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We study various properties of a one-parameter mass term for the Skyrme model, originating from the

works of Kopeliovich, Piette and Zakrzewski [V. B. Kopeliovich, B. Piette, and W. J. Zakrzewski, Phys.

Rev. D 73, 014006 (2006).], through the use of axially symmetric solutions obtained numerically by

simulated-annealing. These solutions allow us to observe asymptotic behaviors of the B ¼ 2 binding

energies that differ to those previously obtained [B. Piette and W. J. Zakrzewski, Phys. Rev. D 77, 074009

(2008).]. We also decipher the characteristics of three distinct vibrational modes that appear as eigenstates

of the vibrational Hamiltonian. This analysis further examine the assertion that the one-parameter mass

term offers a better account of baryonic matter than the traditional mass term.

DOI: 10.1103/PhysRevD.79.074003 PACS numbers: 12.39.Dc, 11.10.Lm

I. INTRODUCTION

Being one of the primary candidates for an effective
low-energy theory of QCD, the Skyrme model [1–4] has
relished from a large amount of study after which it was
realized that it possessed the same symmetry properties as
QCD in the limit of large Nc [5]. The topological solitons
that appear as solutions to the model’s equations of motion
are identified as mathematical representations of nuclear
matter. These solitons, or Skyrmions, are then quantized to
obtain physical properties of nuclei. Studies have shown
that for the nucleon B ¼ 1, these calculated properties are
within a 30% margin of error from experimental data [6].

However, when one raises the baryonic number to any
B � 2, the solutions that have been obtained thus far do not
correctly describe the presumed geometric properties of
nuclear matter. Experimental data indicates that the nucle-
ons seem to preserve their individuality within nuclei. For
example, the B ¼ 2 solutions have the geometrical shape
of a toroid, whereas the deuteron, the only stable nuclei
with B ¼ 2, has the presumed shape of two deformed
nucleons lightly bound together. Another problem is that
the binding energy of the toroidal Skyrmion is much too
high, roughly �80 MeV (Recall that the deuteron has a
binding energy of 2.224 MeV), which is also a likely
contributing factor to the odd toroidal shape it possesses.
Even worst, both the geometrical shape and binding energy
problems persist and are amplified as we increase the value
of B. For these reasons, the solitonic field configurations
within the standard Skyrme model can be viewed as too
malleable in the sense that Skyrmions deform noticeably as
they form a bound state. For the purpose of comparison
here we shall use vibrational energies as a quantifiable
measure of rigidity (as opposed to malleability) of the field
and analyze the ratio !i

Etot , where i ¼ br, 2, 3 labels the

vibrational energy of the breathing mode and the two other
eigenmodes, and where Etot is the total energy of the

soliton (more on this in Sec. III). Reaching for higher
rigidity solutions can also be understood intuitively by
the fact that every nucleon within a nuclei of B ¼ 2 or
higher should presumably be deformed while maintaining
its individuality within the nucleus, and not meld with
others to form complex geometrical objects. A pragmatic
goal towards improving the model would be to find exten-
sions to the current model that point toward a solution to
these issues. Therefore, in this optic, one may consider
various generalizations of the original Skyrme Lagrangian
to find which types lowers the binding energies. In this
paper, we limit our analysis to a one-parameter general-
ization to the standard mass term of the Skyrme model.
In the following, we begin by reviewing the standard

Skyrme model as well as reveal the studied generalized
mass term that introduces a dimensionless parameter
labeled D. Initially considered and analyzed by Piette
and Zakrewski [7], this new mass term is studied further
in the context of rigidity here using the simulated-
annealing numerical algorithm to accurately and effec-
tively minimize the pion field configuration. These exact
solutions allow us to deepen our understanding of the
dependency between binding energies and the parameter
D, and will also enable us to conclude that solitonic
solutions obtained through the rational map ansatz [7] are
not good indicators of this dependence (Sec. IV). We
consider solutions for B ¼ 1 and B ¼ 2 with axially sym-
metric configurations. For B ¼ 1, axial symmetry is an
exact symmetry both for the static solution and the rota-
tionally deformed solution. Both calculations will be per-
formed providing a quantitative insight on such
deformations otherwise shown to be significant [8–10].
For B ¼ 2, the situation is somewhat different.
Rotational deformation breaks axial symmetry and would
in principle require a full 3D computation. So only the
static energy will be minimized for the B ¼ 2 case even
though axially symmetric solutions were found to be a
good approximation in [10]. This was done in order to
make the numerical efforts more tractable and time effi-*lmarleau@phy.ulaval.ca
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cient. Furthermore, the same solutions are used to compute
how the vibrational energies of three eigenstates behave as
we increase D. The methods used for this analysis is
outlined in Sec. III, and the results indicate quantitatively
that the mass term increases the rigidity of Skyrmions with
B ¼ 1 while its effect on the binding energy depend on
(iso-)spin.

