 1470 MeV [44]. Among its decay
modes, according to the PDG [38], the 4� mode is
larger than 72%, where the �� mode is dominant. In
our approach, the �� mode is dominant, as can be
seen from Table IV, which is consistent with the
results of Ref. [45] and the recent analysis of D.V.
Bugg [43].

(ii) The f0ð1710Þ has a mass of 1724� 7 MeV and a
width of �¼137�8MeV. The main decay channel
is through K �K, ��, and ��. The decay mode to!!
has been seen. This is in agreement with our findings
since the two pseudoscalar box diagrams contain
these decay channels. Indeed, we find that the K �K
decay channel is dominant. More specifically, our
calculated branching ratios are �55% for K �K,
�27% for ��, <1% for ��, and �18% for the
vector-vector component. On the other hand, the
PDG gives the following averages: �ð��Þ=�ðK �KÞ¼
0:41þ0:11

�0:17 and �ð��Þ=�ðK �KÞ¼0:48�0:15 [38]. Our
calculated branching ratio for the �� channel is in
agreement with their average, while the ratio for the
�� channel is much smaller. However, we notice
that the above PDG �ð��Þ=�ðK �KÞ ratio is taken
from the BES experiment J=c !��þ�� [46],
which comes from a partial wave analysis that in-
cludes seven resonances. On the other hand, there is
another BES experiment J=c !!KþK� [47],
which filters I¼0 automatically and gives an upper
limit �ð��Þ=�ðK �KÞ<11% at the 95% confidence
level. Clearly more analysis is advised to settle the
issue.

(iii) We see that the f0ð1370Þ is mainly ��, and the
f0ð1710Þ is mostly K� �K�. Although our picture for
the resonances would correspond, in terms of quark
degrees of freedom, to a four quark (qq �q �q ) system,
it is anyway interesting to recall that pictures for

these resonances in terms of q �q also advocate ud
components for the f0ð1370Þ and strange quark com-
ponents for the f0ð1710Þ [38].

The f0ð1500Þ, on the hand, has a mass of 1505� 6 MeV
and a width of � ¼ 109� 7 MeV. The width of the
f0ð1500Þ is too small to be associated to the lower scalar
state that we get dynamically generated in the unitary
approach, with a width of about 260 MeV.

2. Spin ¼ 1; 0�ð1þ�Þ
One pole at ð1802;�i39Þ MeV is found. However, this

state cannot be clearly identified with any of the h1 states
listed in the PDG. Note that this state is built only from
K� �K�. The fact that this state couples only to K� �K� and not
to two pseudoscalars, as we discussed for the spin ¼ 1
states, makes its observation difficult. However, the pre-
diction is neat; jTj2 is sizable compared to other reso-
nances, and we find a clear pole on the complex plane
associated to this resonance. On the other hand, the energy
is such that it is slightly above the K� �K� threshold. This
fact, in addition to the width of the K�, would make the
observation of this state possible by looking at the K �K��
decay channel, and even the K� resonant shape could be
partly reconstructed to give support to the K� �K� nature of
this resonance.

3. Spin ¼ 2; 0þð2þþÞ
Two poles are found on the complex plane: one at

ð1275;�i1Þ MeV and the other at ð1525;�i3Þ MeV,
which we associate to the f2ð1270Þ and the f02ð1525Þ.
The lower one mainly couples to �� and very weakly to
K� �K�. This can be seen in the strengths of jTj2 in the lower
right-most panel of Fig. 4, and more clearly in the value of
g for the couplings to the channels as shown in Table I. The
higher resonance couples mainly to K� �K�, !�, and ��.
As mentioned above, the masses of these two states have
been used to fine-tune our subtraction constants.
From jTj2 on the real axis obtained including box dia-

grams, one obtains the masses and widths as
ð1276; 97Þ MeV and ð1525; 45Þ MeV. It is gratifying to
see that the estimated widths are smaller than their experi-
mental counterparts [185:0þ2:9

�2:4 MeV for the f2ð1270Þ and
73þ6

�5 MeV for the f02ð1525Þ]. This should always be the

case since other coupled channels, which we have not
included, may also contribute. However, note that the order
of magnitude is consistent and furthermore we predict a
bigger width for the f2ð1270Þ than for the f02ð1525Þ in spite
of the fact that the higher mass resonance has more phase
space to decay. We also see in Table IV that these widths
get a bit bigger by increasing moderately the value of the
�b parameter of the form factors of Eqs. (26) and (27).
Once again it is interesting to compare the partial decay

widths. For the f2ð1270Þwe get most of the width from��
decay. In the PDG, the branching ratios are 84.8% for ��,
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4.6% for KK, and <1% for �� [38], to be compared with
our calculated numbers �88% for ��, �10% for K �K and
<1% for ��.

