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We compute the complete imaginary part of the nonrelativistic QCD (NRQCD) Lagrangian at order

1=M4 in the heavy-quark mass expansion, which includes center of mass operators, and at order �2
s in the

matching coefficients. We also compute the imaginary part of the NRQCD Lagrangian at order 1=M6 and

at order �2
s that contributes to the S-wave and P-wave inclusive decay widths of heavy quarkonium into

light hadrons at order v7 in the heavy-quark velocity expansion. If we count �sðMÞ � v2, the calculation

provides the complete next-to-leading order corrections to the P-wave hadronic widths, and in the original

NRQCD power counting, the complete next-to-leading order corrections to the vector S-wave widths, and

part of the next-to-next-to leading order corrections to the pseudoscalar S-wave widths. In the S-wave

case, we confirm previous findings and add new terms in a more conservative power counting. In the P-

wave case, our results are in disagreement with previous ones. Constraints induced by Poincaré invariance

on the NRQCD four-fermion sector are studied for the first time and provide an additional check of the

calculation. Perspectives for phenomenological applications are discussed.

DOI: 10.1103/PhysRevD.79.074002 PACS numbers: 12.39.Hg, 13.25.Gv

I. INTRODUCTION

Nonrelativistic effective field theories (NR EFT) of
QCD [1,2] like nonrelativistic QCD (NRQCD) [3,4] offer
a systematic framework to access heavy-quarkonium prop-
erties and, in particular, inclusive decay widths. Decay
width formulas may be organized in a double expansion
in the strong coupling constant �s, calculated at a large
scale of the order of the heavy-quark mass M, and in the
heavy-quark velocity v. Both expansion parameters are
relatively small. In the bottomonium system, typical refer-
ence values are �sðMbÞ � 0:2, v2

b � 0:1 and in the char-

monium one, �sðMcÞ � 0:35, v2
c � 0:3.

The increasing accuracy of the experimental measure-
ments [1,5–7] calls for a corresponding accuracy in the
theoretical predictions. The inclusive decay widths of J=c ,
c ð2SÞ and �ð1SÞ into light hadrons are presently known
within a few percent uncertainty, while the uncertainties in
the inclusive decay widths of �ð2SÞ and �ð3SÞ are less
than 10% [5]. Theoretical accuracies of about 5% both in
the charmonium and in the bottomonium case require at
least the calculation ofOðv4; �sv

2; �2
sÞ corrections. The S-

wave decay of �c into light hadrons is presently known
within a 15% uncertainty, while the P-wave decays of �cJ,
with J ¼ 0, 1, 2, are known within a 10% uncertainty [5].
In the P-wave case, the improvement of the experimental
accuracy has been noticeable over the last few years and
the data are now clearly sensitive to next-to-leading order

(NLO) corrections [1,8]. Hence, for the decay of the char-
monium P-wave states, theoretical accuracies matching the
experimental ones require the calculation of Oðv2; �sÞ
corrections.
In this work, we consider relativistic corrections of order

v2 and v4 to inclusive decays of P- and S-wave quark-
onium into light hadrons, respectively. The leading order
S-wave decay width is proportional to the square of the
wave function in the origin and is therefore of order v3.
The leading order P-wave decay width is proportional to
the square of the derivative of the wave function in the
origin, and is therefore of order v5. Then, corrections of
order v4 to S-wave decays and of order v2 to P-wave
decays provide in both cases decay widths at order v7 in
the relativistic expansion. We consider only processes
where the quark and antiquark annihilate into two gluons.
Hence, more precisely, the paper provides the �2

sv
7 terms

of the S-wave and P-wave inclusive decay widths.
In the S-wave case, corrections of order v2 and v4 were

first considered in [4,9], respectively. We agree with their
results if we use their power counting, but find additional
contributions in the more conservative counting that we
adopt. In the P-wave case, corrections of order v2 were first
calculated in [10]. Our results disagree with those results.
In particular, we find different matching coefficients for the
dimension 10 operators. Moreover, also adopting the
power counting of [10], our decay widths appear to contain
two matrix elements more.
The paper is organized in the following way. In Sec. II,

we set up the formalism, discuss the power counting,
introduce our basis of operators and give the general
form of the decay widths at order v7. In Sec. III, we
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calculate the short-distance imaginary parts of the NRQCD
four-fermion operators by matching annihilation diagrams
of order �2

s . Octet operators are calculated by matching
diagrams with an external gluon. In Sec. IV, we show how
Poincaré invariance is realized in the EFT in the form of
exact relations among matching coefficients. Such rela-
tions provide an additional and independent check of
some of the results. In Sec. V, we conclude by summarizing
the present knowledge about inclusive decays and discus-
sing phenomenological applications and future develop-
ments of this work. In Appendixes A and B, we list all the
operators and the matching coefficients that have been
employed through the paper.

II. HADRONIC DECAY WIDTHS IN NRQCD

A. NRQCD

The main mechanism for quarkonium to decay into light
hadrons is quark-antiquark annihilation. It takes place at a
scale which is twice the heavy-quark mass M. Since this
scale is perturbative, quark-antiquark annihilation may be
described within an expansion in the strong coupling con-
stant �s. Experimentally, this is shown by the narrow
widths of quarkonia below the open flavor threshold. The
bound state dynamics, instead, is characterized by physical
scales smaller thanM, such that a perturbative expansion in
�s may not be allowed. It is however possible to take
advantage of the nonrelativistic nature of the bound state
and expand in the relative heavy-quark velocity v. In an
EFT language, once the scale M has been integrated out,
the information on the decays is carried by contact terms
(four-fermion operators) whose matching coefficients de-
velop an imaginary part [4]. In NRQCD, the decay widths
factorize in a high-energy contribution, encoded in the
imaginary part of the four-fermion matching coefficients,
and a low-energy contribution, encoded in the matrix
elements of the four-fermion operators evaluated on the
heavy-quarkonium states. The NRQCD factorization for-
mula for the inclusive decay width of a quarkonium stateH
into light hadrons (l.h.) is [4]

�ðH ! l:h:Þ ¼ 2
X
n

ImcðnÞ

Mdn�4 hHjO
ðnÞ
4-fjHi: (1)

jHi is a mass dimension�3=2 normalized eigenstate of the
NRQCD Hamiltonian with the quantum numbers of the

quarkonium stateH. The coefficients cðnÞ can be calculated
in perturbation theory by matching Green functions or

physical amplitudes in QCD and NRQCD. OðnÞ4-f stands

for a generic four-fermion operator of dimension dn, whose
general form is c yð� � �Þ��yð� � �Þc , c being the Pauli
spinor that annihilates a quark and � the one that creates
an antiquark. The operators ð� � �Þmay transform as singlets
or octets under color SU(3) gauge transformations. In the

first case, we denote the operator with the subscript 1, in
the second with the subscript 8. A list of relevant four-
fermion operators is provided in Appendix A.
It is the purpose of this work to calculate the order �2

s

contributions to the cðnÞ coefficients that multiply matrix
elements up to order v7. These involve operators up to
dimension 10.

B. Power counting

In the factorization formula (1), the matching coeffi-

cients cðnÞ are series in �s while the matrix elements

hHjOðnÞ4-fjHi are series in v and are, in general, nonpertur-

bative objects. In NRQCD, several power countings are
possible because of the several contributing energy scales.
These are the relative momentum Mv, the binding energy
Mv2 and the typical hadronic scale�QCD; additional scales

may enter at higher orders in the calculation [11].
Whatever power counting one assumes, as long as v�
1, matrix elements of operators of higher dimensionality
are suppressed by powers of v.
The NRQCD Lagrangian is constructed as an expansion

in 1=M and hence it is independent of the power counting.
We shall adopt a power counting, however, when assessing
the size of the different matrix elements contributing to the
decay widths. We will assume Mv of the same order as
�QCD and adopt the following rules. Matrix elements of the

type hH0jOjHi, where OjHi and jH0i have the same quan-
tum numbers and color transformation properties in the
dominant Fock state, scale (at leading order) like ðMvÞd�3,
d being the dimension of the operator O. If OjHi and jH0i
do not have the dominant Fock state with the same quan-
tum numbers, then the matrix element singles out a com-
ponent of the quarkonium Fock state that is suppressed.
The amount of suppression depends on the power counting
and on the quantum numbers. As detailed in [12], the
power counting we adopt implies that the octet components
with quantum numbers S and L� 1, S and L, S� 1 and L
of a quarkonium state are suppressed by v with respect to
the singlet component with quantum numbers S and L,
while the components with S, L� 2 or S� 1, L� 1 are
suppressed by v2.
A different counting, which seems suitable for the situ-

ation Mv2 ��QCD has been defined in [4] and used in

[9,10]. Our power counting is more conservative than the
one in [4], because we assume that all operators scale with
the largest available scale, i.e. Mv��QCD, while in [4]

this is not always the case and some operators have extra
suppressions. As a consequence, one may recover the
expressions in the power counting of [4] from our expres-
sions simply by eliminating matrix elements that, in that
counting, would be smaller than v7: no new matrix element
or matching coefficient needs to be added.
For a critical review and a discussion on the different

power countings we refer to [2] and references therein.
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C. Four-fermion operators

The four-fermion sector of the NRQCD Lagrangian
contains all four-fermion operators invariant under gauge
transformations, rotations, translations, charge conjuga-
tion, parity and time inversion. They may be classified
according to their dimensionality and color content. The
analysis of the four-fermion operators involved in the
hadronic decay widths at order v7 closely parallels the
one performed for electromagnetic decays in [12]. In the
following, we focus on the main differences, that are
mostly related to the contributions of color octet operators
to the hadronic decay widths. The presence of color octet
operators, acting on subleading components of the heavy-
quarkonium Fock state, is one important and well-known
characteristics of NRQCD [4].