II. THE SKYRME MODELWITH AN EXTENDED
MASS TERM

The model initially proposed by Skyrme comprised of
the two term Lagrangian

L ¼
Z

d3x

�
�F2

�

16
TrðL�L

�Þ þ 1

32e2
Trð½L�; L��2Þ

�
;

(1)

where L� ¼ Uy@�U are the chiral currents associated to

the three-component pion fields � such that the SUð2Þ
matrix U is defined by

U ¼ �þ i� � �: (2)

F� and e are, respectively, the pion decay constant and the
dimensionless Skyrme parameter. The �’s found in (2) are
simply the Pauli matrices, and the field � is an additional
scalar field that must satisfy the constraint �2 þ � � � ¼ 1
in order to avoid adding unphysical degrees of freedom and
to enable the possibility of having solitonic solutions.

Each solution to (1) with boundary condition

Uðr; tÞ ! 1 as jrj ! 1 (3)

fall into distinct topological sectors that are distinguished
by their given topological charge, or baryon number. For
B ¼ 1, spherical symmetry can be utilized to extract a
convincing picture of a nucleon through the use of the
ansatz

U ¼ ei�ix̂iFðrÞ;

where one only has to solve an ordinary differential equa-
tion involving the chiral angle FðrÞ that (1) brings about
[6].

However, the physics that (1) describes lacks in many
respects. First, it is possible to add as many higher order
terms of the form Trð½L;L�nÞ as one wishes, to account for
all possible interactions, and it is simply unknown how the
sum of such terms would affect the resulting solutions [11]
although it is generally assumed that higher order terms in
derivatives could be neglected in the low-energy limit. One
may also wonder if the two terms of (1), among all the
possible terms, are really the two optimal ones for portray-
ing the physics of nuclear matter. Second, all solutions for
B � 2 obtained thus far do not correctly characterize the
presumed geometric properties of nuclei that are found in
nature. Third, it does not take into account the mass the of
pions, but fortunately, this problem is easier to resolve. One

can simply add a chiral symmetry breaking term propor-
tional to the pion mass squared, which has first been
successfully introduced by Adkins and Nappi [12], in the
form

m2
�F

2
�

8
Trð1�UÞ; (4)

wherem� is the pion mass (We assume that the three pions
�0,�þ, and�� are of equal masses). This term has had the
added benefit of eliminating shell-like configurations and
favoring energy densities that are higher at their centers,
which is more appealing since it is known that nucleons
have roughly even matter densities within their shell radii.
Hence, the Lagrangian (1) together with the mass term (4)
is what we consider to be the standard Skyrme model. Of
course, as we have mentioned, many additions and mod-
ifications can be made, particularly to the mass term (4).
If we only constrain ourselves to mass terms that obey

the boundary condition (3), Kopeliovich, Piette and
Zakrzewski [13] have shown that a generalized mass
term can have the form

m2
�F

2
�

8K
Tr

�
1�

Z þ1

�1
gðpÞUpdp

�
; (5)

where the function gðpÞ and constant K must obey

Z 1

1
gðpÞdp ¼ 1 and K ¼

Z 1

1
gðpÞp2dp: (6)

However, of the many mass terms that are evidently pos-
sible, we will study a particular one-parameter family that
has the additional property of disfavoring shell-like con-
figurations as did the standard mass term (4). One then
hope that this new term might also improve the overall
properties of Skyrmions, such as providing a better account
of their binding energies. This one-parameter mass term is

m2
�F

2
�

8ð1� 5DÞ Trð1�U�DðU2 �U3ÞÞ; (7)

is based on the function

gðpÞ ¼ �ðp� 1Þ þDð�ðp� 2Þ � �ðp� 3ÞÞ
where K ¼ 1� 5D and the parameter D can span the
range [0, 0.2[. At D ¼ 0:2, we note that the mass term is
infinite.
Following their original proposal of the general term (5),

Piette and Zakrzewski [7] studied (7) with the use of
rational map (RM) solutions. In Sec. IV, we will show
the results of a similar study that use exact numerical
solutions instead of approximate RM map solutions. This
will demonstrate the limitations of the rational map ansatz
when it comes to give a precise measurement of the bind-
ing energies as a function of D, especially as it approaches
the critical value of 0.2.
Before we discuss binding energies, we will describe in

the following section how the study of vibrational modes, a
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worthy study in its own right, can lead us to quantitatively
understand how the B ¼ 1 solutions gradually get more
rigid as D increases. The methods used in this paper for
calculating the vibrational energies were previously out-
lined by Hadjuk and Schwesinger [14], which can be
contrasted with the techniques of Barnes et al. [15] and
of Lin and Piette [16] where the latter performed their
vibrational calculations using rational map solutions.

