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We perform a perturbative calculation of the influence of dynamical highly improved staggered quark

fermions on the perturbative improvement of the gluonic action in the same way as we have previously

done for asqtad fermions. We find the fermionic contributions to the radiative corrections in the Lüscher-

Weisz gauge action to be somewhat larger for highly improved staggered quark fermions than for asqtad.

Using one-loop perturbation theory as a test, we estimate that omission of the fermion-induced radiative

corrections in dynamical asqtad simulations will give a measurable effect. The one-loop result gives a

systematic shift of about �0:6% in r̂1 on the coarsest asqtad improved staggered ensembles. This is the

correct sign and magnitude to explain the scaling violations seen in �B ¼ fB
ffiffiffiffiffiffiffiffi
MB

p
on dynamical lattice

ensembles.
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I. INTRODUCTION

The Fermilab, MILC, HPQCD, and UKQCD
Collaborations are involved in an ambitious program of
high precision predictions of phenomenologically relevant
parameters from QCD using unquenched lattice simula-
tions [1].

Central to this program is the perturbative improvement
of the fermionic and gluonic action and operators to re-
move significant sources of scaling violation in the lattice
simulation results. This body of work is based on the
Symanzik-improved staggered-quark formalism, specifi-
cally the use of the asqtad action [2]. More recently, the
highly improved staggered quark (HISQ) action has been
used to further suppress taste-changing interactions and to
allow the use of heavier quarks at the same lattice spacing
by removing tree-levelOððmaÞ4Þ artifacts from the valence
quark action [3].

To maintain the same level of improvement when these
actions are used to describe the sea quarks [4,5], we should
include the effect of fermion loops on the radiative terms in
the Symanzik-improved gauge action. This has recently
been done to OðNf�sa

2Þ for the asqtad action [6] and in

this paper we update that calculation to include dynamical
HISQ fermions instead. Some preliminary results can be
found in Ref. [7]. We note that the corrections are larger for
HISQ than for asqtad.

In the second part of this paper, Sec. IV, we consider
what effect the OðNf�sa

2Þ will have in a practical simu-

lation, particularly on the scale-setting parameters r̂1 and
r̂0 derived from the static-quark potential.

The MILC and UKQCD Collaborations have already
used dynamical asqtad quarks to generate a large set of
Monte Carlo lattice ensembles, including ones with very
light sea quarks (MILC, e.g. [1]) and ones with large
numbers of independent configurations (UKQCD [8]).
The gauge action used, however, omitted the asqtad

OðNf�sa
2Þ radiative improvements (they were not then

known). It has been observed that the quantity �B ¼
fB

ffiffiffiffiffiffiffiffi
MB

p
shows a þ2% scaling violation on the dynamical

‘‘coarse’’ ensembles (lattice spacing a ’ 0:12 fm) relative
to the ‘‘fine’’ (a ’ 0:09 fm) [9]. This scaling violation was
not seen for corresponding quenched lattices [10].
Unless there is a subtle (and therefore unlikely) cancel-

lation, the quenched result suggests that the (quenched)
gluonic and valence staggered actions are not the problem.
If the asqtad action is suitable for the valence quarks, it
seems likely that it is equally suitable for the sea quarks.
The scaling violation is therefore argued to arise from the
omission of the OðNf�sa

2Þ radiative corrections to the

gluonic action. It is certainly plausible that the fermionic
contributions could have such an effect; they are, after all,
large enough to reverse the sign of some of the radiative
couplings in the action [6].
In these calculations r̂1 � r1=a has been used to set the

scale, i.e. to convert from dimensionless lattice results to
physical predictions. We therefore attempt to estimate, at
least semiquantitatively, whether the omission of the asq-
tadOðNf�sa

2Þ radiative corrections would have a measur-

able effect on the static potential and, in particular, on the
scale-setting parameters r̂1 and r̂0 used to convert from
dimensionless lattice results to physical predictions. We do
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this using one-loop perturbation theory. We treat such a
result as indicative: we do not rule out higher loop and
nonperturbative contributions, but argue that if one-loop
perturbation theory predicts a measurable result, then it is
likely to persist when we include other contributions.

Using one-loop perturbation theory, we find that includ-
ing the fermionic radiative corrections to the gauge action
would lead to a 0.65% decrease in r̂1 on the coarse ensem-
bles and no change on the fine. The sign and magnitude of
these shifts are robust under reasonable variations in fitting
parameters. This would equate to a 0.65% increase in a on

the coarse ensembles. The quantity �B scales as a�3=2, so
theOðNf�sa

2Þ corrections would lead to a 1% decrease in

�B on the coarse ensembles and no effect on the fine.
This shift is very close to what has been observed and we

therefore suggest that the anomalous upward shift in�B is
in large part due to the omission of the OðNf�sa

2Þ radia-
tive corrections to the gluon action. We therefore predict
that other observables scaling with a similar negative
power of a should exhibit similar scaling violations that
ought to become noticeable if these observables are mea-
sured to similar accuracy.