We organize the four-fermion sector of the NRQCD
Lagrangian according to the mass dimension and the color
structures of the operators. In Sec. II C 2, we show how the
number of (redundant) color singlet and octet operators
may be reduced by using suitable field redefinitions. In
Sec. II C 3, we introduce operators proportional to the total
momentum of the heavy-quark–antiquark pair: at variance
with the electromagnetic case, such operators contribute to
the decay widths at order v7. In Appendix A, we give some
details on the construction of octet operators of higher
dimension and the explicit list of all four-fermion operators
that need to be considered at the order of accuracy we are
working. Finally, in Sec. II C 4, we use the NRQCD power
counting of Sec. II B to assess the importance of the differ-
ent matrix elements, and in Sec. II D, we write the general
form of the hadronic decay widths accurately up to order
v7.

1. Operators from dimension 6 to dimension 10

For dimensional reasons, four-fermion operators of mass
dimension 6 can only contain four-fermion fields, without
any covariant derivative or gluon field. The only allowed
color structures are 1c � 1c and ta � ta. The color octet
operator

c yta��ytac (2)

has non vanishing matrix element between the states
hðQ �QÞ8gj . . . jðQ �QÞ8gi, which are subleading components
of the heavy-quarkonium Fock state. Color octet matrix
elements are particularly relevant for P-wave decays,
where they contribute at leading order in the power
counting.

Parity conservation forbids four-fermion operators of
mass dimension 7. Four-fermion operators of dimension
8 can be built with two covariant derivatives or with a
chromomagnetic field. For operators built with two deriva-
tives, the possible color structures are 1c � 1c and ta � ta.
The construction of color singlet operators is straightfor-
ward, while some care has to be taken in the color octet
case, because of the non-Abelian nature of the gauge

group; see Appendix A. The covariant derivatives involved
can be proportional either to the relative momentum of the
quark and antiquark pair, for example, in an operator like

c yD
$
� � �yD$c ; (3)

or to the total momentum of the pair, like in

rðc y�Þ � rð�yc Þ:
Also, operators containing both kind of derivatives can be
built, like

c y
�
� i

2
D
$�� ~�� � ~rð�yc Þ þ H:c::

Operators containing the chromomagnetic field can ap-
pear with the different color structures ta � 1c, 1c � ta,
fabcta � tb and dabcta � tb:

c yg ~B � ~���yc þ H:c:;

c yg ~Ba � ~���ytac þ H:c:;

fabcc yg ~Ba � ~�tb��ytcc þ H:c:;

dabcc yg ~Ba � ~�tb��ytcc þ H:c::

(4)

Operators of dimension 9 can involve a covariant deriva-
tive and a chromoelectric field,

c y��yðD$ � g ~Eþ g ~E �D$Þc þ H:c:; (5)

and again we have to consider all the possible color struc-
tures, as in Eq. (4). Finally, dimension 10 operators may
involve four covariant derivatives or two covariant deriva-
tives and a chromomagnetic field or two gluon fields. To
clarify our terminology, we call ‘‘singlet operators’’ the
ones in which both the ingoing and the outgoing Q �Q pairs
are singlets, as in (3). Although, any covariant derivative
also contains an octet part, ‘‘octet operators’’ the ones in
which both the ingoing and the outgoing Q �Q pairs are
octets, as in (2) or in the third and fourth lines of Eq. (4),
and ‘‘singlet-octet transition operators’’ the ones in which
one of the two pairs is an octet and the other is a singlet, as
the first two operators of Eq. (4) or the one in Eq. (5). For
details on the four-fermion operator definition and con-
struction see Appendix A.

2. Field redefinitions

The four-fermion basis built with all possible operators
allowed by rotational and translational invariance, gauge
invariance and invariance under the discrete symmetries of
QCD is redundant since the number of four-fermion op-
erators may be reduced by suitable field redefinitions. The
analysis performed in [12] can be extended to hadronic
singlet operators. Through the field redefinitions

HADRONIC QUARKONIUM DECAYS AT ORDER v7 PHYSICAL REVIEW D 79, 074002 (2009)

074002-3



c ! c þ a

M5

��
� i

2
D
$�2

; ��y
�
c ;

�! �� a

M5

��
� i

2
D
$�2

; c c y
�
�

(6)

it is possible, for a suitable choice of the free parameter a,
to trade the operator T 1–8ð1S0; 1P1Þ, defined in Eq. (A25),

for the linear combination of Q0
1ð1S0Þ �Q00

1 ð1S0Þ, defined
in Eq. (A26), while, through

c!
J
c þ a

M5
TðJÞijlk�

l

��
� i

2
D
$i
��
� i

2
D
$j
�
; ��y

�
�kc ;

�!
J
�� a

M5
TðJÞijlk�

l

��
� i

2
D
$j
��
� i

2
D
$i
�
; c c y

�
�k�;

(7)

where

T ð0Þijlk ¼
�ij�lk

3
; (8)

T ð1Þijlk ¼
�ijn�kln

2
; (9)

T ð2Þijlk ¼
�il�jk þ �jl�ik

2
� �ij�lk

3
; (10)

the operators T ðiÞ
1–8ð3S1; 3PÞ, with i ¼ 0, 1, 2, can be

eliminated by a suitable choice of a and by redefining
the matching coefficients of Q0

1ð3S1Þ, Q00
1 ð3S1Þ,

Q0
1ð3S1; 3D1Þ and Q00

1 ð3S1; 3D1Þ (see Eqs. (A25) and
(A26) for the definition of these operators). As it was noted
in [12], these field redefinitions do not change the sums of
the coefficients h01ð1S0Þ þ h001 ð1S0Þ, h01ð3S1Þ þ h001 ð3S1Þ and
h01ð3S1; 3D1Þ þ h001 ð3S1; 3D1Þ.

It is also possible to exploit field redefinitions to reduce
the number of octet operators. Consider the field redefini-
tions

c ! c þ a

M5

��
� i

2
D
$�2

; ta��y
�
tac ;

�! �� a

M5

��
� i

2
D
$�2

; tac c y
�
ta�;

(11)

where the definition of c yD
$2

ta� is given in Eq. (A13).
Equation (11) induces the following transformation (8-8)

c yiD0c þ �yiD0�! c yiD0c þ �yiD0�

� a

M5

1

Nc

T 1–8ð1P1;
1S0Þ

� a

2M5
D8-8ð1S0; 1P1Þ

þ a

2M5
F 8ð1S0Þ; (12)

where Nc ¼ 3 is the number of colors and the operators
D8-8ð1S0; 1P1Þ and F 8ð1S0Þ are defined in Eq. (A25). The

same field redefinitions induce the following transforma-

tion on the kinetic term

c y
~D2

2M
c � �y

~D2

2M
�! c y

~D2

2M
c � �y

~D2

2M
�þ 2a

M6

� ðQ0
8ð1S0Þ �Q00

8 ð1S0ÞÞ; (13)

where in the right-hand side we have neglected operators
proportional to the center of mass momentum of the quark-
antiquark pair. Eqs. (12) and (13) show that the operators
T 1–8ð1P1;

1S0Þ and Q0
8ð1S0Þ �Q00

8 ð1S0Þ are not indepen-

dent and that it is possible, for a suitable choice of the
parameter a, to trade the one for a redefinition of the
matching coefficient of the other and of D8-8ð1S0; 1P1Þ
and F 8ð1S0Þ.
With a closely related argument, introducing the field

redefinitions

c!
J
c þ a

M5
TðJÞijlk�

l

��
� 1

4
D
$i
D
$j
�
; ta��y

�
ta�kc ;

�!
J
�� a

M5
TðJÞijlk�

l

��
� 1

4
D
$j

D
$i
�
; tac c y

�
ta�k�;

(14)

with TðJÞijlk given in Eqs. (8)–(10) and D
$i
D
$j

ta defined ac-

cording to Eq. (A13), it is possible to set the parameter a in
such a way that the minimal basis of operators either
contains the three operators T 1–8ð3PJ;

3S1Þ or, with a
different choice of a, the three operators 1=2ðQ0

8ð3S1Þ �
Q00

8 ð3S1ÞÞ, 1=2ðQ0
8ð3S1; 3D1Þ �Q00

8 ð3S1; 3D1ÞÞ and

T ð1Þ0
8�1ð3S1; 3PÞ defined in Eqs. (A25) and (A26). The first

set of operators is more useful in dealing with P-wave
decay widths and we will use it in the rest of the paper.

Note that the operator T ð1Þ0
8�1ð3S1; 3PÞ, as well as the

operators T ðiÞ
1–8ð3S1; 3PÞ previously introduced and

T ð1Þ0
1–8ð3S1; 3PÞ, which is required by the matching, annihi-

late (create) a singlet Q �Q pair with orbital angular mo-
mentum L ¼ 1 but with no definite value of J. So, in our
notation, we denote the annihilated pair just with its spin
and orbital angular momentum quantum numbers, omitting
the subscript J.