The case of the f02ð1525Þ is equally clarifying. We get
most of the width from K �K (� 66%, compared to the
branching ratio of 88.7% in the PDG [38]). Our calculated
ratios are �21% for ��, �1% for ��, and �13%
for vector-vector component, while the PDG gives 10.4%
for �� and 0.8% for �� [38]. The agreement is
reasonable.

The position of the higher state at 1525 MeV is also
close to the f2ð1430Þ and the f2ð1565Þ. The f2ð1430Þ is a
little further away while the f2ð1565Þ has a strong coupling
to �� decay mode, while in our calculation this state
couples very weakly to the �� channel; therefore, we do
not favor the assignment to any of these two resonances.

B. Strangeness ¼ 0 and Isospin ¼ 1

In Fig. 5, we plot jTiij’s for the strangeness ¼ 0 and
isospin ¼ 1 channel. Three resonances are found dynami-
cally generated.

1. Spin ¼ 0; 1�ð0þþÞ
One pole is found at ð1780;�i66Þ MeV, and it has the

quantum numbers of a0. It couples mostly to the K� �K�
channel. No a0 around this energy region has been re-
ported, according to the PDG [38].

Including the box diagrams, one gets ð1777; 148Þ MeV.
It is seen that the inclusion of the box diagrams does not
change much both the mass and the width of this state,
meaning that it has a small branching ratio to two
pseudoscalars.

This resonance can in principle be formed in J=c !
�K� �K� and J=c ! �K �K. It is below the K� �K� threshold
and wider than the 0�ð1þ�Þ state, and it could produce
a broader bump close to the K� �K� threshold. Such a fea-
ture does seem to show up in the BES experiment [48],
but once again a new look at these data would be worth-
while.

2. Spin ¼ 1; 1þð1þ�Þ
This channel has the quantum numbers of b1. One pole

is found at ð1679;�i118Þ MeV, and it couples strongly to
the �� channel. Experimentally, no b1 has been reported
around this energy region.

This state does not decay into �� but there should be no
problem in studying the �� invariant mass since the mass
of the particle appears above the �� threshold. Although
several experiments have looked into J=c ! 2ð�þ��Þ�0

[49–52], none of them has looked at the �� invariant mass
distribution. We can only encourage further search in this
direction once the previous works have proved the viability
of the experiment.

3. Spin ¼ 2; 1�ð2þþÞ
One pole is found at ð1569;�i16Þ MeV, and it couples

strongly to K� �K�. Including the box diagrams, one obtains
ð1567; 47Þ MeV. The closest a2 in energy included in the
PDG is the a2ð1700Þwith a mass of 1732� 16 MeV and a
width of 194� 40 MeV, whose decay to!� has been seen
[38]. It should be noted that the properties of this particle
are not well determined. Different experiments report quite
different values for both its mass and width [38].
In order to see if the resonance we get could be asso-

ciated to the a2ð1700Þ, we have changed the values of the
subtraction constants to move its pole position to larger
mass values. For instance, if we change the value of aK� �K�

from �1:726 [determined by the f02ð1525Þ mass] to �1:0,
we would have a mass of 1704 MeV and a width of
49 MeV. The mass would be much closer to the PDG
average but the width would still be much smaller. A
modification of the values of the subtraction constants of
the other two coupled channels (�! and ��) leads to
similar conclusions. Given the large uncertainty in the
experimental status of the a2ð1700Þ, we find no particular
reason to associate the state we generate dynamically to
this resonance.
We also note that the modification of aK� �K� has small

influences on the states with the quantum numbers of b1
and a0, which we studied in the two preceding subsections,
and it does not allow us to associate these two states with
any well-known resonances listed in the PDG.

C. strangeness ¼ 1 and Isospin ¼ 1=2

In Fig. 6, we plot jTiij2’s for the strangeness ¼ 1 and
isospin ¼ 1=2 channel.