III. VIBRATIONAL MODES AND THEIR
ENERGIES

Originally put forward by Hajduk and Schwesinger [14],
the method for obtaining the vibrational modes and their
energies begins by performing the global scale transforma-
tion

�ðxÞ ! �ð�kxkÞ and �aðxÞ ! �að�kxkÞ; (8)

where the �k are scaling parameters, and where we have
assumed that the scaling is uniform with respect to the
Cartesian coordinates x, y and z. The advantage of such a
scaling lies in its simplicity both in its mathematical and
numerical treatment. Its disadvantage is that it is certainly
not as general as would be an arbitrary local scale trans-
formation. However, it allows to compute vibrational
modes that probe the global rigidity of Skyrmions, giving
us a clearer indication whether or not (and how) the field
configurations are getting more rigid with respect to the
parameter D. Substituting (8) into (1) together with the
new mass term (7) yields a Lagrangian of the form

L ¼ 1

2
Mijð�Þ

_�i
_�j

�i�j

� Vð�Þ; (9)

where the matricesMijð�Þ and Vð�Þ are obtained by direct
inspection after all substitutions are made. Since we are
only concerned with small amplitude oscillations, we per-
form an expansion around the minimum of V by taking

�i ¼ �0
i e

�i ¼ �0
i

�
1þ �i þ 1

2
�2
i þ . . .

�
(10)

_� i ¼ �0
i _�i; (11)

which results in the expansion of Mij and V as

Mijð�Þ ¼ Mijj�0
1
;�0

2
;�0

3
þ ð�k@kMijÞj�0

k
þ . . .

� M0
ij þ ð�k@kMijÞj�0

k
(12)

Vð�Þ ¼ Vj�0
1
;�0

2
;�0

3
þ 1

2
�i�jð@i@jVÞj�0

1
;�0

2
;�0

3
þ . . .

� V0 þ 1

2
�i�jvij: (13)

Keeping only terms up to order Oð�2Þ gives us the
Lagrangian

L ¼ 1

2
M0

ijð�Þ _�i _�j � 1

2
�i�jvij: (14)

In order to compute the vibrational Hamiltonian we must
now find a coordinate transformation that satisfies

ATM0A ¼ 1; (15)

where � ¼ A	. When such a transformation is found, it
gives

L ¼ 1

2
_	i
_	j � 1

2
ðATvAÞij	i	j; (16)

which can simply be turned into the Hamiltonian

Hvib ¼ 1

2

X
i

@2

@	2
i

þ 1

2
ðATvAÞij	i	j: (17)

We now need to diagonalize the matrix ðATvAÞij in order to
obtain the vibrational eigenstates and eigenvalues. Thus,
we need to solve the eigenvalue equation

ðBTATvABÞij ¼ !2
i �ij; (18)

where the matrix B must satisfy BTB ¼ 1. The energies
associated to the eigenstates B1j, B2j, and B3j are then

Evib
i ¼

�
ni þ 1

2

�
h!i: (19)

However, in our study, we set the zero-point energy to zero,
in other words we set

Evib
i ¼ hni!i (20)

because the zero-point energy of vibrational modes is ill-
defined. This is procedurally how we obtained our eigen-
states (eigen-modes) and eigenvalues (eigen-energies)
from our numerical solutions. But, before we discuss the
results of our vibrational analysis of B ¼ 1 solitons, we
must briefly describe what exactly are the numerical solu-
tions we are working with. For simplicity, we shall from
hereon identify vibrational frequencies !i as vibrational
energies although they are not exactly the same (see
Eq. (19)).
Beginning from the Lagrangian (1), we added the mass

term (7), yielding the static energy

EB
s ¼

Z
d3x

�
�F2

�

16
TrðLiL

iÞ þ 1

32e2
Trð½Li; Lj�2Þ

�

þ m2
�F

2
�

8ð1� 5DÞ Trð1�U�DðU2 �U3ÞÞ; (21)

where i and j run over spatial components only and B is the
baryonic number. The minimal energy Skyrmion forB ¼ 1
and B ¼ 2 turns out to have spherical and axial symmetry,
respectively. Since we are only interested by these values
of B, the general solution will be cast in the form of the
axial ansatz
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� ¼ c 3 �1 ¼ c 1 cosn


�2 ¼ c 1 sinn
 �3 ¼ c 2

(22)

introduced in [17] where c ð�; zÞ ¼ ðc 1; c 2; c 3Þ is a
three-component unit vector that is independent of 
.
The boundary conditions at infinity implies that c !
ð0; 0; 1Þ as �2 þ z2 ! 1. Moreover, we must impose that
c 1 ¼ 0 and @�c 2 ¼ @�c 3 ¼ 0 at � ¼ 0.