3. Operators proportional to the total momentum of the
quark-antiquark pair

The description of the hadronic decay widths up to order
v7 requires the inclusion of operators proportional to the
total momentum of the quark-antiquark pair into the me-
son. By parity conservation these operators must contain at
least two derivatives, so they have at least mass dimension
8. The two derivatives can act on the Q �Q pair, like in

P 1a cm ¼ ~riðc y�j�Þ ~rið�y�jc Þ: (15)

Since the Q �Q pair is a color singlet, ~r is an ordinary
derivative. If the Q �Q pair is a color octet, we can build
an operator analogous to (15)
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P 8a cm ¼ ~Di
abðc ytb�j�Þ ~Di

acð�ytc�jc Þ; (16)

where ~Dab is a covariant derivative in the adjoint
representation.

Also operators containing a total derivative ~r and a

derivative D
$
, proportional to the relative momentum of

the pair, can be built. In this case, since under charge

conjugation ~rðc y�Þ ! ~rðc y�Þ and c yD
$
�! �c yD

$
�,

the operators must contain a Pauli matrix in order to be
charge conjugation invariant. An example is the operator

O 1 cm ¼ c y
�
� i

2
D
$�� ~�� � ~rð�yc Þ þ H:c:: (17)

As explained in Sec. IV, the matching coefficients of the
operators of mass dimension 8 proportional to the total
momentum of the Q �Q pair are completely determined by
the coefficients of the dimension 6 operators. These rela-
tions are a manifestation of the Poincaré invariance of the
effective field theory.

4. Power counting of the four-fermion operators

From the rules given in Sec. II B, it follows that

hHð2Sþ1LJÞj
1

Md�4 O1ð2Sþ1LJÞjHð2Sþ1LJÞi �Mvd�3;

(18)

where jHð2Sþ1LJÞi stands for a quarkonium state whose
dominant Fock-space component is a Q �Q pair with quan-
tum numbers S, L and J; O1ð2Sþ1LJÞ is a singlet four-
fermion operator that acts on the Q �Q pair with spin S,
orbital angular momentum L and total angular momentum
J; and d is the dimension of the operator.

The scaling of color octet matrix elements is affected by
the suppression of the Fock state component they act on.
For example, the power counting given in Sec. II B implies

hHð3P0Þj
1

M2
O8ð3S1ÞjHð3P0Þi �Mv5;

hHð1S0Þj
1

M2
O8ð3S1ÞjHð1S0Þi �Mv5:

(19)

In the power counting that we adopt, the gluon field and
the derivative that belong to a covariant derivative have the
same scaling. If the gluon field selects a component of the
quarkonium Fock state, which is suppressed, like in
hHð3P0ÞjO1ð3P0ÞjHð3P0Þi, then its contribution to the ma-

trix element is subleading. If, however, the gluon field
selects a component whose projection on the operator is
not suppressed or the gluon is reabsorbed by other gluons
in the operator, then it may happen that the gluon part in the
covariant derivative gives to the matrix element a contri-
bution that is larger than the one provided by the derivative
part. For example, due to the gluons in the covariant
derivatives, dimension 10 octet operators like P 8ð1P1Þ,
Q0

8ð1S0Þ and Q8ð1D2Þ, as well as the singlet operator

Q1ð1D2Þ, contribute to the decay width of the quarkonium
state Hð1S0Þ at order v7. Similar operators contribute at

order v7 also to the decay width of the quarkonium states
Hð3S1Þ and Hð3PJÞ.
Concerning the scaling of the singlet-octet matrix ele-

ments, in the power counting of Sec. II B both the chromo-
electric and chromomagnetic fields scale as their mass
dimension, ðMvÞ2, so the scaling of a matrix element is
Mvd�3vs, where vs takes into account the suppression of
the Fock state the operator acts on. For example, consider
the matrix elements of the dimension 8 operators defined in
Eq. (A24):

hHð1S0Þj
1

M4
S1–8ð1S0; 3S1ÞjHð1S0Þi; (20)

and

hHð3S1Þj
1

M4
S1–8ð3S1; 1S0ÞjHð3S1Þi: (21)

The operator S1–8ð1S0; 3S1Þ destroys a singlet Q �Q pair

with quantum numbers 1S0 and creates an octet Q �Q pair

with quantum numbers 3S1 and a gluon (and vice versa),
the operator S1–8ð3S1; 1S0Þ destroys a singletQ �Q pair with

quantum numbers 3S1 and creates an octet Q �Q pair with
quantum numbers 1S0 and a gluon (and vice versa). Hence,
both matrix elements scale like Mv6.
Equations (A25) define octet operators of dimension 9,

and since the octet Fock-space component is suppressed by
v, we have

hHð3S1Þj
1

M5
T ð1Þ0

1–8ð3S1; 3PÞjHð3S1Þi �Mv7; (22)

and

hHð3PJÞj
1

M5
T 1–8ð3PJ;

3S1ÞjHð3PJÞi �Mv7: (23)

For the reasons discussed above, in our power counting,
matrix elements of octet operators of dimension 9, like
D8-8ð1S0; 1P1Þ, are not necessarily negligible at order v7

because of the gluons in the covariant derivatives, which
may couple to other gluons in the operator and in the
quarkonium Fock state. For instance, we have

hHð1S0Þj
1

M5
D8-8ð1S0; 1P1ÞjHð1S0Þi �Mv7: (24)

Matrix elements of the operator F 8ð1S0Þ are smaller than

v7 because of the suppression induced by the Gauss law.
Note that also the matrix element of the following dimen-
sion 10 operator is negligible at order v7:

hHð3P0Þj
1

M6
c y ~B �D$��yD$ � ~�c jHð3P0Þi �Mv8: (25)

Finally, we discuss the scaling of matrix elements of
operators proportional to the total momentum of the Q �Q
pair. We work in a frame in which the heavy quarkonium is
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at rest. In this frame, operators proportional to the total
momentum of the pair have nonvanishing matrix elements
only between subleading components of the heavy-
quarkonium Fock state, containing at least one gluon.
Lattice data indicate that higher gluonic excitations be-
tween the Q �Q pair are separated from the lowest quark-
onium state by a mass gap of order �QCD (for a detailed

discussion, see [2] and references therein). Therefore, glu-
ons in subleading components of the Fock space must be
counted as soft ðq0; ~qÞ � ðMv;MvÞ, where Mv��QCD.

The emission of a soft gluon leaves theQ �Q pair with a total
momentum of order Mv, hence, the scaling of the opera-

tors ~r and ~Dab acting on the Q �Q pair is �Mv. Consider,
for example, the matrix element of the operator O8 cm

between 3S1 states

hHð3S1ÞjO8 cmjHð3S1Þi ¼ h3S1jc yta
�
� i

2
D
$�� ~��

� ~Dabð�ytbc Þ þ H:c:jð1S0Þ8gi
þ . . . : (26)

The leading order contribution to the left-hand side of
Eq. (26) comes from the matrix element between the
components j3S1i and jð1S0Þ8gi of jHð3S1Þi, the gluon in

the incoming state being annihilated by the gluon field in

D
$
. The matrix element in Eq. (26) gets a v suppression

from each derivative, and a further v suppression from the
jð1S0Þ8gi state. Therefore it scales like v6 and is suppressed

by v3 with respect to the leading contribution to the decay
width. The operator P 8a cm has a nonvanishing matrix
element if both the incoming and outgoing states contain
a gluon. For example, it contributes to the decay width of

Hð3P0Þ:

hHð3P0ÞjP 8a cmjHð3P0Þi ¼ hð3S1Þ8gj ~Di
abðc ytb�j�Þ ~Di

ac

� ð�ytc�jc Þ þ H:c:jð3S1Þ8gi
þ . . . : (27)

The matrix element in Eq. (27) gets two powers of v from
the derivatives and two from the states, so it scales like v7,
and contributes to the P-wave decay width at the order we
are interested in.
We note that for electromagnetic decays, operators pro-

portional to the total momentum of the Q �Q pair do not
contribute to decay widths calculated in the quarkonium
center of mass rest frame. The reason is the following:
Electromagnetic operators are obtained by inserting the
vacuum projector j0ih0j in hadronic operators. As a con-
sequence, any matrix element involving derivatives acting
on both the quark-antiquark fields may be reduced by
integration by parts either to a matrix element that does
not involve an operator with derivatives acting on the
quark-antiquark fields or to a global derivative of a matrix
element of the type h0jð. . .ÞjHi. The first one is a standard
matrix element that does not involve the center of mass
momentum, the last one vanishes in the quarkonium center
of mass rest frame.