II. ON-SHELL IMPROVEMENT

We begin by briefly reviewing how radiative improve-
ment works at Oð�sa

2Þ.
Starting from the Symanzik tree-level–improved gauge

action, the Coulomb self-energy from the one-loop radia-
tive corrections is [see Sec. 4 of Ref. [11] and Eq. (44) of
Ref. [12]]

wðkÞ / k2 þ �sða1k2 � �0k
2 lnðk2Þ þ a2k

ð4Þ

þ a3ðk2Þ2Þ; (1)

where

k 2 ¼ X3
i¼1

k2i ; kð4Þ ¼ X3
i¼1

k4i : (2)

The first two terms in the brackets are absorbed into the
scheme definition of �V [Eq. (46) of Ref. [12]] and do not
concern us. The last two terms in the brackets are lattice
artifacts and are Oð�sa

2Þ. It is the goal of radiative im-
provement to remove these terms.

To improve the gauge theory at Oð�sa
2Þ we introduce

appropriate radiative counterterms into the gauge action.
There are four such dimension-six counterterms: three
gluonic operators (named by Lüscher and Weisz [13] as
‘‘planar rectangles,’’ ‘‘parallelograms,’’ and ‘‘bent rectan-
gles,’’ with coefficients c1, c2, and c3, respectively) plus
the static-quark operator

c4a
2�yr � E�; (3)

which contributes specifically to the static-quark potential.

The action normalization condition

c0 þ 8ðc1 þ c2Þ þ 16c3 ¼ 1 (4)

ensures we get the correct gauge action in the continuum
limit and fixes c0 (the coefficient of the plaquette), given
the other coefficients.
On-shell observables will remain unchanged under field

redefinitions using the equations of motion. If we confine
our attention to on-shell quantities, we can exploit this
to set one of the ci to zero [14]. The usual choice is to
set c3 ¼ 0.
Looking at the terms in Eq. (1) in more detail, the a2

term breaks rotational symmetry, and its effect on the
static-quark potential is given by the Fourier transform

�V2ðrÞ � �sa
2
Z �

��

d3k

ð2�Þ3 e
�k�r kð4Þ

ðk2Þ2 : (5)

The leading Oð�sa
2Þ behavior is ��sa

2=r3 with Oða4Þ
corrections that break rotational symmetry.
The effect of radiative improvement on the static poten-

tial is to set a2 ¼ 0, which therefore also restores rotational
invariance of the static potential (at this level) and gives the
correct Coulomb coefficient �V [12].
The a3 term, in contrast, already preserves rotational

invariance

�V3ðrÞ � �sa
2
Z �

��

d3k

ð2�Þ3 e
�k�r þOða4Þ; (6)

with the leading contribution to the static-quark potential
being the 3D Kronecker �r;0 (seen by changing variables to

zi ¼ e�kiri). This, as Snippe points out [12], does not affect
the potential at nonzero r � jrj and will therefore not
contribute to the scale-setting parameters r̂1 and r̂0. In
general, however, we do need to remove it: as well as the
contact term there will be an effect for r > 0 at higher order
(i.e. at Oða4Þ) because the denominator in the Symanzik
tree-level Coulomb propagator will not exactly cancel the
k2 from the Feynman rules owing to differences in their
definitions.
Both c3 and c4 contribute to the a3 term [11,17] so, with

c3 ¼ 0 fixed as above, we can only remove it by introduc-
ing the static-quark counterterm into the theory [15,16], i.e.
by choosing an appropriate, and nonzero, value for c4. This
has the effect of introducing staples onto temporal Wilson
lines, which must be included in numerical simulations.
Similarly, the c4 contact term will be important in, for
instance, the �ð2S� 1SÞ mass splitting. A contact term
gives a contribution proportional to the square of the wave
function at the origin. This is clearly different for the two
states concerned, and will change the mass splitting [18].
We will not, however, consider the contact term in detail in
this paper.
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A. The calculation

Contact term aside, with c3 ¼ 0 we thus need to deter-
mine c1 and c2 to complete the on-shell improvement.
Given two independent quantities Q1 and Q2 with expan-
sions

Qi ¼ �Qi þ wið�aÞ2 þ dijcjð�aÞ2 þOðð�aÞ4Þ; (7)

in powers of ð�aÞ, where � is some energy scale, we
obtain the Oða2Þ matching condition

dijcj ¼ �wi: (8)

Since this equation is linear, both sides can be decomposed
into a gluonic and a fermionic part; the gluonic part is
known [12,19] and is independent of the fermion action.

In this paper, we focus on the fermionic contribution to
the radiative improvement of the gluon action. Such con-
tributions come from quark loops, which therefore cannot
change the tree-level coefficients compared to the
quenched case [19]. To compute the one-loop HISQ fer-
mionic corrections to the gluon action, we will follow the
same procedure as in the case of the asqtad action [6],
using as our two quantitiesQi the three-gluon coupling and
the mass of the so-called twisted A meson [13].

B. Lattice perturbation theory

We use lattice perturbation theory to calculate the radia-
tive corrections. The (unsmeared) link variables U� are

expressed in terms of the gauge field A� as

U�ðxÞ ¼ exp

�
gaA�

�
xþ 1

2
�̂

��
(9)

which, when expanded in powers of g, leads to a perturba-
tive expansion of the lattice action, from which the pertur-
bative vertex functions can be derived.