With the axial ansatz (22), we can also set the scaling

length and energy in units of 2
ffiffiffi
2

p
=eF� and F�=2

ffiffiffi
2

p
respectively,1 giving expressions for the static energy and
the baryon number that read

EB
s ¼ �

Z
d3xLS

¼ 2�

�
F�

2
ffiffiffi
2

p
e

�Z
dzd��

�
ð@�c � @�c þ @zc � @zc Þ

�
�
1þ n2

c 2
1

2�2

�
þ 1

2
j@zc � @�c j2 þ n2

c 2
1

�2

þ 2�2

ð1� 5DÞ ð1� c 3Þð1þDð1� 2c 3 � 4c 2
3ÞÞ

�

(23)

B ¼ n

�

Z
dzd�c 1j@�c � @zc j (24)

with � ¼ 2
ffiffi
2

p
m�

eF�
.

Also, for all our minimizations, we fixed the constants
F�, e, and m� to

F� ¼ 129 MeV;

e ¼ 5:44 MeV�1; and m� ¼ 138 MeV:

The values of F� and e were set according to Ref. [13] for
comparative purposes. At such values, the Skyrme model
reproduces the mass of the nucleon and of the delta when
one discounts the mass term [6]. Regarding the mass term,
m� is set to its experimental value and the parameter D
varies in order to probe how the mass term in (21) might
affect the Skyrmion’s properties. Of course, when the mass
term is switched on, the prediction for the nucleon and
delta masses will deviate from their experimental values.
This could be corrected with an appropriate choice of F�

and e, however here we shall retain F� ¼ 129 MeV and
e ¼ 5:44 MeV�1, since we are more interested in certain
ratios of energies than in the actual values of energies, and
comparisons with earlier works are easier.

Physical states such as the nucleon and the deuteron
require an additional contribution to the energy, the rota-
tional and isorotational energy due to spin and isospin of
these states. For the nucleon, this is done by fixing the

quantum numbers of spin and isospin to I ¼ J ¼ 1
2 , and

assuming axial symmetry, it leads to the total isorotational
and rotational energy of the form

E1
rot ¼ 1

4

�ð1� W11

U11
Þ2

V11 � W2
11

U11

þ 1

U11

þ 1

2U33

�
: (25)

Similarly for the deuteron one gets

E2
rot ¼ 1

V11

: (26)

Here U11, U33, V11, and W11 are moments of inertia which
follows the definition in the works of Houghton and Magee
[9] and Fortier and Marleau [10]. Accordingly the compo-
nents of these inertia tensors are

U11 ¼ 2�

�
2

ffiffiffi
2

p
e3F�

�Z
dzd��

�
c 2

1 þ 2c 2
2

þ 1

2

��
@�c � @�c þ @zc � @zc þ n2

c 2
1

�2

�
c 2

2

(27)

þ ð@�c 3Þ2 þ ð@zc 3Þ2 þ n2
c 4

1

�2

��
; (28)

U33 ¼ 2�

�
2

ffiffiffi
2

p
e3F�

�Z
dzd��c 2

1ð@�c � @�c

þ @zc � @zc þ 2Þ; (29)

V11 ¼ 2�

�
2

ffiffiffi
2

p
e3F�

�Z
dzd��

�
j�@zc � z@�c j2

�
�
1þ n2

c 2
1

2�2

�
þ z2n2

c 2
1

�2

þ 1

2
ð�2 þ z2Þj@�c � @zc j2

�
; (30)

W11 ¼ 2�

�
2

ffiffiffi
2

p
e3F�

�Z
dzd��f½c 1ð�@zc 2 � z@�c 2Þ

� c 2ð�@zc 1 � z@�c 1Þ�

�
�
1þ 1

2

�
ð@zc 3Þ2 þ ð@�c 3Þ2 þ c 2

1

�2

��
(31)

þ c 3

2
ðz@zc 3 þ �@�c 3Þ½@�c 2@zc 1 � @�c 1@zc 2�

þ zc 1c 2

2�
ð2þ @�c � @�c þ @zc � @zc Þ

�
: (32)

Finally, the nucleon and deuteron mass are the sum of the
appropriate static and rotational energies Es

B þ Erot
B with

B ¼ 1, 2, respectively.