D. Hadronic decay widths

Having assumed a power counting and having chosen a
basis of operators, we are in the position to provide explicit
factorization formulas for S-wave and P-wave inclusive
decays. The S-wave decay widths at order v7 are

�ð1S0 ! l:h:Þ ¼ 2 Imf1ð1S0Þ
M2

hHð1S0ÞjO1ð1S0ÞjHð1S0Þi þ
2 Img1ð1S0Þ

M4
hHð1S0ÞjP 1ð1S0ÞjHð1S0Þi

þ 2 Imf8ð3S1Þ
M2

hHð1S0ÞjO8ð3S1ÞjHð1S0Þi þ
2 Imf8ð1S0Þ

M2
hHð1S0ÞjO8ð1S0ÞjHð1S0Þi

þ 2 Imf8ð1P1Þ
M4

hHð1S0ÞjO8ð1P1ÞjHð1S0Þi þ
2 Ims1–8ð1S0; 3S1Þ

M4
hHð1S0ÞjS1–8ð1S0; 3S1ÞjHð1S0Þi

þ 2 Imf08 cm
M4

hHð1S0ÞjO08 cmjHð1S0Þi þ
2 Img8a cm

M4
hHð1S0ÞjP 8a cmjHð1S0Þi

þ 2 Imf1 cm
M4

hHð1S0ÞjO1 cmjHð1S0Þi þ
2 Imh01ð1S0Þ

M6
hHð1S0ÞjQ0

1ð1S0ÞjHð1S0Þi

þ 2 Imh001 ð1S0Þ
M6

hHð1S0ÞjQ00
1 ð1S0ÞjHð1S0Þi þ

2 Img8ð3S1Þ
M4

hHð1S0ÞjP 8ð3S1ÞjHð1S0Þi

þ 2 Img8ð1S0Þ
M4

hHð1S0ÞjP 8ð1S0ÞjHð1S0Þi þ
2 Img8ð1P1Þ

M6
hHð1S0ÞjP 8ð1P1ÞjHð1S0Þi

þ 2 Imh08ð1S0Þ
M6

hHð1S0ÞjQ0
8ð1S0ÞjHð1S0Þi þ

2 Imh8ð1D2Þ
M6

hHð1S0ÞjQ8ð1D2ÞjHð1S0Þi

þ 2 Imh1ð1D2Þ
M6

hHð1S0ÞjQ1ð1D2ÞjHð1S0Þi þ
2 Imd8ð1S0; 1P1Þ

M5
hHð1S0ÞjD8 -8ð1S0; 1P1ÞjHð1S0Þi; (28)
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�ð3S1 ! l:h:Þ ¼ 2 Imf1ð3S1Þ
M2

hHð3S1ÞjO1ð3S1ÞjHð3S1Þi þ
2 Im g1ð3S1Þ

M4
hHð3S1ÞjP 1ð3S1ÞjHð3S1Þi

þ 2 Imf8ð1S0Þ
M2

hHð3S1ÞjO8ð1S0ÞjHð3S1Þi þ
2 Im f8ð3S1Þ

M2
hHð3S1ÞjO8ð3S1ÞjHð3S1Þi

þX2
J¼0

2 Imf8ð3PJÞ
M4

hHð3S1ÞjO8ð3PJÞjHð3S1Þi þ
2 Im s1–8ð3S1; 1S0Þ

M4
hHð3S1ÞjS1–8ð3S1; 1S0ÞjHð3S1Þi

þ 2 Im f8 cm
M4

hHð3S1ÞjO8 cmjHð3S1Þi þ
2 Img8c cm

M4
hHð3S1ÞjP 8c cmjHð3S1Þi

þ 2 Im f01 cm
M4

hHð3S1ÞjO01 cmjHð3S1Þi þ
2 Imh01ð3S1Þ

M6
hHð3S1ÞjQ0

1ð3S1ÞjHð3S1Þi

þ 2 Imh001 ð3S1Þ
M6

hHð3S1ÞjQ00
1 ð3S1ÞjHð3S1Þi þ

2 Img1ð3S1; 3D1Þ
M4

hHð3S1ÞjP 1ð3S1; 3D1ÞjHð3S1Þi

þ 2 Img8ð1S0Þ
M4

hHð3S1ÞjP 8ð1S0ÞjHð3S1Þi þ
2 Img8ð3S1Þ

M4
hHð3S1ÞjP 8ð3S1ÞjHð3S1Þi

þ 2 Imtð1Þ01–8ð3S1; 3PÞ
M5

hHð3S1ÞjT ð1Þ0
1–8ð3S1; 3PÞjHð3S1Þi þ

X2
J¼0

2 Img8ð3PJÞ
M6

hHð3S1ÞjP 8ð3PJÞjHð3S1Þi

þ 2 Imh08ð3S1Þ
M6

hHð3S1ÞjQ0
8ð3S1ÞjHð3S1Þi þ

X2
J¼0

�
2 Imh8ð3DJÞ

M6
hHð3S1ÞjQ8ð3DJÞjHð3S1Þi

þ 2 Imh1ð3DJÞ
M6

hHð3S1ÞjQ1ð3DJÞjHð3S1Þi
�
þ X

k¼0;2

2 ImdðkÞ8 ð3S1; 3PÞ
M5

hHð3S1ÞjDðkÞ
8-8ð3S1; 3PÞjHð3S1Þi

þ 2 Img8ð3P2;
3F2Þ

M6
hHð3S1ÞjP 8ð3P2;

3F2ÞjHð3S1Þi: (29)

In Eqs. (28) and (29), the first matrix element scales like v3, the following four in the second and third line like v5, the
following two like v6 and the others like v7. S-wave decay widths at order v7 were computed in [9]. For �ð1S0 ! l:h:Þ, the
decay width in [9] does not include the matrix elements of the operators proportional to the total momentum of the Q �Q
pair, the matrix element of Q1ð1D2Þ and any other matrix element of octet operators with the exception of O8ð3S1Þ,
O8ð1S0Þ and O8ð1P1Þ. In the power counting adopted in [9], which is described in [4], all these matrix elements are
suppressed by further powers of v and they can be neglected at this order of the expansion. For the same reason, the
expression for �ð3S1 ! l:h:Þ in [9] does not include all the matrix elements of operators proportional to the total
momentum of the Q �Q pair, the matrix elements of Q1ð3DJÞ and P 1ð3S1; 3D1Þ, and any other matrix element of octet
operators with the exception of O8ð3S1Þ, O8ð1S0Þ and O8ð3PJÞ.

The P-wave decay widths at order v7 are
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�ð3PJ ! l:h:Þ ¼ 2 Imf1ð3PJÞ
M4

hHð3PJÞjO1ð3PJÞjHð3PJÞi þ
2 Imf8ð3S1Þ

M2
hHð3PJÞjO8ð3S1ÞjHð3PJÞi

þ 2 Img1ð3PJÞ
M6

hHð3PJÞjP 1ð3PJÞjHð3PJÞi þ
2 Img8ð3S1Þ

M4
hHð3PJÞjP 8ð3S1ÞjHð3PJÞi

þ 2 Img8ð3S1; 3D1Þ
M4

hHð3PJÞjP 8ð3S1; 3D1ÞjHð3PJÞi þ
2 Img8a cm

M4
hHð3PJÞjP 8a cmjHð3PJÞi

þ 2 Imt1–8ð3PJ;
3S1Þ

M5
hHð3PJÞjT 1–8ð3PJ;

3S1ÞjHð3PJÞi þ
2 Imf8ð1P1Þ

M4
hHð3PJÞjO8ð1P1ÞjHð3PJÞi

þ 2 Imf8ð1S0Þ
M2

hHð3PJÞjO8ð1S0ÞjHð3PJÞiþ
2 Imf1ð1S0Þ

M2
hHð3PJÞjO1ð1S0ÞjHð3PJÞi

þ 2 Imf8ð3PJÞ
M4

hHð3PJÞjO8ð3PJÞjHð3PJÞiþ
2 Imh08ð3S1Þ

M6
hHð3PJÞjQ0

8ð3S1ÞjHð3PJÞi

þ 2 Imh08ð3S1; 3D1Þ
M6

hHð3PJÞjQ0
8ð3S1; 3D1ÞjHð3PJÞi þ

XJþ1
k¼1

2 Imh8ð3DkÞ
M6

hHð3PJÞjQ8ð3DkÞjHð3PJÞi

þ 2 Imf1ð3S1Þ
M2

hHð3PJÞjO1ð3S1ÞjHð3PJÞiþ
X
i¼1;8

�J2

2 Imgið3P2;
3F2Þ

M6
hHð3P2ÞjP ið3P2;

3F2ÞjHð3P2Þi; (30)

where J ¼ 0, 1, 2.
In Eq. (30), the first two matrix elements scale like v5,

the remaining ones like v7. P-wave decay widths at order
v7 were computed in [10], where the power counting of [4]
was used: they appear to contain only the first four terms of
Eq. (30). It seems, however, that also by adopting the
power counting of [4] at least the matrix elements of the
operators P 8ð3S1; 3D1Þ and P 8a cm should be added.

III. MATCHING

In this section, we calculate the order �2
s contributions to

the imaginary parts of the matching coefficients that appear
in Eqs. (28)–(30). The method consists in equating (match-
ing) the imaginary parts of scattering amplitudes in QCD
and NRQCD along the lines of [4].

In the QCD part of the matching, the ingoing quark and
the outgoing antiquark are represented by the Dirac spinors
uð ~pÞ and vð ~pÞ, respectively, whose explicit expressions are

uð ~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þM

2Ep

s
�

~p� ~�
EpþM �

 !
;

vð ~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þM

2Ep

s
~p� ~�

EpþM�
�

 !
;

(31)

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

p
, and � and � are Pauli spinors. In

the NRQCD part of the matching, the ingoing quark and
the outgoing antiquark are represented by the Pauli spinors
� and �, respectively.

We will match singlet, octet and singlet-octet transition
operators at order �2

s ; to this purpose we will consider both
the scattering amplitudes Q �Q! Q �Q and Q �Qg! Q �Q,
with no more than two gluons in the intermediate states.