The gauge field A� is Lie algebra-valued, and can be

decomposed as

A�ðxÞ ¼
X
a

Aa
�ðxÞta; (10)

with the ta being anti-Hermitian generators of SUðNÞ,
where N ¼ 3 in the case of QCD.

The improved Lüscher-Weisz action that we study is
[20]

S ¼ X
x

fc0P0ðxÞ þ c1P1ðxÞ þ c2P2ðxÞg; (11)

with c0 þ 8ðc1 þ c2Þ ¼ 1 and, at tree-level, cð0Þ0 ¼ 5=3,

cð0Þ1 ¼ �1=12, cð0Þ2 ¼ 0. The terms

P0 ¼
X
�<�

U��; P1 ¼
X
�<�

ðU��� þU���Þ;

P2 ¼
X

�<�<�

ðU��� þU��� þU��� þU�;��;�Þ
(12)

are made up of appropriate traced, closed contours of

gauge links. The notation here is that �, �, and � are
summed over positive values and negative subscripts de-
note Hermitian-conjugated gauge links.
The HISQ fermionic action is defined by an iterated

smearing procedure with reunitarization

UHISQ ¼ ðFasq0 � PUð3Þ � FFat7Þ½U�; (13)

where PUð3Þ denotes the polar projection ontoUð3Þ (as used
in simulations [5], and not SUð3Þ), and the Fat7 and
modified asq smearings are defined in Ref. [3].
To handle the complicated form of the vertices and

propagators in lattice perturbation theory, we employ a
number of automation methods [21–26] that are based on
the seminal work of Lüscher and Weisz [19] and are
implemented in the HIPPY package [21,22].
The multilevel smearing of the gauge fields employed in

the HISQ action presents particular problems when deriv-
ing the Feynman rules, even when employing automated
techniques. The solution to these is discussed in
Refs. [7,22].
Unless otherwise stated, we shall use g2 as the pertur-

bative expansion parameter (rather than �s ¼ g2

4� ), with

expansions written in the form

ci ¼ cð0Þi þ g2cð1Þi þOðg4Þ: (14)

The goal of this paper is to determine the fermionic con-

tributions to cð1Þ1 and cð1Þ2 , with cð1Þ0 ¼ �8ðcð1Þ1 þ cð1Þ2 Þ.
Since we will only consider fermionic loops, we do not

need to concern ourselves with the gauge fixing, Haar
measure and Fadeev-Popov ghost terms that appear in the
gluonic portion of the perturbative Lagrangian.
The loop integrals of continuum perturbation theory are

replaced by finite sums over the points of the reciprocal
lattice in lattice perturbation theory. We carry out these
sums exactly rather than using a stochastic estimator.

C. Twisted boundary conditions

We work on a four-dimensional Euclidean lattice of
length La in the x and y directions and lengths Lza, Lta
in the z and t directions, respectively, where a is the lattice
spacing and L, Lz, Lt are even integers. In the following,
we will employ twisted boundary conditions [27] for the
same purpose and in essentially the same way as in
Refs. [12,19]. The twisted boundary conditions we use
for gluons and quarks are applied to the ðx; yÞ directions
and are given by (� ¼ x, y)

U�ðxþ L�̂Þ ¼ ��U�ðxÞ��1
� ;

�ðxþ L�̂Þ ¼ ���ðxÞ��1
� ;

(15)

where the quark field �scðxÞ becomes a matrix in smell-
color space [28] by the introduction of a new SUðNÞ
quantum number ‘‘smell’’ in addition to the quark color.
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In the ðz; tÞ directions, we apply periodic boundary
conditions.

These boundary conditions lead to a change in the
Fourier expansion of the fields:

A�ðxÞ ¼ 1

NL2LzLt

X
k

�ke
ikx ~A�ðkÞ

��ðxÞ ¼ 1

NL2LzLt

X
p

�pe
ipx ~��ðxÞ;

(16)

where the matrices �k are given by (up to an arbitrary
phase, which may be chosen for convenience)

�k ¼ ��n2
1 �n1

2 (17)

and in the twisted ðx; yÞ directions the momentum sums are
now over

p� ¼ mn�; �NL

2
< n� � NL

2
; � ¼ ðx; yÞ;

(18)

wherem ¼ 2�
NLa . The zero modes (nx ¼ ny ¼ 0modN) are

omitted from the sum in the case of the gluons, but not the
quarks. The momentum sums for quark loops need to be
divided by N to remove the redundant smell factor.

We may consider the continuum limit of the twisted
theory as a Kaluza-Klein theory in the infinite ðz; tÞ plane.
Denoting n ¼ ðnx; nyÞ, the stable particles in the ðz; tÞ
continuum limit of this effective theory are called the A
mesons (n ¼ ð1; 0Þ or n ¼ ð0; 1Þ) with mass m and the B

mesons (n ¼ ð1; 1Þ) with mass
ffiffiffi
2

p
m [12].