1. Spin ¼ 0; 1=2ð0þÞ
One pole is found at ð1643;�i24Þ MeV, and it couples

strongly to �K�. Including the box diagrams, one obtains
ð1639; 139Þ MeV.
At first sight, this state might be the Kð1630Þ. On the

other hand, the Kð1630Þ [1=2ð??Þ], with a mass of 1629�
7 MeV and a width of 16þ19

�16 MeV [38], might be too

narrow to be associated with the state dynamically gener-
ated from vector-vector interaction. There is another in-
dication not to associate the state we find with theKð1630Þ,
since our main decay mode is �K from the two meson box
diagrams, while the decay mode observed in the PDG is
K�þ��.

2. Spin ¼ 1; 1=2ð1þÞ
One pole is found at ð1737;�i82Þ MeV, and it couples

strongly to �K�. No K1 around this energy region is
reported in the PDG, with the closest one being the
K1ð1650Þ with a mass of 1650� 50 MeV and a width of
150� 50 MeV [38]. The width of the K1ð1650Þ is
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150 MeV, and we also obtain a width of about 160 MeV.
Since the width is twice as large as the difference of masses
the association of these two states is tempting. There is
another feature that could support this association; in spite
of the limited information on this resonance, the only
decay channels observed are K��, K�, but none on two
pseudoscalars for which there is more phase space. This is
in agreement with the fact that our state of spin 1 does not
decay into two pseudoscalars, as we have mentioned.

3. Spin ¼ 2; 1=2ð2þÞ
One pole is found at ð1431;�i1Þ MeV, which might

correspond to the K�
2ð1430Þ, and its position has been

used to fine-tune the subtraction constants in this channel.
Including the box diagrams, one obtains ð1431; 56Þ MeV.
According to the PDG, the K�

2ð1430Þ has a mass of
1429�1:4MeV and a width of 104� 4 MeV. Among its
decays modes, the K���mode amounts to ð13:4� 2:2Þ%,
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FIG. 5 (color online). The same as Fig. 4, but for the ðs; IÞ ¼ ð0; 1Þ channel.
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FIG. 6 (color online). The same as Fig. 4, but for the ðs; IÞ ¼ ð1; 1=2Þ channel.
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some of which might be �K�; the K� mode amounts to
ð49:9� 1:2Þ%. Therefore, the width that we obtain is in
reasonable agreement with the data.

D. Other channels

It is interesting to note that out of the 21 combinations of
strangeness, isospin and spin, we have found resonances
only in nine of them. In all the ‘‘exotic’’ channels, from the
point of view that they cannot be formed from q �q states, we
did not find dynamically generated resonances, including
the three strangeness ¼ 0, isospin ¼ 2 channels, the three
strangeness ¼ 1, isospin ¼ 3=2 channels, the six
strangeness ¼ 2 channels (with either isospin ¼ 0 or
isospin ¼ 1).

It is also interesting to note that although no poles are
found on the complex plane, there do exist some structures
on the real axis. For instance, in the (strangeness ¼ 0,
isospin ¼ 2) channel, one finds a dip around

ffiffiffi
s

p ¼
1300 MeV in the spin ¼ 0 channel, and a broad bump in
the spin ¼ 2 channel around

ffiffiffi
s

p ¼ 1400 MeV, as can be
clearly seen from Fig. 7. In the (strangeness ¼ 1, isospin ¼

3=2) and (strangeness ¼ 2, isospin ¼ 1) channels, one
observes similar structures occurring at shifted energies
due to the different masses of the � and the K�, as can be
seen from Figs. 8 and 10.
It is worthwhile mentioning that we obtain some broad

bumps in the following four channels: (strangeness ¼ 0,
isospin ¼ 2, spin ¼ 2), (strangeness ¼ 1, isospin ¼ 3=2,
spin ¼ 2), (strangeness ¼ 2, isospin ¼ 0, spin ¼ 1), and
(strangeness ¼ 2, isospin ¼ 1, spin ¼ 2), see Figs. 7–10.
All of these are exotic channels. As mentioned before,
none of the broad peaks corresponds to a pole on the
complex plane, and hence, according to the common cri-
teria, they do not qualify as resonances. Let us see what is
the experimental information in these sectors. In the PDG
[38], we find the Xð1600Þ with strangeness ¼ 0 and quan-
tum numbers 2þð2þþÞ with a mass of 1600� 100 MeV
and a width of 400� 200 MeV. There are candidates in
theoretical models for this. Indeed, based on a theoretical
estimate of the twist 4 contributions in explaining the
recent L3 data on ��� ! �0�0 and ��� ! �þ��
[53,54], I. V. Anikin et al. advocate the existence of an
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FIG. 7. The same as Fig. 4, but for the ðs; IÞ ¼ ð0; 2Þ channel. Note that we have not shown the results for spin ¼ 1 channel, since
there are no interactions here because of the properties of identical particles.
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exotic isotensor resonance with a mass of�1:5 GeV and a
width of �0:4 GeV [55]. However, we can offer here a
different interpretation for the experimental bump, since it
might be identified with the broad bump that we get with
these quantum numbers around 1400 MeV and a similar
width. Indeed, the experiment where the bump is reported
[56] sees it in the �0�0 channel. It looks rather clear that