1We have used 2
ffiffiffi
2

p
=eF� and F�=2

ffiffiffi
2

p
as units of length and

energy, respectively.
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Having fixed the model’s parameters, we then used the
algorithms of simulated-annealing to accomplish the mini-
mization of (21) for values of D ranging from 0 to 0.1999.
As examples of one of our minimizations, the energy
density of the B ¼ 1, 2 Skyrmions for values of the pa-
rameter D ¼ 0 and D ¼ 0:195 are shown in Fig. 1. For
each minimization, we used a 250 by 500 point grid,
representing the standard cylindrical coordinates z and �
respectively, which provides sufficient detail for analyzing
rotational and vibrational modes. Axial symmetry is there-
fore implied as it is known to be a symmetry of the B ¼ 1
hedgehog and B ¼ 2 toroidal static solutions. These con-
figurations are confirmed by the results in Fig. 1 along with
the observations that our choice of mass term (7) leads to
non shell-like energy densities. As one might have ex-
pected from larger mass terms, we also see the size of
the Skyrmion decreases as D increases. Once a solution is
reached for B ¼ 1, we compute the matricesM0

ij and vij in

Eq. (14) numerically. We proceed with the appropriate
scaling transformation, perform the diagonalization, and
finally calculate the eigen-energies of each vibrational
mode. By the form of our diagonalization (18), it is clear
that we would obtain strictly three eigenvectors depicting
three types of vibration for each solution. Strikingly, but
comprehensibly, no matter the value of D, the three types
of vibration obtained were always of the same form.

The first type observed may be identified to the well-
known breathing mode described by the eigenvector

1ffiffiffi
3

p ð1; 1; 1Þ (33)

in Cartesian coordinates. The energy associated to this

mode, !br, along with the total gives a clear picture of
how the rigidity of the soliton changes as a function of D.
Put clearly, the lower the ratio

Ri ¼ !i

Es
1

; i ¼ br; 2; 3; (34)

the more the soliton is expected to be deformable, or
malleable. In essence, the ratio (34) indicates whether or
not the mass term (7) renders a more rigid Skyrmion,
which would be desirable for the reasons mentioned ear-
lier. The second type, which we call !2, can be understood
as a vibration along x together with a simultaneous and
opposite vibration along y, but not z. Its eigenvector has the
form

1ffiffiffi
2

p ð1;�1; 0Þ: (35)

The third vibrational type is characterized by a positive
vibration along x and y, together with a simultaneous
opposite vibration along z. We call this last type !3 with
eigenvector

1ffiffiffi
6

p ð1; 1;�2Þ: (36)

These eigenvectors (33), (35), and (36), however, are ideal-
izations of what we actually numerically obtain, even
though our numerical approach does come close to this.
For example, the three eigenvectors obtained for D ¼ 0:8
were (neglecting normalization)

4:064
4:064
4:093

0
@

1
A; 4:210

�4:210
0

0
@

1
A; and

2:446
2:446
�4:869

0
@

1
A:

Throughout all our results, an accuracy of this type was the
norm.
Table I gives the energies of each vibrational mode,

together with the static and rotational energies of the B ¼
1 soliton. Here the solution was found by minimizing the
static energy Es. We first note that the energies of the !2

and!3 modes are quite similar. Remembering that the only
difference between these is a vibration along z, we see that
this vibration along z diminishes the total energy of the
vibration ever so slightly. Furthermore, the energy of the
breathing mode rises much faster as a function of D than
the other two vibrational modes. Lastly, we notice that the
energy of the mass term, E�, increases significantly with
D. Yet, even with D ¼ 0:1999, the mass term represents
less than 23% of the total static energy, which is somewhat
surprising if we consider the factor ð1� 5DÞ�1 in front of
the mass term. Note that forD ¼ 0:1999, we still observe a
typical hedgehog configuration similar to that of Fig. 1
although we are at the frontier (D ¼ 0:2) of a breakdown in
our numerical procedure. Indeed, the relatively large de-
viation of !2 with respect to !3 for D ¼ 0:1999 could be

FIG. 1. Energy density profiles for B ¼ 1 and B ¼ 2 and for
values of parameter D ¼ 0 and D ¼ 0:195 (top and bottom line,
respectively) on the �� z plane. Here � and z span the region
from �1 to 1 in units of 2

ffiffiffi
2

p
=eF�.
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an early sign of such a breakdown and caution is advised
when interpreting this last set of data.