D. Small-mass expansions

Even though we are ultimately interested in the radiative
corrections in the chiral limit, we cannot set mqa ¼ 0

straightaway: the correct way to approach the chiral limit
is to maintain mq=m> C as we take mqa ! 0 and ma !
0, whereC is a constant determined by the requirement that
a Wick rotation can be performed without encountering a
pinch singularity [6].

We therefore adopt the following procedure to extract
the Oða2Þ lattice artifacts: First, we expand some observ-
able quantity Q in powers of ma at fixed mqa:

Qðma;mqaÞ ¼ aðQÞ
0 ðmqaÞ þ aðQÞ

2 ðmqaÞðmaÞ2
þOððmaÞ4; ðmaÞ4 logðmaÞÞ; (19)

where the coefficients in the expansion are all functions of
mqa. There is no term atOððmaÞ2 logðmaÞÞ since the gluon
action is improved at tree level to Oða2Þ [12]. Then, we
expand the coefficients aðQÞ

0 ðmqaÞ in powers of mqa.

For aðQÞ
0 ðmqaÞ we have [29]

aðQÞ
0 ðmqaÞ ¼ bðQÞ

0;0 logðmqaÞ þ aðQÞ
0;0 : (20)

Since we expect a well-defined continuum limit, aðQÞ
0 ðmqaÞ

cannot contain any negative powers ofmqa, but, depending

on the quantity Q, it may contain logarithms; bðQÞ
0;0 is the

anomalous dimension associated with Q, and can be de-
termined by a continuum calculation. There can be no
terms in ðmqaÞ2n for n > 0 since there is no counterterm

in the gluon action that can compensate for a scaling
violation of this kind.

For aðQÞ
2 ðmqaÞ we find

aðQÞ
2 ðmqaÞ ¼

aðQÞ
2;�2

ðmqaÞ2
þ aðQÞ

2;0 þ ðaðQÞ
2;2 þ bðQÞ

2;2 logðmqaÞÞ

� ðmqaÞ2 þOððmqaÞ4Þ: (21)

After multiplication by ðmaÞ2, the ðmqaÞ�2 contribution

gives rise to a continuum contribution to Q, and aðQÞ
2;�2 is

calculable in continuum perturbation theory. There can be
no term in ðmqaÞ�2 logðmqaÞ since this would be a volume-

dependent further contribution to the anomalous dimen-
sion of Q, and there can be no term in logðmqaÞ since the
action is tree-level Oða2Þ improved [30]. A rigorous proof
of Eq. (21) along the lines of Ref. [29] would, of course, be
welcome.
In the chiral limit mq ! 0, the term wi that appears on

the right-hand side of Eq. (8) is aðQÞ
2;0 .

E. Twisted spectral quantities

The simplest spectral quantity that can be chosen within
the framework of the twisted boundary conditions outlined
above is the (renormalized) mass of the Ameson. The one-
loop correction to the A meson mass is given by [12]

mð1Þ
A ¼ �Z0ðkÞ�

ð1Þ
11 ðkÞ
2mð0Þ

A

��������k¼ðimð0Þ
A
;0;m;0Þ

; (22)

where Z0ðkÞ ¼ 1þOððmaÞ4Þ is the residue of the pole of
the tree-level gluon propagator at spatial momentum k,

and mð0Þ
A is defined so that the momentum k is on shell.

Gauge invariance implies [6]

aðmA;1Þ
2;�2 ¼ 0; aðmA;1Þ

0 ðmqaÞ ¼ 0: (23)

The Oð�sðmaÞ2Þ contribution from improvement of the
action is given by [12]

�imp

mð1Þ
A

m
¼ �ðcð1Þ1 � cð1Þ2 ÞðmaÞ2 þOððmaÞ4Þ; (24)

leading to the improvement condition

cð1Þ1 � cð1Þ2 ¼ aðmA;1Þ
2;0 : (25)

The next simplest independent spectral quantity is the
scattering amplitude for A mesons at the B meson thresh-
old, which can be described by an effective AAB meson
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coupling constant � [13]

� ¼ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðkÞZðpÞZðqÞ

q
ej �

1;2;jðk; p; qÞ; (26)

where a twist factor of i
N Trð½�k;�p��qÞ has been factored

out from both sides, and the momenta and polarizations of
the incoming particles are [with r > 0 defined such that
EðqÞ ¼ 0]

k ¼ ðiEðkÞ;kÞ; k ¼ ð0; m; irÞ;
p ¼ ð�iEðpÞ;pÞ; p ¼ ðm; 0; irÞ;
q ¼ ð0;qÞ; q ¼ ð�m;�m;�2irÞ;
e ¼ ð0; 1;�1; 0Þ:

(27)

We expand Eq. (26) perturbatively to one-loop order and
find [up to OððmaÞ4Þ corrections]
�ð1Þ

m
¼

�
1� 1

24
m2

�
�ð1Þ

m
� 4

k0

d

dk0
�ð1Þ

11 ðkÞjk0¼iEðkÞ

�
�
1� 1

12
m2

�
d2

dq20
ðeiej�ð1Þ

ij ðqÞÞjq0¼0; (28)

where �ð1Þ is the one-particle irreducible three-point func-
tion at one loop. The derivatives of the Feynman diagrams
contributing to the self-energy are computed analytically
using automatic differentiation [31,32]. Continuum calcu-
lations of the anomalous dimension and infrared diver-
gence give

bð�;1Þ0;0 ¼ � Nf

3�2
g2; að�;1Þ2;�2 ¼ � Nf

120�2
g2: (29)