the bump observed is the one we find in the �� amplitude,
and this does not qualify as a resonance.
One can also speculate about the scalar 2þð0þþÞ state

reported in the PDG around 1400 MeV from a weak signal
found as a broad bump in Ref. [57]. As can be seen from
the upper panel of Fig. 7, we find a dip in �� amplitude
squared in this channel around 1300MeV. Such a dip in the
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FIG. 8. The same as Fig. 4, but for the ðs; IÞ ¼ ð1; 3=2Þ channel.
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�� amplitude can lead to a bump in �þ�þ production, in
an analogous way as what occurs to the f0ð980Þ resonance,
which shows up as a dip in the �� cross section but as a
peak in �� or other production processes [58]. Once again,
the bump could not be associated to a pole in our approach
and, hence, would not qualify as a resonance.
We do not find any candidate in the PDG to our broad

bumps in the strange sector. However, the findings of the
present work should be kept in mind in the verge of
possible claims for exotic strange mesons from bumps
observed in cross sections.
We would like to give some perspective to the results

obtained here. We have used as building blocks for our
states only vector mesons. Two pseudoscalar states have
been considered for the decay but not incorporated as
coupled channels. Other possible channels, like �� in
the case of �� scattering, are also omitted in our approach.
The contributions of these channels in a coupled channel
approach would be advisable should one try to get, for
instance, �� scattering in a broad range of energies. Such
an approach has been undertaken in Ref. [45].1 However,
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FIG. 10. The same as Fig. 4, but for the ðs; IÞ ¼ ð2; 1Þ channel. There are no interactions in spin ¼ 1 channel due to the properties of
identical particles.
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FIG. 9. The same as Fig. 4, but for the ðs; IÞ ¼ ð2; 0Þ channel.
There are no interactions in spin ¼ 0 and spin ¼ 2 channels due
to the properties of identical particles.
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this is not our purpose here. We take only vector mesons as
building blocks with their respective interactions, and we
look at the states that are generated dynamically from these
interactions. We then get a few meson resonances, but not
all. This tells us which resonances are most likely to be
essentially vector-vector ‘‘molecules,’’ and this is the pur-
pose of the present work.

IV. SUMMARYAND CONCLUSIONS

We have performed a study of vector meson-vector
meson interaction using a unitary approach. Employing
the coupled channel Bethe-Salpeter equation to unitarize
the tree-level transition amplitudes obtained from the
hidden-gauge Lagrangians, 11 states in nine strangeness-
isospin-spin channels were dynamically generated. Among
them, five states are associated to those reported in the
PDG, i.e., the f0ð1370Þ, the f0ð1710Þ, the f2ð1270Þ, the
f02ð1525Þ, the K�

2ð1430Þ. The association of two other
states, the a2ð1700Þ and the K1ð1650Þ, are likely, particu-
larly the K1ð1650Þ, but less certain. The f0ð1370Þ and
f2ð1270Þ have already been reported in Ref. [35], and
they are built mainly from the �� interaction. We recon-
firm the findings of this early work after including all
SU(3) coupled channels. The box diagrams in our ap-
proach provide a mechanism for the dynamically generated
states to decay into two pseudoscalars. This mechanism
broadens the scalar states and the tensor states in the
strangeness ¼ 0 and isospin ¼ 0 channel and the
strangeness ¼ 1 and isospin ¼ 1=2 channel but not for
the spin ¼ 1 states. On the other hand, this mechanism
contributes little to the widths of the scalar and tensor states
in the strangeness ¼ 0 and isospin ¼ 1 channel.