A second set of computations were performed in parallel
to the ones given above by including isorotational energy
in the energy minimization process and therefore allowing
for axial deformation of the nucleon. Such effects which
have been shown to be significant [8–10]. Thus, adding the
isorotational energy (25) to the static energy (21) and
minimizing the nucleon mass instead of the static energy

EN ¼ Es
1 þ Erot

1 (37)

will lead to an axially deformed solution and a new set of
data shown in Table II. We see again that the data for D ¼
0:1999 exhibit a rather peculiar behavior especially regard-
ing the value !br ¼ 71:98. Although there is no obvious
signal of a numerical breakdown in the energy and baryon

number density configuration, in our opinion the data
cannot be trusted. It should be noted that the numerical
breakdown is much more drastic for higher values of D
where it is generally characterized by scattered densities
over the entire grid. The D ¼ 0:1999 data set is nonethe-
less listed to illustrate the signature of a possible numerical
breakdown.
Notice how little the rotational energy changes with D

and how similarly the vibrational energies behave as a
function of D with those obtained without rotational term
in the minimization. However, there are significant differ-
ences between the two sets of data which are best exhibited
in a plot of the relevant ratios for both types of minimiza-
tion. This is shown in Fig. 2.
The differences between the ratios !i

Es
1
of the minimiza-

tions with and without rotational energy are now clear. For

TABLE I. B ¼ 1 vibrational energies versus D without rotational minimization (MeV).

D EN E� Erot
1 Es

1 !br !2 !3

0 1011.53 26.67 112.12 899.41 290.08 648.42 646.63

0.02 1014.34 28.14 113.05 901.29 293.47 651.88 649.89

0.04 1017.94 29.85 114.35 903.59 297.78 656.55 654.66

0.06 1021.31 32.51 114.84 906.47 302.15 659.20 657.03

0.08 1026.87 35.38 116.64 910.24 308.67 665.76 663.10

0.1 1034.12 39.31 118.78 915.34 317.59 674.17 671.96

0.12 1044.77 44.65 122.12 922.65 330.16 686.46 684.91

0.14 1061.48 52.51 127.41 934.07 349.54 706.13 704.38

0.16 1091.90 65.36 137.33 954.57 384.15 742.28 740.63

0.18 1164.35 93.18 159.96 1004.39 463.69 824.65 823.08

0.19 1268.19 128.15 191.03 1077.16 573.29 937.29 935.27

0.195 1408.88 170.36 231.13 1177.75 716.27 1082.78 1078.47

0.1975 1591.37 220.0 280.32 1311.05 897.55 1265.10 1261.77

0.199 1907.78 298.78 361.49 1546.30 1194.68 1567.33 1546.77

0.1999 3193.16 578.49 657.96 2535.21 2311.62 2726.74 2660.59

TABLE II. B ¼ 1 vibrational energies with rotational minimization (MeV).

D EN E� Erot
1 Es

1 !br !2 !3

0 990.23 51.52 73.82 916.41 269.61 541.87 540.31

0.02 992.81 53.74 74.19 918.61 274.01 545.53 543.54

0.04 995.98 56.42 74.65 921.33 278.81 549.15 547.23

0.06 999.83 59.94 74.87 924.96 287.45 555.88 553.40

0.08 1004.83 64.24 75.24 929.60 297.15 563.21 560.02

0.1 1011.55 69.77 75.73 935.83 309.24 572.19 568.21

0.12 1020.92 77.35 76.04 944.88 329.01 586.01 579.82

0.14 1035.27 88.27 76.28 958.99 356.36 603.49 595.97

0.16 1060.49 105.10 77.66 982.82 395.82 629.89 616.99

0.18 1118.28 139.27 77.67 1040.61 493.25 680.96 664.99

0.19 1199.51 178.84 79.68 1119.84 603.37 736.22 718.97

0.195 1309.04 224.52 83.31 1225.72 729.46 803.61 783.27

0.1975 1452.83 277.16 89.70 1363.13 808.13 904.12 895.73

0.199 1707.07 360.53 103.82 1603.25 1003.54 1135.50 1043.64

0.1999 2309.34 578.49 151.63 2157.71 71.98 2102.43 1620.67
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the breathing mode, the curves overlap quite well.
However, for the other two types of vibration, !2 and
!3, the added rotational energy to the Lagrangian lowers
significantly their energies. Perhaps because Erot

1 renders a

slightly less oblate Skyrmion, the vibrational energies
along � diminish accordingly. The general tendencies of
all curves however indicate that the mass term does add a
certain ‘‘rigidity’’ to the field configurations as D in-
creases. What remains to be seen is if there is a correlation
between this defined rigidity and the binding energies of
B ¼ 2 solutions. This is done in the next section.

But before analyzing binding energies, we must
mention here the complementary results of Lin and Piette
[16]. The authors consider the vibrational modes of the
Skyrme model with the mass term falling into the class of
Eqs. (5) and (6) namely of the form TrðUp � 1Þ which
differs from (7). They follow the time dependent approach
introduced by Barnes et al. [15] to identify the vibrational
modes which assumes local instead of global scale trans-
formations that we chose to perform our calculation. Also
they use of the rational map ansatz which seems to prevent
a precise determination of the vibrational energies. For
anyone of these reasons, their results can not be compared
directly with ours. Nonetheless they observe a clear in-
crease in the vibrational energies with respect to the mass
term which is in qualitative accord with our results.