The improvement contribution to � is [12]

�imp

�ð1Þ

m
¼ 4ð9cð1Þ1 � 7cð1Þ2 ÞðmaÞ2 þOððmaÞ4Þ; (30)

leading to the improvement condition

4ð9cð1Þ1 � 7cð1Þ2 Þ ¼ �að�;1Þ2;0 : (31)

III. RESULTS

To extract the improvement coefficients from our dia-
grammatic calculations, we compute the diagrams for a
number of different values of both L and mq with Nf ¼ 1,

N ¼ 3. At each value ofmq, we then perform a fit inma of

the form given in Eq. (19) to extract the coefficients

aðQ;1Þ
n ðmqaÞ for n ¼ 0, 2. Our fits confirm that

aðmA;1Þ
0 ðmqaÞ ¼ 0; an example is shown in Fig. 1

Performing a fit of the form in Eqs. (20) and (21),
respectively on these coefficients, we are able to extract
the analytically known coefficients with high accuracy
along with the required ðmaÞ2 contributions, as shown in
Fig. 2.

Our results for the fermionic contributions are

aðmA;1Þ
2;0 ¼ 0:00 942ð3Þ; að�;1Þ2;0 ¼ �0:352ð2Þ: (32)

Equating these results with the wi of Eq. (8), we can solve

Eqs. (25) and (31) for cð1Þi to obtain

cð1Þ1 ¼ �0:025 218ð4Þ þ 0:0110ð3ÞNf

cð1Þ2 ¼ �0:004 418ð4Þ þ 0:0016ð3ÞNf

) cð1Þ0 ¼ 0:237 088ð46Þ � 0:1008ð34ÞNf; (33)

where the quenched (Nf ¼ 0) results are taken from

Ref. [12], and we have propagated the errors by quadrature

into cð1Þ0 .

Effect on gauge action couplings

The MILC and UKQCD Collaborations use a ‘‘tadpole
improved’’ version of Eq. (11), dividing each gauge link by
a factor u0. In addition, a factor of c0=u

4
0 is subsumed into

the gauge coupling �0 ¼ 6c0=ðg2u40Þ that multiplies the

plaquette term P0 [15]. The couplings multiplying the
‘‘planar rectangles’’ P1 and ‘‘parallelograms’’ P2 are
[6,15]

�1 ¼ � �0

20u20

�
1�

�
12�

5
cð1Þ0 þ 48�cð1Þ1 þ 2uð1Þ0

�
�s

�
;

�2 ¼ 12��0

5u20
cð1Þ2 �s; (34)

(with factors of 4� coming from converting from g2 to�s).
The quenched radiative contributions have been analyzed
in [15] and so we may write

0 0.005 0.01 0.015 0.02
0

5e-05

0.0001

0.00015

0.0002

m
A

 data

m
A

 fit

FIG. 1 (color online). A plot of the fermionic contributions to

the one-loop A meson self-energy mð1Þ
A =m against ðmaÞ2. The

vanishing of mð1Þ
A =m in the infinite-volume limit can be seen

clearly.
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�1 ¼ � �0

20u20

�
1þ 0:4805�s �

�
12�

5
cð1Þ0;f þ 48�cð1Þ1;f

�
�s

�
;

�2 ¼ ��0

u20

�
0:033�s � 12�

5
cð1Þ2;f�s

�
; (35)

where now all the one-loop coefficients cð1Þi;f contain only

quark loop contributions.
Plugging in the numbers for the HISQ action obtained in

this work we find

�1 ¼ � �0

20u20
½1þ 0:4805�s � 0:899ð52ÞNf�s�;

�2 ¼ ��0

u20
½0:033�s � 0:0121ð23ÞNf�s�:

(36)

The full coefficient c0 has here been absorbed into the
gauge coupling, so the coefficient multiplying the pla-
quette P0 is simply �p ¼ �0. For the HISQ action, the

fermionic contribution to c0 [i.e. c
ð1Þ
0;f in Eq. (33)] is large,

and sizeable shifts will be needed in �0 to maintain a

constant g2 (or lattice spacing) as Nf is changed from 0

(quenched) to Nf ¼ 3 or 4. While this is not a problem in

itself, it does make it more difficult to intuitively relate
values of �0 to the lattice spacing.
A more sensible choice is to absorb just the tree-level

portion cð0Þ0 ¼ 5=3 into the gauge coupling. The overall

gauge coupling is simply�0
0 ¼ 10=ðg2u40Þ. Using primes to

denote couplings in this scheme, the coupling multiplying
the plaquette in the action is now

�0
p ¼ �0

0

�
1þ 4�cð1Þ0

cð0Þ0

�s

�

¼ �0
0½1þ 1:7876�s � 0:760ð26ÞNf�s�: (37)

The remaining couplings in this scheme are

�0
1 ¼ � �0

0

20u20
½1� ð48�cð1Þ1 þ 2uð1Þ0 Þ�s�

¼ � �0
0

20u20
½1þ 2:2681�s � ð48�cð1Þ1;fÞ�s�

¼ � �0
0

20u20
½1þ 2:2681�s � 1:659ð46ÞNf�s�;

�0
2 ¼

12��0
0

5u20
cð1Þ2 �s

¼ ��0
0

u20
½0:033�s � 0:0121ð23ÞNf�s�:

(38)

The factors multiplying the gauge coupling in �2 and �0
2

are the same as this term is already Oð�sÞ.