We have used the masses of the f2ð1270Þ, the f02ð1525Þ,
and the K�

2ð1430Þ to fine-tune the free parameters of the
approach, the subtraction constants in the vector-vector
loop functions. After this is done, there is little freedom
in changing the total decay widths and practically no free-
dom in changing the decay branching ratios. It is then
gratifying to see that the total and partial decay widths of
these resonances are consistent with the data. It is also
interesting to see that the two f0 states appear at proper
positions with reasonable widths compared to the data.

Four of the 11 dynamically generated states can not be
associated with known states in the PDG. These states
either have small branching ratios into two pseudoscalars
or are in the strangeness ¼ 1 sector, where the experimen-
tal situation is less satisfactory than in the strangeness ¼ 0
sector.

Another interesting finding of our work was the broad
bumps found in four exotic channels, none of which cor-
responded to poles on the complex plane. One of these

bumps was identified with the structure of the Xð1600Þ,
which is reported in the PDG as a resonant state with
2þð2þþÞ. Our study provides an interpretation of this
bump, stemming from the �� interaction in this channel,
which, however, does not have any pole associated and,
hence, does not qualify as a resonance.
For the resonances predicted and not reported in the

PDG we offered suggestions on how they could be
searched experimentally with present experiment facilities,
and we can only encourage further work in this direction.
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APPENDIX A: TREE-LEVEL TRANSITION
AMPLITUDES OF THE FOUR-VECTOR CONTACT

DIAGRAMS AND OF THE tðuÞ-CHANNEL
VECTOR-EXCHANGE DIAGRAMS

We show here in Tables Vand VI the amplitudes for only
the strangeness ¼ 0, isospin ¼ 0, and spin ¼ 0 channel to
save space. The rest of the amplitudes for all the other
channels can be found in the appendix of Ref. [40] (the
arXiv version of the present paper).

APPENDIX B: BOX DIAGRAM AMPLITUDES

In this section, we provide the explicit box diagram
amplitudes, corresponding to Eq. (22), for different
strangeness and isospin but only spin ¼ 0 channels.
Those amplitudes for spin ¼ 2 channels can be obtained
by multiplying 2=5 to the corresponding spin ¼ 0 ampli-
tudes, as explained in the main text. To simplify the ex-
pressions, we have used the abbreviations defined in
Table VII.
(1) Strangeness ¼ 0, isospin ¼ 0, and spin ¼ 0: There

are five channels, i.e., K� �K�, ��, !!, !�, ��,
with the order of 1, 2, 3, 4, 5:

TABLE V. The Vij’s of the four-vector contact term in the
strangeness ¼ 0, isospin ¼ 0 and spin ¼ 0 channel.

K� �K� �� !! !� ��

K� �K� 6g2 2
ffiffiffi
3

p
g2 �2g2 4g2 �4g2

�� 8g2 0 0 0

!! 0 0 0

!� 0 0

�� 0

1This work is now being extended and we do not elaborate
further on it, but one should keep track of new developments
along this line [59].
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v1;1¼60g4ð3 ~G1þ3 ~G2þ12 ~G3þ4 ~G4þ3 ~G5þ3 ~G6Þ;
v1;2¼40

ffiffiffi
3

p
g4ð3 ~G7þ8 ~G8þ3 ~G9Þ;

v1;3¼�120g4ð ~G7þ ~G9Þ;
v1;4¼120g4ð ~G7þ ~G7ðuÞþ ~G9þ ~G9ðuÞÞ;
v1;5¼�240g4ð ~G7þ ~G9Þ;
v2;2¼80g4ð3 ~G10þ16 ~G11Þ;
v2;3¼�80

ffiffiffi
3

p
g4 ~G10;

v2;4¼80
ffiffiffi
3

p
g4ð ~G10þ ~G10ðuÞÞ;

v2;5¼�160
ffiffiffi
3

p
g4 ~G10; v3;3¼80g4 ~G10;

v3;4¼�80g4ð ~G10þ ~G10ðuÞÞ; v3;5¼160g4 ~G10;

v4;4¼160g4ð ~G10þ ~G10ðuÞÞ; v4;5¼�320g4 ~G10;

v5;5¼320g4 ~G10:

(2) Strangeness ¼ 0, isospin ¼ 1, and spin ¼ 0: There
are four channels, i.e., K� �K�, ��, �!, ��, with the
order 1, 2, 3, 4:

v1;1 ¼ 20g4ð9 ~G1 � 3 ~G2 þ 12 ~G12 þ 12 ~G13

� 3 ~G5 þ ~G6Þ;
v1;2 ¼ 0;

v13 ¼ �20
ffiffiffi
2

p
g4ð3 ~G7 þ 3 ~G7ðuÞ � ~G9 � ~G9ðuÞÞ;

v1;4 ¼ 40g4ð3 ~G7 þ 3 ~G7ðuÞ � ~G9 � ~G9ðuÞÞ;
v2;2 ¼ v2;3 ¼ v2;4 ¼ 0;

v3;3 ¼ 80g4ð ~G10 þ ~G10ðuÞÞÞ;
v3;4 ¼ �80

ffiffiffi
2

p
g4ð ~G10 þ ~G10ðuÞÞ;

v4;4 ¼ 160g4ð ~G10 þ ~G10ðuÞÞ:

(3) Strangeness ¼ 0, isospin ¼ 2, and spin ¼ 0: There
is only one channel in this sector, i.e., ��:

v ¼ 320g4 ~G11:

(4) Strangeness ¼ 1, isospin ¼ 1=2, and spin ¼ 0:
There are three channels, i.e., �K�, K�!, and
K��, with the order 1, 2, 3:

v1;1 ¼ 20g4ð9 ~G14 þ ~G15 þ 4 ~G16ðuÞ þ 4 ~G17ðuÞ
þ 16 ~G18Þ;

v1;2 ¼ �20
ffiffiffi
3

p
g4ð3 ~G14ðuÞ � ~G15ðuÞ � 4 ~G17Þ;

v1;3 ¼ 20
ffiffiffi
6

p
g4ð3 ~G14ðuÞ � ~G15ðuÞ � 4 ~G17Þ;

v2;2 ¼ 60g4ð ~G19 þ ~G20Þ;
v2;3 ¼ �60

ffiffiffi
2

p
g4ð ~G19 þ ~G20Þ;

v3;3 ¼ 120g4ð ~G19 þ ~G20Þ:

(5) Strangeness ¼ 1, isospin ¼ 1=2, and spin ¼ 0:
There is only one channel in this sector, i.e., �K�:

v ¼ 80g4ð ~G15 þ ~G16ðuÞ þ ~G17ðuÞ þ ~G18Þ:

(6) Strangeness ¼ 2, isospin ¼ 0, and spin ¼ 0: There
is only one channel in this sector, i.e., K�K�:

TABLE VI. The Vij’s for the tðuÞ-channel vector-exchange diagrams in the strangeness ¼ 0, isospin ¼ 0 and spin ¼ 0ð2Þ channel.
K� �K� �� !! !� ��

K� �K� g2ðM2
�M

2
�
þð2M2

�þ3M2
�
ÞM2

!Þð4M2
K��3sÞ

4M2
�M

2
�
M2

!

ffiffi
3

p
g2ð2M2

�þ2M2
K��3sÞ

2M2
K�

� g2ð2M2
!þ2M2

K��3sÞ
2M2

K�

g2ðM2
�
þM2

!þ2M2
K��3sÞ

M2
K�

g2ð�2M2
�
�2M2

K�þ3sÞ
M2

K�

�� 2g2ð4� 3s
M2

�
Þ 0 0 0

!! 0 0 0

!� 0 0

�� 0

TABLE VII. The abbreviations used in calculating the box
diagrams: ~Gi ¼ G4ðmp1; mp2; mp3; mp4; s; k

0
1; k

0
2; k

0
3; k

0
4Þ with i ¼

1 � � � 20 and p1, p2, p3, p4 the particles appearing in the box
diagram with the order as given in Fig. 2. In the text, ~GiðuÞ ¼
G4ðmp1; mp2; mp3; mp4; s; k

0
1; k

0
2; k

0
4; k

0
3Þ.

i p1 p2 p3 p4 i p1 p2 p3 p4

1 � K � K 2 � K � K
3 K � K � 4 K � K �
5 � K � K 6 � K � K
7 � K K K 8 K � � �
9 � K K K 10 K K K K
11 � � � � 12 K � K �
13 K � K � 14 K K K �
15 K K K � 16 K K � �
17 � � K K 18 � � � K
19 K � K K 20 K � K K
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v ¼ 0:

(7) Strangeness ¼ 2, isospin ¼ 1, and spin ¼ 0: There
is only one channel in this sector, i.e., K�K�:

v ¼ 20g4ð9 ~G1 þ 3 ~G2 þ 3 ~G5 þ ~G6Þ:

APPENDIX C: Gn IN THE EVALUATION OF THE
FOUR-POINT LOOP FUNCTION

Here we provide the explicit form of Gn, which appears
in the evaluation of the four-point loop function G4

[Eq. (28)]. The symbols are the same as in the main text,
except here we have replaced k01, k

0
2, k

0
3, and k04 by E1, E2,

E3, and E4.