IV. BINDING ENERGIES

The results for the static energies of the B ¼ 2 solitons
are presented in Table III together with their corresponding
binding energies computed from the total static energies of
the B ¼ 1 solitons of Tables I. Also shown are the results
for the physical states of deuteron ED versus that of the

nucleon EN . All results in Table III were obtained by
minimizing static energies alone, i.e. minimization without
rotational energy, to avoid nonaxial solutions. We recall
here that we have fixed the F�, e andm� parameters of the
Skyrme model leading to results for ED and EN that are
much higher than their experimental values. While an
appropriate fit of the parameters could fix this problem it
is not necessary in the context of this work since we are
more interested in the relative weight of the vibrational and
binding energies than in their actual values. With the data
provided by Table III, we define R, the ratio of the energy
of the B ¼ 2 soliton with respect to that of two isolated
B ¼ 1 solitons.R is plotted in Fig. 3 for three sets of points,

FIG. 2. Ratios of vibrational with respect to the static energies Ri ¼ !i

Es
1
as a function of the mass parameter D where in a) i labels the

vibrational mode i ¼ br and in b) i ¼ 2. Triangles (squares) correspond to the solutions without (with) rotational energy in the energy

minimization. The vertical solid line in a) is the experimental value of ratio
ERoeper

EN
, where ERoeper is the energy of the Roeper resonance,

sometimes identified with the breathing mode of the proton, but shown here for comparison purposes only.

TABLE III. B ¼ 2 energies without rotational minimization
(MeV).

D Es
2 2Es

1 � Es
2 ED 2EN � ED

0 1720.55 78.27 1813.51 209.55

0.02 1724.91 77.66 1818.19 210.49

0.04 1730.18 77.01 1824.65 211.23

0.06 1736.78 76.15 1832.75 209.86

0.08 1745.33 75.14 1843.18 210.57

0.1 1756.80 73.88 1857.23 211.00

0.12 1773.14 72.15 1876.94 212.60

0.14 1798.38 69.75 1907.32 215.63

0.16 1843.13 66.02 1961.01 222.79

0.18 1949.56 59.22 2087.19 241.51

0.19 2101.77 52.56 2265.44 270.94

0.195 2308.81 46.69 2505.45 312.32

0.1975 2580.04 42.06 2816.70 366.04

0.199 3054.49 38.10 3355.59 459.97

0.1999 4794.96 275.46 4799.64 1586.68

SKYRMION VIBRATIONAL ENERGIES TOGETHER WITH A . . . PHYSICAL REVIEW D 79, 074003 (2009)

074003-7



R ¼ Es
2

2Es
1

(38)

corresponding to iso-spinless solitons and

R ¼ ED

2EN

(39)

for comparison of the deuteron versus two nucleons. These
quantities indicates how the relative binding energies
change with increasing D. The dashed line represents the
experimentally measured mass of the deuteron over twice
the mass of an individual nucleon (R ¼ 0:9998).

Clearly, as D approaches its critical value of 0.2, we
observe that the binding energies for I ¼ J ¼ 0 solitons
(triangles in Fig. 3) diminish considerably without ever
crossing the dashed line or the value R ¼ 1 which corre-
sponds to the limit of instability of the B ¼ 2 solution. The
sharp increase in R suggest that it may be possible to adjust
the value of D such that the relative importance of the
binding energy would be arbitrarily small—of course, the
solution would still be of toroidal form which is presum-
ably not that of the deuteron. Some cautionary comments
are in order here. First the last point for this set of data
shows a sharp increase of the binding energy at D ¼
0:1999. It is at the boundary of the region of breakdown
of our numerical technique and attempts to obtain stable
solutions as we push D closer to 0.2 were not successful.

Also the limit D ! 0:2 is ill-defined and approaching this
limit is physically questionable as the contributions of the
mass term which breaks the SUð2Þ symmetry gets rela-
tively large.
Surprisingly, the situation is more obscure for the