In the center of mass rest frame, the energy and momen-
tum conservation imposes the following kinematical con-
straints on the scattering Q �Q! Q �Q,

j ~pj ¼ j ~kj; ~pþ ~p0 ¼ 0; ~kþ ~k0 ¼ 0; (32)

and on the scattering Q �Qg! Q �Q,

Ep þ Ep0 þ j ~qj ¼ 2Ek; ~pþ ~p0 þ ~q ¼ 0;

~kþ ~k0 ¼ 0;
(33)

where ~p, ~p0 are the ingoing and ~k, ~k0 the outgoing quark
and antiquark momenta, while ~q is the momentum of the
ingoing gluon, which is on mass shell.
The matching does not rely on any specific power count-

ing and can be performed order by order in 1=M [13]. We
will perform the matching up to order 1=M6, which is the
highest power in 1=M appearing in Eqs. (28)–(30). In
practice, we expand the QCD amplitude with respect to
all external three-momenta. Note that, in the relativistic
expansion, the gluon momentum j ~qj is proportional to
ðthree-momentaÞ2=M. In the matching calculation, there-
fore, the gluon three-momentum appears with an extra
1=M suppression with respect to the quark and antiquark
three-momenta. In the case of the Q �Qg! Q �Q scattering,
the expansion in the gluon momentum may develop infra-
red singularities, i.e. terms proportional to 1=j ~qj. These
terms cancel in the matching, as expected, having QCD
and NRQCD the same infrared structure. For a detailed
discussion see [12]. In the hadronic calculation, individual
diagrams that contribute to the imaginary part of the
Q �Qg! Q �Q scattering amplitude containing interactions
between the gluon in the initial state and gluon propagators
develop also collinear singularities, i.e. terms proportional
to 1=ð1� cos�Þ, � being the angle between the incoming
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gluon momentum and the momentum flowing in one of the
gluon propagators put on shell to get the imaginary con-
tribution. These singular terms cancel in the sum of all
diagrams. Finally, we expect that, since the matching does
not rely on a power counting and scattering amplitudes do
not have a definite angular momentum, the matching will
determine more coefficients than needed in Eqs. (28)–(30).

A. Q �Q to light hadrons: singlet matching

The matching of the Q �Q! ggðq �qÞ ! Q �Q amplitude is
performed by equating the sum of the imaginary parts of
the QCD diagrams shown in Fig. 1 [taken by cutting the
gluon propagators or the light quark propagators according
to 1=k2 ! �2	i�ðk2Þ�ðk0Þ] to the sum of all the NRQCD
diagrams of the type shown in Fig. 2. The first two dia-
grams in Fig. 1 contain both a color singlet and a color
octet part, coming from the decompositions

tatb � tbta ¼ CF

2Nc

1c � 1c þ N2
c � 2

2Nc

ta � ta;

tatb � tatb ¼ CF

2Nc

1c � 1c � 1

Nc

ta � ta;

(34)

while the other five Feynman diagrams contribute only to
the octet part.

The calculation of the box diagrams in Fig. 1 gives the
matching coefficients of the dimension 6, 8 and 10 singlet
operators proportional to the relative momentum of theQ �Q
pair, listed in Eqs. (A16)–(A19) and (A26)–(A28). We

quote the coefficients of the dimension 6 and dimension
8 operators in Appendix B. They agree with those calcu-
lated in [4]. We refer to [14] and references therein for an
updated list of imaginary parts of matching coefficients of
dimension 6 and 8 four-fermion operators; some of them
are known at next-to-leading order. For dimension 10
operators we find

Imh1ð1D2Þ ¼
2

15

�2
s	CF

2Nc

; (35)

Imh01ð1S0Þ þ Imh001 ð1S0Þ ¼
68

45

�2
s	CF

2Nc

; (36)

Img1ð3P0Þ ¼ �7
�2
s	CF

2Nc

; (37)

Img1ð3P2Þ ¼ �
8

5

�2
s	CF

2Nc

; (38)

Img1ð3P2;
3F2Þ ¼ �

20

21

�2
s	CF

2Nc

: (39)

The four-fermion operators to which the matching coeffi-
cients refer are listed in Appendix A.
The coefficients relevant for P-wave decay widths at

order v7 are (37) and (38). They were first computed in
[10], but our results disagree with the ones reported there.
Note that while Eqs. (37) and (38) agree in the QED limit
with the results of [12], the QED limit of the results in [10]
is in disagreement both with [12,15].
Equation (36) agrees with the one found in [9]. By

matching the diagrams of Fig. 1 we cannot resolve
Imh01ð1S0Þ and Imh001 ð1S0Þ separately. These coefficients

multiply operators that contribute to the v4 corrections of
the S-wave decay widths. Equation (35) contributes to the
leading order decay width of the singlet state of the D
multiplet, which for charmonium and bottomonium has not
yet been observed; it agrees with the result of [16].

B. Q �Q to light hadrons: octet matching

The calculation of the diagrams in Fig. 1 provides also
the coefficients of dimension 6, 8 and 10 color octet
operators. Again, since we work in the center of mass

FIG. 1. QCD Feynman diagrams describing the amplitude
Q �Q! Q �Q at order �2

s .

FIG. 2. Generic NRQCD four-fermion Feynman diagram. The
empty box stands for one of the four-fermion vertices induced by
the operators listed in Appendix A, Eqs. (A16)–(A21) and (A26)
–(A31).
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rest frame, we cannot obtain the matching coefficients of
the dimension 8 and 10 operators proportional to the center
of mass momentum.

The coefficients of the dimension 6 and 8 operators are
quoted in Appendix B and agree with those obtained in
[4,17]. The coefficients of the dimension 10 operators are
new results of this work. We find

Imh08ð3S1Þ þ Imh008 ð3S1Þ ¼
29

108
�2
s	nf þ 1

108
�2
s	Nc;

(40)

Imh08ð3S1; 3D1Þ þ Imh008 ð3S1; 3D1Þ

¼ 23

72
�2
s	nf þ 1

18
�2
s	Nc; (41)

Imh8ð3D1Þ ¼
1

24
�2
s	nf þ 1

12
�2
s	Nc; (42)

Im h8ð3D2Þ ¼
1

30
�2
s	Nc; (43)

Im h8ð3D3Þ ¼
1

21
�2
s	Nc; (44)

Imh8ð1D2Þ ¼
2

15
�2
s	

N2
c � 4

4Nc

; (45)

Imh08ð1S0Þ þ Imh008 ð1S0Þ ¼
68

45
�2
s	

N2
c � 4

4Nc

; (46)

Img8ð1P1Þ ¼ �
3

20
�2
s	Nc; (47)

Im g8ð3P0Þ ¼ �7�2
s	

N2
c � 4

4Nc

; (48)

Img8ð3P2Þ ¼ �
8

5
�2
s	

N2
c � 4

4Nc

; (49)

Im g8ð3P2;
3F2Þ ¼ �

20

21
�2
s	

N2
c � 4

4Nc

: (50)

The four-fermion operators to which the matching coeffi-
cients refer are listed in Appendix A.

C. Q �Qg to light hadrons

We show in Figs. 3–8 the diagrams that contribute to the
Q �Qg! Q �Q scattering amplitude with terms with color
content ta � 1 or 1 � ta. The imaginary part of Q �Qg!
Q �Q is computed considering all possible cuts of the gluon
propagators. Diagrams in Fig. 4 and 7 develop collinear
singularities that cancel when all possible cuts are taken

into account. In these figures, the cuts are explicitly
indicated.
In the matching procedure, the QCD amplitude is equa-

ted to the sum of all NRQCD diagrams of the type shown in
Fig. 9. These are all diagrams of NRQCD with an ingoing
Q �Q pair and a gluon and an outgoing Q �Q pair. They can
involve four-fermion operators and a gluon coupled to the

FIG. 3. Box diagrams: the gluon in the initial state interacts
with a fermion leg. The other six diagrams, in which the two
gluon propagators cross, have not been displayed.

FIG. 4. Box diagrams: the gluon in the initial state interacts
with a gluon propagator. The other four diagrams, in which the
two gluon propagators cross, have not been displayed.
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quark or the antiquark line, but also four-fermion operators
that couple to gluons. Four-fermion operators that induce
octet to singlet transitions on the Q �Q pair may be one of
the operators listed in Eqs. (A24) and (A25), but also one of
the four-fermion operators involving only covariant deriva-
tives, which, despite being usually denoted as singlet (or
octet) operators, couple to the gluon field through the term �itag ~Aa

in the covariant derivative and therefore have a
singlet-octet component.
The calculation of the imaginary part of theQ �Qg! Q �Q

scattering amplitude allows us to find the matching coef-
ficients of dimension 8 and dimension 9 singlet-octet tran-
sition operators and dimension 8 operators proportional to

FIG. 5. Vertex corrections: the gluon in the initial state couples
to a fermion leg or to a three-gluon vertex.

FIG. 7. Vertex corrections: the gluon in the initial state inter-
acts with a gluon propagator.

FIG. 6. Vertex corrections: the gluon in the initial state couples
to a fermion leg or to a three-gluon vertex.

FIG. 8. Vacuum polarization: the gluon in the initial state
interacts with a fermion leg.
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the total momentum of the Q �Q pair. It also allows us to fix
the individual coefficients appearing in Eqs. (36) and (46).
As discussed in Sec. II C 2, the basis of operators that we
chose contains as independent operators T 1–8ð3PJ;

3S1Þ,
with J ¼ 0, 1, 2. In Appendix B, we give for completeness
also the matching coefficients computed with the other
possible choice of independent operators, 1=2ðQ0

8ð3S1Þ �
Q00

8 ð3S1ÞÞ, 1=2ðQ0
8ð3S1; 3D1Þ �Q00

8 ð3S1; 3D1ÞÞ and

T ð1Þ0
8�1ð3S1; 3PÞ. This second set allows us to establish the

individual coefficients of the operators appearing in Eqs.
(40) and (41), but it is less useful for the discussion of the
P-wave decay widths.