Gn ¼ !1ð!3ð!2 þ!4ÞE2
3 � 2P0!3!4E3 � ð!2 þ!3Þðð!3 þ!4Þ!2

2 þ ð!2
3 þ 3!4!3 þ 2!2

4Þ!2

þ!4ðð!3 þ!4Þ2 � sÞÞÞE4
1 þ 2!1ð�!3ð!2 þ!4ÞE3

3 þ P0!3!4E
2
3 þ!3ð!3

2 þ 2ð!3 þ!4Þ!2
2

þ ð!2
3 þ 4!4!3 þ 2!2

4Þ!2 þ!4ðsþ ð!3 þ!4Þ2ÞÞE3 þ P0ð!2 þ!3Þ!4ð�sþ!2
2 þ ð!3 þ!4Þ2

þ!2ð!3 þ 2!4ÞÞÞE3
1 þ!1ð!3ð!2 þ!4ÞE4

3 þ 2P0!3!4E
3
3 � 2!3ð!3

2 þ!3!
2
2 þ!3ð!3 þ 2!4Þ!2

þ!2
1ð!2 þ!4Þ þ!1ð!2 þ!4Þð!2 þ!3 þ!4Þ þ!4ð3sþ!2

3 þ!3!4ÞÞE2
3

þ 2P0!3!4ðsþ 2!2
1 � 2!2

2 �!2
3 �!2

4 � 4!2!4 � 4!3!4 þ 2!1ð!2 þ!3 þ!4ÞÞE3

þ ð!2 þ!3Þðð!3 þ!4Þ!4
2 þ ð!2

3 þ 3!4!3 þ 2!2
4Þ!3

2 þ ð!3
3 þ 5!4!

2
3 þ 6!2

4!3 þ 2!3
4 � 2s!4Þ!2

2

þ ð!4
3 þ 3!4!

3
3 þ 6!2

4!
2
3 þ 2!4ðsþ 3!2

4Þ!3 þ 2!4
4 � 2s!2

4Þ!2 þ!4ðs2 � 2ð!2
3 þ!4!3 þ!2

4Þs
þ ð!3 þ!4Þ2ð!2

3 þ!2
4ÞÞ þ 2!2

1ðð!3 þ!4Þ!2
2 þ ð!2

3 þ 3!4!3 þ 2!2
4Þ!2 þ!4ðð!3 þ!4Þ2 � sÞÞ

þ 2!1ð!2 þ!3 þ!4Þðð!3 þ!4Þ!2
2 þ ð!2

3 þ 3!4!3 þ 2!2
4Þ!2 þ!4ðð!3 þ!4Þ2 � sÞÞÞÞE2

1

� 2!1ðP0!3!4E
4
3 �!3ð!3

2 þ 2!4!
2
2 þ 2!2

4!2 þ!3
4 þ 2!1ð!2 þ!4Þ2 þ s!4 þ!2

1ð!2 þ!4ÞÞE3
3

þ P0!3!4ð�sþ!2
1 þ 2!2

2 � 2!2
3 þ!2

4 � 2!2!3 þ 4!2!4 � 2!3!4 þ!1ð4!2 � 2!3 þ 4!4ÞÞE2
3

þ!3ð!5
2 þ 2ð!3 þ!4Þ!4

2 þ ð!2
3 þ 4!4!3 þ 2!2

4Þ!3
2 þ 2!4ðsþ ð!3 þ!4Þ2Þ!2

2

þ 2!4ðð2!3 �!4Þsþ!4ð!3 þ!4Þ2Þ!2 þ!4ðs2 þ ð!2
3 � 2!4!3 � 2!2

4Þsþ!2
4ð!3 þ!4Þ2Þ

þ!2
1ð!3

2 þ 2ð!3 þ!4Þ!2
2 þ ð!2

3 þ 4!4!3 þ 2!2
4Þ!2 þ!4ðsþ ð!3 þ!4Þ2ÞÞ

þ 2!1ð!4
2 þ 2ð!3 þ!4Þ!3

2 þ ð!2
3 þ 4!4!3 þ 2!2

4Þ!2
2 þ 2!4ðsþ ð!3 þ!4Þ2Þ!2

þ!4ðð2!3 �!4Þsþ!4ð!3 þ!4Þ2ÞÞÞE3 þ P0ð!2 þ!3Þ!4ð!4
2 þ!3!