deuteron-nucleon data. A first set of data, based on static
energy minimization (squares in Fig. 3), shows that the
relative importance of the binding energy is quite insensi-
tive to D up to 0.17 but increases (i.e. R decreases) dra-
matically as D approaches the critical value of 0.2
contrarily to what is observed for the spinless Skyrmion.
This is entirely due to the distinct behavior of the B ¼ 2
and B ¼ 1 rotational energies. Of course rotational defor-
mations may affect this behavior. To provide somemeasure
of that effect we present a third set of points on Fig. 3
(circles) where R is computed with the B ¼ 2 static and
B ¼ 1 rotationally deformed solutions. Note that an exact
full 3D B ¼ 2 rotationally deformed computation would
lower R, and so this third set of data represent the absolute
maximum of R for the deuteron-nucleon system. Again the
mass term (7) that we analyzed always lead to bound states
(R< 1) which is an interesting result by itself. However
the observation of this opposite behavior with respect to
the parameter D for these last two sets of data emphasizes
the importance of the rotational deformations. It may well
be that a full 3D computation of B ¼ 2 deformed solution
leads to a behavior closer to that of the second set of data
(squares) but our results does not allow to infer on the exact
nature of the bound state for the deuteron. Perhaps a full 3D
computation allowing for nonaxial deformation of the
deuteron would conclude otherwise. It is also clear that
the bound states of spinless Skyrmions and deuteron-
nucleon system may show completely different behavior.
Additionally, these results put into question the conclu-

sions obtained by Piette and Zakrzewski [7]. Their results
show that for a D larger than approximately 0.12, the
toroidal configuration is an unstable one because its total
energy is larger than twice that of a single nucleon. More

precisely, their results indicate that the ratio
Es
2

2Es
1
crosses 1 at

D � 0:12 and continues to increase afterwards, in contra-
diction with our results (Fig. 3). This discrepancy suggests
that the use of the rational map ansatz does not adequately
minimize the energies of the B ¼ 2 configurations, and
that we cannot have too much confidence in its ability to
truly find the minimal solutions of any B � 2. Hence, the
more exact simulated-annealing approach for finding so-
lutions may be the best way to decipher which model types
are more suitable than others. It may also be the only
method for finding out why the B ¼ 2 Skyrmion has a
toroidal shape in the first place. There is also certainly a
link to make between the increasing rigidity (characterized
by !br

Es
1
) and the changing binding energy of the solitons as a

function of D which also depends on the nature of the
solitons, iso-spinless or deuteron-nucleons system. In our
view, both characteristics are needed for a better model,

FIG. 3. Ratios
Es
2

2Es
1
(triangles) and ED

2EN
(squares) as a function of

the mass parameter D. The dashed line at R ¼ 1 corresponds to
the limit of instability of the bound state whereas the experi-
mental value for ED

2EN
¼ 0:99979, i.e. very close to 1.
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and hence adds to the appeal of further dynamical or mass
terms such as (7).

V. CONCLUSION

From the behaviors of the binding energies (Fig. 3) and
the breathing mode energies (Fig. 2(a)), we can assert that
the mass term (7) with a nonzero value of D does not
quantitatively succeed in providing a consistent model of
nuclear matter in the sense that the experimental value for
binding energy of the deuteron was not attainable for the
values of D considered here. It also emphasizes the need
for rotationally deformed B ¼ 2 computations to deter-
mine the exact behavior as R seems to be very sensitive
to rotational deformation near D ¼ 0:2. Meanwhile it may
be premature to conjecture the exact deuteron-nucleon
behavior on the basis of the results for spinless solitons.
Our results have also shown that in contrast to the rational
map solutions of Piette and Zakrzewski, the behavior of the

ratio
Es
2

2Es
1
never crosses 1 and seems only to approach 1 in

the limit ofD ! 0:2. Hence, this indicates not only that the
B ¼ 2 is a bound state for all values ofD considered in this
work, but it also demonstrates the clear limitations of the
rational map ansatz in providing exact quantitative insight
into how the model behaves and works. In conjunction
with the behavior of the binding energies, the ratio of !br

Es
1

shows that as D increases the field configurations are more
resistant to being vibrationally excited, which is indicative

of more rigid solitons and perhaps a relation between
rigidity and larger binding energies for the deuteron.
All calculations relied on fixed values for the parameters

of the Skyrme model (except forD) mostly for comparison
purposes with previous work. These parameters are usually
fitted to reproduce the experimental values of the mass of
the nucleon and delta or other physical quantities. Indeed,
the values of the energies we have obtained were some-
times far from those of experimental data. Therefore, some
of our conclusions may no longer hold for a more physical
choice of Skyrme parameters despite the fact that they
were based on the relative importance of each quantity.
On the other hand, three-dimensional simulated-annealing
programs will be needed to explore baryonic numbers
beyond 2, and to confirm the validity of axially symmetric
solutions for B ¼ 2. Regarding the prospect of obtaining 2-
nucleon shape solitons for B ¼ 2, it would seem that the
mass term in (7) is not sufficient and perhaps we need to
rethink what type of Lagrangian would permit such a
minimal configuration. In any event, it is also possible to
add as many parameters in the mass term (7) with higher
powers ofU as wewish, and this alone may lead us towards
a sounder effective theory of QCD.
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