The matching coefficients are

Im s1–8ð1S0; 3S1Þ ¼ �
1

4
�2
s	þ 1

12

�2
s	nf
Nc

; (51)

Im s1–8ð3S1; 1S0Þ ¼ 0; (52)

Im h01ð1S0Þ ¼
10

9
�2
s	

CF

2Nc

� 1

48
�2
s	; (53)

Imh001 ð1S0Þ ¼
2

5
�2
s	

CF

2Nc

þ 1

48
�2
s	; (54)

Im h08ð1S0Þ ¼
10

9
�2
s	

N2
c � 4

4Nc

; (55)

Imh008 ð1S0Þ ¼
2

5
�2
s	

N2
c � 4

4Nc

; (56)

Im tð1Þ01–8ð3S1; 3PÞ ¼ �
1

8
�2
s	

N2
c � 4

4N2
c

; (57)

Im h01ð3S1Þ ¼
1

12
�2
s	

N2
c � 4

4N2
c

; (58)

Imh001 ð3S1Þ ¼ �
1

12
�2
s	

N2
c � 4

4N2
c

; (59)

Imh01ð3S1; 3D1Þ ¼
1

4
�2
s	

N2
c � 4

4N2
c

; (60)

Im h001 ð3S1; 3D1Þ ¼ �
1

4
�2
s	

N2
c � 4

4N2
c

; (61)

Imt1–8ð3P0;
3S1Þ ¼ �

3

2
�2
s	

CF

2Nc

þ
�
61

240
þ 7

192

nf
Nc

�
�2
s	;

(62)

Im t1–8ð3P1;
3S1Þ ¼

�
1

72
þ 107

576

nf
Nc

�
�2
s	; (63)

Im t1–8ð3P2;
3S1Þ ¼

�
1

10
þ 25

576

nf
Nc

�
�2
s	: (64)

The four-fermion operators to which the matching coeffi-
cients refer are listed in Appendix A. The total momentum
of the ingoing Q �Q being different from 0, the matching
calculation for Q �Qg! Q �Q also provides the coefficients
for the operators defined in (A22) and (A23):

Im f1 cm ¼ 1

4
�2
s	

CF

2Nc

; (65)

Im f01 cm ¼ 0; (66)

Im f8 cm ¼ 1

4
�2
s	

N2
c � 4

4Nc

; (67)

Im f08 cm ¼
1

24
�2
s	nf; (68)

Img1a cm ¼ 0; (69)

Img1b cm ¼ 0; (70)

Img1c cm ¼ � 1

4
�2
s	

CF

2Nc

; (71)

Img8a cm ¼ � 1

24
�2
s	nf; (72)

Img8b cm ¼ 0; (73)

FIG. 9. Generic NRQCD four-fermion Feynman diagrams involving an ingoing Q �Q pair and a gluon and an outgoing Q �Q pair. The
black box with a gluon attached to it and the empty box stand, respectively, for one of the four-fermion–one-gluon vertices and for one
of the four-fermion vertices induced by the operators listed in Appendix A, Eqs. (A16)–(A31). The black dot with a gluon attached to it
stands for one of the quark-gluon vertices induced by the bilinear part of the NRQCD Lagrangian given in Eq. (A1).
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Img8c cm ¼ � 1

4
�2
s	

N2
c � 4

4Nc

: (74)

We have checked the matching coefficients (65)–(74) by
repeating the calculation of the diagrams in Fig. 1 up to
order 1=M4 in the general frame

~p ¼ 1

2
~qþ ~pr; ~k ¼ 1

2
~qþ ~kr;

~p0 ¼ 1

2
~q� ~pr; ~k0 ¼ 1

2
~q� ~kr:

Equations (51)–(74) are original results of this work.

IV. POINCARÉ INVARIANCE CONSTRAINTS

We can use Poincaré symmetry to obtain independent
checks on some of the matching coefficients derived in the
previous sections. Here we outline the procedure, follow-
ing the method of Ref. [18].

NRQCD is constructed by expanding (and matching)
QCD in the nonrelativistic limit. As a consequence, while
translations and rotations are still explicit symmetries of
the NRQCD action, the explicit invariance of the QCD
action under boost is lost in the nonrelativistic regime.
However, the boost invariance of QCD manifests itself in
a nonlinear realization, constraining the form of the
NRQCD Hamiltonian.

The constraints posed by Poincaré invariance on the
bilinear sector of the NRQCD Lagrangian have been
studied extensively in [13,18]. The computation of the
matching coefficients (65)–(74) completes our knowledge
of the imaginary part of the NRQCD Lagrangian at order
1=M4, including four-fermion operators proportional to the
total momentum of the Q �Q pair, which, due to their
suppression in v have not been considered before.
Therefore, we can now study the constraints induced by
Poincaré invariance in the four-fermion sector of the
NRQCD Lagrangian. We adopt the method described in
[18] by constructing the generators of time translation H,

space translations ~P, rotations ~J and boosts ~K inside the
effective theory and by imposing that the commutation
relations of the Poincaré algebra are respected. Since ro-
tation and translation invariance are manifestly maintained

in NRQCD, the commutation relations involving onlyH, ~P

and ~J are trivially satisfied while the commutation relations

involving the boost generators ~K impose restrictions
among the matching coefficients:

½Pi; Kj	 ¼ �i�ijH; (75)

½H;Ki	 ¼ �iPi; (76)

½Ji; Kj	 ¼ i"ijkKk; (77)

½Ki; Kj	 ¼ �i"ijkJk: (78)

The construction of the generators proceeds in the fol-

lowing way: ~P and ~J can be obtained from the symmetric
energy-momentum tensor [18,19]:

~P ¼
Z

d3xc yð�i ~DÞc þ �yð�i ~DÞ�þ 1

2
½ ~�a�; ~Ba	;

(79)

~J ¼
Z

d3xc y
�
~x� ð�i ~DÞ þ ~�

2

�
c

þ �y
�
~x� ð�i ~DÞ þ ~�

2

�
�þ 1

2
~x� ½ ~�a�; ~Ba	; (80)

where ðc ; ic yÞ, ð�; i�yÞ and, in the A0 ¼ 0 gauge, [Ai,
�i

a ¼ @LNRQCD=@ð@0Aa
i Þ], are the pairs of canonical var-

iables. The NRQCD Hamiltonian density hNRQCD can be

obtained from a Legendre transformation of the
Lagrangian density:

HNRQCD ¼
Z

d3xhNRQCD

¼
Z

d3xc y
�
M� c1

~D2

2M
� cF

~� � g ~B

2M

�
c

þ�y
�
�Mþ c1

~D2

2M
þ cF

~� � g ~B

2M

�
�

þ 1

2
ð ~�a � ~�aþ ~Ba � ~BaÞ � X

i¼1;8

1

M2
ðfið3S1ÞOi

� ð3S1Þ þ fið1S0ÞOið1S0ÞÞ �
X
i¼1;8

1

M4
ðgið3S1Þ

�P ið3S1Þ þ gið1S0ÞP ið1S0Þ þ . . .Þ þ . . . : (81)

The coefficient c1 is equal to 1 at all orders in �s; see
[13,18].

A way to construct ~K is to write down the most general
expression consistent with the NRQCD symmetries and to

match it to the QCD boost generator, ~K ¼ �t ~PþR
d3x 1

2 f ~x; hQCDg. This procedure is analogous to the one

followed in the construction of the NRQCD Lagrangian:

new matching coefficients, typical of ~K, appear. The form

of ~K in NRQCD is

~K ¼ �t ~Pþ
Z

d3x
1

2
f ~x; hNRQCDg �

X1
l¼1

Z
d3x

kl
Ml

~KðlÞ:

(82)

This form is chosen in analogy to the QCD boost generator

and satisfies (75). ~KðlÞ contains all the possible operators
with mass dimensionMl that are vectors under rotation, are
odd under parity and are invariant under C and T
transformations.
We now compute the imaginary, four-fermion part of the

commutator (76) at order 1=M3. To this aim, we need the
bilinear NRQCD Hamiltonian at order 1=M, the four-
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fermion part of the NRQCD Hamiltonian at order 1=M4,

the operator ~Kð1Þ and four-fermion operators in the boost

generator, which first appear in ~Kð4Þ. The form of ~Kð1Þ

~K ð1Þ ¼ 1

2
c y

~�

2
� ð�i ~DÞc � 1

2
�y

~�

2
� ð�i ~DÞ�; (83)

and its coefficient k1 were obtained in [18], where it was

shown that k1 ¼ 1 to all orders in �s. In ~Kð4Þ, four-fermion
operators like

~K ð4Þ ¼ 1

2
c y

~�

2
� ð�iD$Þ��yc

appear. We do not give the detailed form of ~Kð4Þ since an

explicit calculation shows that 1=M4
R
d3x½ ~Kð4ÞðxÞ; H	 ¼

Oð1=M5Þ.
Using the canonical commutation relations we find for

singlet operators at order 1=M3:

½H;Kj	 ¼ 1

M3

Z
d3x

�
ð@jðc y�Þ�yc � c y�@jð�yc ÞÞ

�
1

2
Imf1ð1S0Þ þ 2 Img1c cm

�
þ ð@jðc y�i�Þ�y�ic

� c y�i�@jð�y�ic ÞÞ
�
1

2
Imf1ð3S1Þ þ 2 Img1a cm

�
þ ð@iðc y�i�Þ�y�jc � c y�j�@ið�y�ic ÞÞ

� ð2 Img1b cmÞ � i"jlmðc y�l@
$m

��yc � c y��y�l@
$m

c Þ
�
1

4
Imf1ð1S0Þ � Imf1 cm

�

� i"jlmðc y�l��y@
$m

c � c y@
$m

��y�lc Þ
�
1

4
Imf1ð3S1Þ � Imf01 cm

��
¼ 0; (84)

and for octet operators:

½H;Kj	 ¼ 1

M3

Z
d3x

�
ð@jðc yta�Þ�ytac � c yta�@jð�ytac ÞÞ

�
1

2
Imf8ð1S0Þ þ 2 Img8c cm

�
þ ð@jc yta�i�Þ�yta�ic

� c yta�i�@jð�yta�ic ÞÞ
�
1

2
Imf8ð3S1Þ þ 2 Img8a cm

�
þ ð@iðc y�ita�Þ�y�jc � c y�j�@ið�yta�ic ÞÞ

� ð2 Img8b cmÞ � i"jlmðc yta�l@
$m

��ytac � c yta��yta�l@
$m

c Þ
�
1

4
Imf8ð1S0Þ � Imf8 cm

�

� i"jlmðc yta�l��yta@
$m

c � c yta@
$m

��yta�lc Þ
�
1

4
Imf8ð3S1Þ � Imf08 cm

��
¼ 0: (85)

Equations (84) and (85) imply that

Img1c cm ¼ � 1

4
Imf1ð1S0Þ;

Img8c cm ¼ � 1

4
Imf8ð1S0Þ;

Img1a cm ¼ � 1

4
Imf1ð3S1Þ;

Img8a cm ¼ � 1

4
Imf8ð3S1Þ;

Img1b cm ¼ Img8b cm ¼ 0;

(86)

Im f1 cm ¼ 1

4
Imf1ð1S0Þ; Imf01 cm ¼

1

4
Imf1ð3S1Þ;

Imf8 cm ¼ 1

4
Imf8ð1S0Þ; Imf08 cm ¼

1

4
Imf8ð3S1Þ:

(87)

Relations of the same form as Eqs. (86) and (87) hold also
for the matching coefficients of the electromagnetic opera-
tors. Equations (86) and (87) imply that the knowledge of
the imaginary part of matching coefficients of the dimen-
sion 6 operators completely determines the imaginary part

of the coefficients of the operators defined in Eqs. (A22)
and (A23), proportional to the total momentum of the Q �Q
pair. The coefficients (65)–(74), obtained in the previous
section, satisfy Eqs. (86) and (87).

V. SUMMARYAND OUTLOOK

In the paper, we have calculated the hadronic inclusive
quarkonium decay widths in NRQCD at order v7 in the
relativistic expansion and at order �2

s . The electromagnetic
S- and P-wave decay widths have been previously calcu-
lated at order v7 in [9,12,15]. If we count �sðMÞ � v2,
terms of order �sðMÞ2v7 are part of the next-to-next-to
leading order (NNLO) corrections to the pseudoscalar S-
wave decays and part of the NLO corrections to the vector
S-wave and the P-wave hadronic decays.
The results for the S-wave hadronic decay widths are

given in Eqs. (28) and (29) with the coefficients at order �2
s

listed in Appendix B. Let us first consider S-wave vector
decays. In the power counting of [4], those coefficients
together with previous results, including contributions to
the decay width coming from three-gluon decays and loop
corrections [4,17,20–23], provide us with the full NLO
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expression of the hadronic inclusive decay widths, i.e. with
the full expression up to order �4

sv
3, �3

sv
5 and �2

sv
7. In the

more conservative power counting adopted here, the octet

terms
P

k¼0;2
2ImdðkÞ

8
ð3S1;3PÞ

M5 �hHð3S1ÞjDðkÞ
8-8ð3S1;3PÞjHð3S1Þi

need to be included. The matching coefficients

dðkÞ8 ð3S1; 3PÞ are however unknown. In the case of S-wave

pseudoscalar decays, the largest uncertainties in the decay
width come from the NNLO correction in �s to the match-
ing coefficient Imf1ð1S0Þ, from the NLO correction in �s

to the coefficient Img1ð1S0Þ, and from the �2
s expression of

Imd8ð1S0; 1P1Þ, which are all unknown. If we count

�sðMÞ � v2, these are the only missing ingredients to
complete the NNLO corrections to the pseudoscalar decay
widths. Note that to complete the NNLO corrections to the
pseudoscalar width, the NNLO expression of Imf1ð1S0Þ
and the NLO expression of Img1ð1S0Þ would be necessary

also in the power counting of [4]. We recall that matching
amplitudes with loops, like those required for calculating
Imf1ð1S0Þ and Img1ð1S0Þ at NNLO and NLO, respectively,

and with two external gluons, like those required for
calculating the Imd8 coefficients, have been beyond the
scope of this work.
The result for the P-wave hadronic decay width, calcu-

lated up to order �sðMÞ2v7, is given in Eq. (30) with the
coefficients at order �2

s given in Appendix B. In the case of
P-wave vector decays, the present calculation together with
previous results, including contributions to the decay width
coming from three-gluon decays and loop corrections
[17,24], provides us with the full expression of the had-
ronic inclusive decay widths up to order �3

sv
5 and �2

sv
7.

Explicitly we have

�ð3P0! l:h:Þ ¼ 4

3

�2
sð2MÞ	
M4

�
1þ�s

	

�
343

27
þ 5

16
	� 58

81
nf

��
hHð3P0ÞjO1ð3P0ÞjHð3P0Þi

þ�2
sð2MÞ	nf
3M2

�
1þ�s

	

�
107

6
þ 2 log2� 3

4
	2� 5

9
nfþ

�
�73

4
þ 67

36
	2

�
5

nf

��
hHð3P0ÞjO8ð3S1ÞjHð3P0Þi

� 28

9

�2
s	

M6
hHð3P0ÞjP 1ð3P0ÞjHð3P0Þi�

4

9

�2
s	nf

M4
hHð3P0ÞjP 8ð3S1ÞjHð3P0Þi

��2
s	nf

3M4
hHð3P0ÞjP 8ð3S1; 3D1ÞjHð3P0Þi�

�2
s	nf

12M4
hHð3P0ÞjP 8a cmjHð3P0Þi

þ�2
s	

M5

�
� 19

120
þ 7

288
nf

�
hHð3P0ÞjT 1–8ð3P0;

3S1ÞjHð3P0Þiþ
1

2

�2
s	

M4
hHð3P0ÞjO8ð1P1ÞjHð3P0Þi

þ 5

6

�2
s	

M2
hHð3P0ÞjO8ð1S0ÞjHð3P0Þiþ

4

9

�2
s	

M2
hHð3P0ÞjO1ð1S0ÞjHð3P0Þiþ

5

2

�2
s	

M4
hHð3P0ÞjO8ð3P0ÞjHð3P0Þi

þ�2
s	

M6

�
�2

3
þ 23

54
nf

�
hHð3P0ÞjQ0

8ð3S1ÞjHð3P0Þiþ
�2
s	

M6

�
� 1

30
þ 5

9
nf

�
hHð3P0ÞjQ0

8ð3S1; 3D1ÞjHð3P0Þi

þ�2
s	

M6

�
1

2
þ 1

12
nf

�
hHð3P0ÞjQ8ð3D1ÞjHð3P0Þi; (88)

�ð3P1! l:h:Þ ¼ 2�3
sð2MÞ
M4

��
587

81
� 317

432
	2

�
� 32

243
nf

�
hHð3P1ÞjOð3P1ÞjHð3P1Þi

þ�2
sð2MÞ	nf
3M2

�
1þ�s

	

�
107

6
þ 2 log2� 3

4
	2� 5

9
nfþ

�
�73

4
þ 67

36
	2

�
5

nf

��
hHð3P1ÞjO8ð3S1ÞjHð3P1Þi

� 4

9

�2
s	nf

M4
hHð3P1ÞjP 8ð3S1ÞjHð3P1Þi�

�2
s	nf

3M4
hHð3P1ÞjP 8ð3S1; 3D1ÞjHð3P1Þi

��2
s	nf

12M4
hHð3P1ÞjP 8a cmjHð3P1Þiþ

�2
s	

M5

�
1

36
þ 107

864
nf

�
hHð3P1ÞjT 1–8ð3P1;

3S1ÞjHð3P1Þi

þ 1

2

�2
s	

M4
hHð3P1ÞjO8ð1P1ÞjHð3P1Þiþ

5

6

�2
s	

M2
hHð3P1ÞjO8ð1S0ÞjHð3P1Þiþ

4

9

�2
s	

M2
hHð3P1ÞjO1ð1S0ÞjHð3P1Þi

þ�2
s	

M6

�
�2

3
þ 23

54
nf

�
hHð3P1ÞjQ0

8ð3S1ÞjHð3P1Þiþ
�2
s	

M6

�
� 1

30
þ 5

9
nf

�
hHð3P1ÞjQ0

8ð3S1; 3D1ÞjHð3P1Þi

þ�2
s	

M6

�
1

2
þ 1

12
nf

�
hHð3P1ÞjQ8ð3D1ÞjHð3P1Þiþ

1

5

�2
s	

M6
hHð3P1ÞjQ8ð3D2ÞjHð3P1Þi; (89)
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�ð3P2! l:h:Þ¼ 16

45

�2
sð2MÞ	
M4

�
1þ�s

	

�
1801

72
�337

128
	2þ5log2�29

27
nf

��
hHð3P2ÞjO1ð3P2ÞjHð3P2Þi

þ�2
s	nf

3M2

�
1þ�sð2MÞ

	