3
2 þ 2!4!

3
2 þ!2

3!
2
2

þ!2
4!

2
2 þ 2!3!4!

2
2 þ!3

3!2 þ!3!
2
4!2 þ 2!2

3!4!2 þ!4
3 þ!2

3!
2
4 � sð!2

1 þ 2ð!2 þ!3Þ!1 þ!2
2

þ!2
3 þ!2!3Þ þ 2!3

3!4 þ!2
1ð!2

2 þ ð!3 þ 2!4Þ!2 þ ð!3 þ!4Þ2Þ þ 2!1ð!3
2 þ ð!3 þ 2!4Þ!2

2

þ ð!3 þ!4Þ2!2 þ!3ð!3 þ!4Þ2ÞÞÞE1 � ð!1 þ!2Þð!3ðð!2 þ!4Þ!2
1 þ ð!2

2 þ 3!4!2 þ 2!2
4Þ!1

þ!4ðð!2 þ!4Þ2 � sÞÞE4
3 þ 2P0!3!4ðs�!2

1 � ð!2 þ!4Þ2 �!1ð!2 þ 2!4ÞÞE3
3

�!3ðð!2 þ!4Þ!4
1 þ ð!2 þ!4Þð!2 þ 2ð!3 þ!4ÞÞ!3

1 þ ð!3
2 þ ð4!3 þ 5!4Þ!2

2 þ 2ð!2
3 þ 5!4!3 þ 3!2

4Þ!2

þ 2!4ð�sþ!2
3 þ!2

4 þ 3!3!4ÞÞ!2
1 þ ð!4

2 þ ð2!3 þ 3!4Þ!3
2 þ 2ð!2

3 þ 5!4!3 þ 3!2
4Þ!2

2

þ 2!4ðsþ 3!2
3 þ 3!2

4 þ 7!3!4Þ!2 þ 2!4ð!3 þ!4Þð!4ð2!3 þ!4Þ � sÞÞ!1 þ!4ð�sþ!2
2 þ 2!2

3 þ!2
4

þ 2!2!3 þ 2!3!4Þðð!2 þ!4Þ2 � sÞÞE2
3 þ 2P0!3!4ð!4

1 þ ð!2 þ 2ð!3 þ!4ÞÞ!3
1 þ ð!2

2 þ 2ð!3 þ!4Þ!2

þ!2
3 þ!2

4 þ 4!3!4Þ!2
1 þ ð!3

2 þ 2ð!3 þ!4Þ!2
2 þ ð!2

3 þ 4!4!3 þ!2
4Þ!2 þ 2!3!4ð!3 þ!4ÞÞ!1

þ ð!2 þ!3Þ2ð!2 þ!4Þ2 � sð!2
1 þ ð!2 þ 2!3Þ!1 þ ð!2 þ!3Þ2ÞÞE3 þ ð!1 þ!3Þð!2 þ!3Þððð!3 þ!4Þ!2

2

þ ð!2
3 þ 3!4!3 þ 2!2

4Þ!2 þ!4ðð!3 þ!4Þ2 � sÞÞ!3
1 þ ð!2 þ!3 þ 2!4Þðð!3 þ!4Þ!2

2

þ ð!2
3 þ 3!4!3 þ 2!2

4Þ!2 þ!4ðð!3 þ!4Þ2 � sÞÞ!2
1 þ ðð!2

3 þ 3!4!3 þ 2!2
4Þ!3

2 þ ð!3
3 þ 6!4!

2
3 þ 10!2

4!3

þ 5!3
4 � s!4Þ!2

2 þ!4ð3!3 þ 4!4Þðð!3 þ!4Þ2 � sÞ!2 þ!4ðs2 � ð!2
3 þ 4!4!3 þ 2!2

4Þs
þ!4ð!3 þ!4Þ2ð2!3 þ!4ÞÞÞ!1 þ ð!2 þ!3Þ!4ðð!2 þ!4Þ2 � sÞðð!3 þ!4Þ2 � sÞÞÞ: (C1)
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