IV. RADIATIVE IMPROVEMENTAND THE STATIC
POTENTIAL

In this section, we seek to understand what effect the
omission of the asqtad OðNf�sa

2Þ corrections to gauge

action will have on physical observables measured in ex-
isting nonperturbative Monte Carlo lattice simulations.
As discussed above, the then-unknown OðNf�sa

2Þ con-
tributions to ci were omitted from the current generation of
three-flavor dynamical asqtad simulations. Perturbatively,
this omission will lead to an imperfect cancellation of
discretization effects and a residual breaking of rotational
symmetry in the static-quark potential. Similar effects are
expected to be seen in the numerical simulation results, and
hence in the determinations of the scale-setting parameters
r̂1, r̂0 derived from the static potential.
Here we use one-loop perturbation theory to calculate

the effect of the missing OðNf�sa
2Þ terms on the static

potential and particularly on the scale-setting parameters
r̂1, r̂0. The rationale for this and alternative approaches are
discussed in Secs. I and V.

0 0.1 0.2 0.3 0.4 0.5

m
q
a

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

a
0

(λ)
 data

Fit

0 0.1 0.2 0.3 0.4 0.5

m
q
a

-0.44

-0.42

-0.4

-0.38

-0.36

-0.34

-0.32

a
2

(λ)
 data

Fit

FIG. 2 (color online). Plots of að�;1Þ0 against mqa (left) and of

að�;1Þ2 against mqa (right) with the fits shown for comparison.
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A. The correction to the static potential

Including the missing OðNf�sa
2Þ corrections to the

gauge action would change the lattice static-quark poten-
tial VðrÞ measured by the MILC Collaboration by an
amount �VðrÞ. Here we estimate this change using one-
loop perturbation theory.

We do this by computing the spatial Fourier transform
(for zero temporal momentum) of G0�ðkÞ���ðkÞG�0ðkÞ,
where G��ðkÞ is the tree-level Symanzik-improved gluon

propagator [at momentum k ¼ ð0; kÞ], as shown in Fig. 3.
���ðkÞ is the Oðg2Þ insertion into the gluon propagator

arising from the perturbative expansion of the OðNf�sa
2Þ

corrections to the gauge action in Eq. (11) with appropriate

asqtad cð1Þi;f couplings [6]. Again, Feynman rules are derived

using the HIPPY package [21,22].
In all cases, the spatial Fourier transforms are carried out

for a finite, periodic lattice of spatial volume L3.
The gauge action has c3 ¼ 0, but the static-quark coun-

terterm proportional to c4 is also omitted. This will also
affect the success of the radiative improvement, but we do
not consider its effect in this paper.

The result for L ¼ 20 is shown in the upper panel of
Fig. 4. We expect the corrected lattice potential to be
rotationally symmetric atOð�sa

2Þ, so the lack of rotational
invariance in the upper panel of Fig. 4 is indicative of an
equal and opposite breaking of rotational symmetry in the
potential measured on ensembles that omit theOðNf�sa

2Þ
radiative corrections.

B. The effect of the correction

To set the scale, the MILC Collaboration measures the
static potential for a variety of on- and off-axis spatial
separations: fVðriÞg with associated statistical errors
f�ðriÞg. A least squares fit is performed using the fit func-
tion [33–35]

VfitðrÞ ¼ VcontðrÞ þ b3VcorrðrÞ �
X3
j¼0

bjfjðrÞ;

VcontðrÞ ¼ b0 � b1
r
þ b2r;

VcorrðrÞ ¼
�
VfreeðrÞ � 1

r r < rcut

0 otherwise
;

which defines basis functions fjðrÞ with a vector of fit

parameters b. Vcorr aims to account for the lack of rota-
tional invariance at small r � jrj, with Vfree the finite-sized
lattice estimate for 1=r from the Fourier transform of the
(free) Symanzik gluon Coulomb propagator. We show this
for L ¼ 20 in the lower panel of Fig. 4.
In more detail, the fit minimizes the least-squared func-

tion

LðbÞ ¼ X
i

ðVðriÞ � VfitðriÞÞ2
�ðriÞ2

: (39)

We define the (weighted) average of operator AðrÞ over a
set of measured ri as

hAi ¼ XN
i

AðriÞ
�ðriÞ2

�XN
i

1

�ðriÞ2
: (40)

The result of the least squares fitting is a vector of best-fit
parameters b that obeys the linear equation

Mjkbk ¼ Xj ) b ¼ M�1X; (41)

where

Mjk ¼ hfjfki; Xj ¼ hfjVi: (42)

Having done this, the lattice scale is set from the analytic
derivative of the VcontðrÞ function

r̂ 2
n

dVcontðrÞ
dr

��������r̂n

¼ Cn ) r̂n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cn � b1

b2

s
: (43)

We use ‘‘hats’’ here to stress that the scale parameters are
measured in dimensionless lattice units.

-0.02

-0.01

0

0.01

0.02

δV
c(r

) 
x 

u 02 /(
N

f
α s)

rcut

on-axis
(1,1,0) dirn
(2,1,0) dirn
(1,1,1) dirn
others

L=20

0 1 2 3 4 5 6
|r| in lattice units

-0.2

0

0.2

0.4

0.6

0.8

co
rr

ec
tio

n 
V

co
rr
(r

)

FIG. 4 (color online). The perturbative correction (top panel)
and the correction for lack of rotational invariance (bottom
panel).

k(0,   )

FIG. 3 (color online). The one-loop counterterm contribution
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Two scales are commonly used: r̂1 from C1 ¼ 1 (physi-
cal value r1 ¼ 0:317 fm [35]) and r̂0 from C0 ¼ 1:65
(physical value r0 ¼ 0:462 fm [35]). In general r̂1 is pre-
ferred as the statistical errors on the static potential are
smaller at shorter distances.

C. The corrected fits

Having calculated the OðNf�sa
2Þ corrections to the

static potential, we can now calculate the effect of includ-
ing �V on the best-fit parameters bj, assuming that we

carry out exactly the same fitting procedure as before.
We would now minimize

L0ðbÞ ¼ X
i

ðVðriÞ þ �s�VðriÞ � VfitðriÞÞ2
�ðriÞ2

: (44)

Given that b minimizes LðbÞ, we assert that b0 ¼
bþ �s�b minimizes L0ðbÞ, with

�b ¼ M�1�X (45)

and �Xj ¼ hfj�Vi.
After finding �b we can deduce the associated change in

r̂1. We can either define this as �r̂1 ¼ r̂1ðbþ �s�bÞ �
r̂1ðbÞ or, using a Taylor expansion of Eq. (43),

�r̂1
r̂1

¼ � 1

2

�
�b1

1� b1
þ �b2

b2

�
: (46)

The two methods give almost identical results.

D. Results

We looked at a range of ensembles listed in Table I,
using published values of u0 to infer the strong coupling
constant in the same way as MILC [37]:

�s ¼ � 4 logu0
3:0684

: (47)

To estimate the effect the fermionic corrections would have
on the scale-setting parameters as measured by the MILC
Collaboration, we adopt the same fitting function, and we

use the same fit range
ffiffiffi
5

p � r � 7 and rcut ¼ 3 for the

‘‘fine’’ lattices and
ffiffiffi
2

p � r � 6 with rcut ¼ 2:5 for the
‘‘coarse’’ and ‘‘very coarse’’ ensembles.
We infer b1 and b2 from published values for r̂1 and r̂0

on given ensembles [34,38]

b2 ¼ 1:65� 1

r̂20 � r̂21
; b1 ¼ 1� b2r̂

2
1: (48)

For instance, on the � ¼ 6:76, mu=ms ¼ 0:01=0:05 coarse
ensemble r̂1 ¼ 2:60 (Ref. [34]), r̂0 ¼ 3:76 (Ref. [38]) giv-
ing b1 ¼ 0:406, b2 ¼ 0:088. We then find

�r̂1=r̂1 ¼ �0:65%; �r̂0=r̂0 ¼ �0:11%: (49)

The shift in r̂1 is larger because r̂1 is smaller than r̂0, and
�V is short-ranged. On the fine lattices, r̂1 in lattice units is
comparable to r̂0 on the coarse lattices. The shift is there-
fore small. Results for other ensembles are given in Table I.
We have looked at various scenarios, e.g. different

choices for the fitted range of frig and constraining some
fit parameters to zero. While the precise shifts do vary, the
scale (and sign) of the shifts remain stable under such
variations.

V. DISCUSSION

Radiatively improved gluon actions are used in lattice
simulations to give greater control over discretization ef-
fects and to reduce the uncertainty in continuum-
extrapolated quantities. A typical example is the use of
the Lüscher-Weisz action in improved staggered simula-
tions by the MILC and UKQCD Collaborations.
We note that current unquenched simulations employing

lattice quark formulations other than improved staggered,
such as domain wall or improved Wilson clover, generally
do not use a radiatively improved action for the gluons;
hence a calculation of the effects of fermion loops on the
gluonic action is currently neither necessary nor useful for
those simulations, but could readily be performed if and
when simulations using such quark actions together with
the Lüscher-Weisz action will be undertaken.
Simulations employing staggered quarks rely on the

validity of the ‘‘fourth root trick,’’ which has not yet
been rigorously established. The purpose of this paper is

TABLE I. MILC simulation parameters and shifts in scale-setting parameters induced by omission of fermionic radiative corrections
to the gluonic action. Smoothed r̂1 values are from Refs. [35,36]. r̂0 values are then inferred from the ratios r̂0=r̂1 given in Ref. [35].
We have estimated u0 for the very coarse ensemble. Lattice spacings are quoted as approximate guides; precise values may be inferred
from setting r1 ¼ 0:317 fm.

Label a=fm (approx) L3 � T Sea quark masses ml=ms r̂1 r̂0 u0 �r̂1=r̂1 (in %) �r̂0=r̂0 (in %)

Very coarse 0.18 163 � 48 0:082=0:082 1.805 (10) 2.622 (28) 0.8585 �1:11 �0:40
Coarse 0.12 203 � 64 0:02=0:05 2.650 (8) 3.828 (15) 0.8688 �0:63 �0:11

0:01=0:05 2.610 (12) 3.774 (20) 0.8677 �0:65 �0:11
243 � 64 0:005=0:05 2.632 (13) 3.834 (25) 0.8678 �0:64 �0:10

Fine 0.09 283 � 96 0:0124=0:031 3.711 (13) 5.398 (28) 0.8788 0.01 0.00

0:0062=0:031 3.684 (12) 5.384 (27) 0.8782 0.01 0.00
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not to engage in the debate about the validity of this
procedure, but merely point out that simulations using
improved staggered quarks have produced results in ex-
cellent agreement with experiment so far. While we cannot
completely discard the possibility that the observed scaling
violation in �B might be an indication of some more
fundamental problem, we believe that our explanation for
this scaling violation is more likely in the light of existing
evidence. In particular, we are able to replicate both the
sign and the rough magnitude of the observed effect by a
perturbative calculation.

The shift in the radiative corrections due to the HISQ
fermions in Eqs. (33) and (36) is surprisingly large, even
compared to the coefficients for asqtad fermions [6]. At
first sight, this may seem like a surprise, since HISQ is
supposed to be the more highly improved action. However,
HISQ is designed to suppress taste-changing interactions
coming from low momentum quark/high momentum gluon
couplings, but the gluonic improvement coefficients come
from high momentum quark/low momentum gluon cou-
plings, for whose suppression the HISQ action is not tuned.

One consequence is that if the coefficient c0 is subsumed
into the leading factor of �0, we expect to see large Nf

dependent shifts in the value of �0 at fixed g
2, and we also

give results for an alternate scheme where only the tree
level part of c0 is included in the overall gauge coupling.

The radiative corrections in the Lüscher-Weisz action
used by MILC in the asqtad simulations, however, omit the
contribution from dynamical sea quarks. This contribution
has recently been calculated at one-loop for Nf (massless)

flavors of asqtad improved staggered fermions. The results
are dramatic, leading to sign reversals in some of the
radiative coefficients.

It is therefore conceivable that the omission of the
OðNf�sa

2Þ corrections leads to increased scaling viola-

tions in results from dynamical simulations when com-
pared to quenched data.

To properly establish whether this is the case would
require a new set of dynamical Monte Carlo simulations,
which is well beyond the scope of this study. An alternative
is to attempt a reweighting of the existing ensembles using
factors e��S based on the OðNf�sa

2Þ counterterms. Such

calculations notoriously suffer from a very poor overlap
between the importance samplings of the original and
reweighted ensembles for even minor changes in the ac-
tion. This leads to very large statistical errors, which will
obscure any sought-for effect.

We have therefore used instead one-loop lattice pertur-
bation theory to estimate the effect of the OðNf�sa

2Þ
corrections on the static potential and the shifts in the
scale-setting parameters r̂1 and r̂0 arising from the omis-

sion of the fermionic radiative corrections for typical val-
ues of the simulations with 2þ 1 dynamical asqtad
flavours.
On fine (a ’ 0:09 fm) lattices, the shifts in r̂1 and r̂0 are

negligible (less than 0.1%) and will be at least as small on
superfine lattices with a ’ 0:06 fm. On coarse lattices (a ’
0:12 fm), omission of the corrections leads to r̂1 being
0.6% too large, with r̂0 unaffected. On very coarse lattices
(a ’ 0:18 fm), r̂1 is 1.1% too large and r̂0 0.4% too large.
Overall, then, the omission of theOðNf�sa

2Þ leads to an
underestimate of the lattice spacing on coarser lattices as
defined using r̂1. While numerically small, this effect is
comparable to the statistical errors on a number of quan-
tities and therefore would lead to a measurable increase in
the statistical uncertainty of continuum-extrapolated lattice
QCD predictions.
Higher loop and nonperturbative effects will almost

certainly change the exact value of the shift in r̂1, but are
unlikely to alter our main conclusion: that the effect is
measurable.
Putting aside the static potential, an alternative approach

to fixing the lattice spacing is to use the 2S� 1S mass
splitting of � states. We have seen that the correction
�VðrÞ is negative, so including the OðNf�sa

2Þ radiative
corrections would decrease slightly both (lattice) �
masses. Because �VðrÞ is short ranged, the effect on the
1S state will be larger than on the 2S state since the 1S
wave function is larger at small r. The lattice mass splitting
and thus the derived value of a will increase, and thus �B

will get slightly smaller in such physical units on coarse
lattices. To reliably deduce this fact from the � mass gap,
however, we need to include the effect of the contact term,
Eq. (3), which we do not yet know.
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