�
107

6
þ2log2�3

4
	2�5

9
nfþ

�
�73

4
þ67

36
	2

�
5

nf

��
hHð3P2ÞjO8ð3S1ÞjHð3P2Þi

�32

45

�2
s	

M6
hHð3P2ÞjP 1ð3P2ÞjHð3P2Þi�

4

9

�2
s	nf

M4
hHð3P2ÞjP 8ð3S1ÞjHð3P2Þi

��2
s	nf

3M4
hHð3P2ÞjP 8ð3S1;3D1ÞjHð3P2Þi�

�2
s	nf

12M4
hHð3P2ÞjP 8a cmjHð3P2Þi

þ�2
s	

M5

�
1

5
þ 25

864
nf

�
hHð3P2ÞjT 1–8ð3P2;

3S1ÞjHð3P2Þiþ
1

2

�2
s	

M4
hHð3P2ÞjO8ð1P1ÞjHð3P2Þi

þ5

6

�2
s	

M2
hHð3P2ÞjO8ð2S0ÞjHð3P2Þiþ

4

9

�2
s	

M2
hHð3P2ÞjO1ð1S0ÞjHð3P2Þiþ

2

3

�2
s	

M4
hHð3P2ÞjO8ð3P2ÞjHð3P2Þi

þ�2
s	

M6

�
�2

3
þ23

54
nf

�
hHð3P2ÞjQ0

8ð3S1ÞjHð3P2Þiþ
�2
s	

M6

�
� 1

30
þ5

9
nf

�
hHð3P2ÞjQ0

8ð3S1;3D1ÞjHð3P2Þi

þ�2
s	

M6

�
1

2
þ 1

12
nf

�
hHð3P2ÞjQ8ð3D1ÞjHð3P2Þiþ

1

5

�2
s	

M6
hHð3P2ÞjQ8ð3D2ÞjHð3P2Þi

þ2

7

�2
s	

M6
hHð3P2ÞjQ8ð3D3ÞjHð3P2Þi�

80

189

�2
s	

M6
hHð3P2ÞjP 1ð3P2;

3F2ÞjHð3P2Þi

�50

63

�2
s	

M6
hHð3P2ÞjP 8ð3P2;

3F2ÞjHð3P2Þi: (90)

A general source of concern is the proliferation of matrix
elements with the increasing order of the expansion in v.
Spin symmetry and vacuum saturation [4] may help to
reduce the number of matrix elements by relating different
spin states and hadronic with electromagnetic matrix ele-
ments. The actual number of independent matrix elements
depends on the power counting.

In the power counting of [4], only the first six matrix
elements of Eqs. (88) and (90) and the first five of (89)
contribute. In [10], it was assumed that only the first four
matrix elements of Eqs. (88) and (90) and the first three of
(89) contribute.

The conservative power counting adopted here has been
suggested in [25] to be appropriate when �QCD 
 mv2.

Under this condition, matrix elements are nonperturbative
quantities and should be evaluated on the lattice. One can
also take advantage of the factorization provided by po-
tential NRQCD [11,25,26]. According to it, the matrix
elements can be factorized into the product of the quark-
onium wave function in the origin squared (or derivatives
of it) and few universal nonperturbative correlation func-
tions, eventually achieving a reduction in the number and a
simplification of the nonperturbative operators needed.

We also note that the convergence of the perturbative
series of the matching coefficient is typically poor. For a
discussion and references we refer for instance to [27].

Phenomenological applications of the expressions of the
decay widths will therefore entail work in two complimen-
tary directions: (1) improving the knowledge of the

NRQCD matrix elements either by direct evaluation, for
example, by fitting the experimental data, by lattice calcu-
lations, and by models, or by exploiting the hierarchy of
scales still entangled in NRQCD using EFTs of lower
energy, like potential NRQCD; (2) improving the conver-
gence of the perturbative series of the matching coeffi-
cients by resumming large contributions either related to
large logarithms, or of the type discussed, for instance, in
[28].
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APPENDIX A: SUMMARYAND DEFINITION OF
THE NRQCD OPERATORS

The two-fermion sector of the NRQCD Lagrangian
relevant for the matching discussed in Sec. III is
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L2-f ¼ c y
�
iD0 þ

~D2

2M
þ ~� � g ~B

2M
þ ð ~D � g ~EÞ

8M2

� ~� � ½�i ~D�; g ~E	
8M2

þ ð ~D
2Þ2

8M3
þ f ~D

2; ~� � g ~Bg
8M3

� 3

32M4
f ~D2; ~� � ½�i ~D�; g ~E	g

þ 3

32M4
f ~D2; ð ~D � g ~EÞg þ ~D6

16M5

�
c þ c:c:; (A1)

where �i are the Pauli matrices, iD0 ¼ i@0 � tagAa
0 , i ~D ¼

i ~rþ tag ~Aa
, ½ ~D�; ~E	 ¼ ~D� ~E� ~E� ~D, Ei ¼ Fi0 and

Bi ¼ ��ijkFjk=2ð�123 ¼ 1Þ. We have not displayed terms

of order 1=M6 or smaller and matching coefficients of
Oð�sÞ or smaller. The general structure of the four-fermion
sector of the NRQCD Lagrangian is

L 4-f ¼
X
n

cðnÞ

Mdn�4 O
ðnÞ
4-f : (A2)

Here, we list the operators relevant for the matching per-

formed in Sec. III ordered by dimension. We useD
$ � ~D�

D
 
.
For the octet operators defined in Eqs. (A20)–(A22) and

(A29)–(A31), since the covariant derivative D
$

does not
commute with the color matrix ta we need to specify the
ordering between the two and verify that the resulting
operator is gauge invariant. Let us consider, for example,
the operator O8ð1P1Þ,

O 8ð1P1Þ ¼ c yD
$
ta��yD

$
tac ; (A3)

and the three different orderings:

½c yD$ta�	ð1Þ � �ð ~Dc Þyta�þ c y ~Dta�; (A4)

½c yD$ta�	ð2Þ � �ð ~Dtac Þy�þ c yta ~D�; (A5)

½c yD$ta�	ð3Þ � �ð ~Dc Þyta�þ c yta ~D�: (A6)

Under the gauge transformation

c ! ð1þ i!ataÞc ; �! ð1þ i!ataÞ�;

Aa
 ! Aa
 � 1

g
@
!a þ fabcAb
!c;

(A7)

(A4)–(A6) transform, respectively, as

�½c yD$ta�	ð1Þ ¼ fabc!c½c yD$tb�	ð1Þ þ fabc ~@!cc ytb�;
(A8)

�½c yD$ta�	ð2Þ ¼ fabc!c½c yD$tb�	ð2Þ � fabc ~@!cc ytb�;
(A9)

�½c yD$ta�	ð3Þ ¼ fabc!c½c yD$tb�	ð3Þ: (A10)

Only the last ordering leads to a gauge invariant definition
of O8ð1P1Þ:

�O8ð1P1Þ ¼ fabc!cð½c yD$tb�	ð3Þ½�yD$tac 	ð3Þ

þ ½c yD$ta�	ð3Þ½�yD$tbc 	ð3ÞÞ ¼ 0: (A11)

Therefore, we define

c yD
$
ta� � �ð ~Dc Þyta�þ c yta ~D�: (A12)

Generalizing to operators containing more than one cova-
riant derivative, we define

c yD
$i1

. . .D
$in

ta�� ð�1Þnð ~Di1 . . . ~Dinc Þyta�
þ ð�1Þn�1ð ~Di2 . . . ~Dinc Þyta ~Di1�þ . . .

þ c yta ~Di1 . . . ~Din�: (A13)

The singlet-octet transition operators are denoted by

O1–8ð2Sþ1LJ;
2S0þ1L0J0 Þ or O8�1ð2Sþ1LJ;

2S0þ1L0J0 Þ. In the

first case the first set of quantum numbers refers to the
Q �Q pair in a color singlet state, the second to the Q �Q pair
in the octet state, while in the second case the first set of
quantum numbers refers to the Q �Q pair in a color octet
state and the second one to the Q �Q pair in the singlet state.
In some cases, it has been found convenient to introduce
singlet-octet transition operators that annihilate (create)
states containing a Q �Q pair and a gluon in which the total
angular momentum J of the quark-antiquark pair does not
have a definite value (a definite value could be attributed by
further decomposing these operators in irreducible spheri-

cal tensors). This is the case of the operatorsT ðiÞ
1–8ð3S1; 3PÞ

and T ðiÞ
8�1ð3S1; 3PÞ. In these cases, we cannot use the

quantum number J and we have to denote the state just
by the orbital angular momentum and spin quantum
numbers.

The symbols AðiBjÞ and SððijÞAkÞ, used in the definitions
of some four-fermion operators denote symmetric and
traceless two and three indices tensors, according to
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AðiBjÞ ¼ AiBj þ AjBi

2
� �ij

3
~A � ~B; (A14)

SððijÞAkÞ ¼ 1

3
ðSðijÞAk þ SðikÞAj þ SðjkÞAiÞ

� 2

15
ð�ij�lk þ �ik�lj þ �jk�liÞSðmlÞAm: (A15)

For some details on the decomposition of Cartesian tensors
in terms of irreducible spherical tensors see [12].

(i) Operators of dimension 6

O 1ð1S0Þ ¼ c y��yc ;

O1ð3S1Þ ¼ c y ~�� � �y ~�c :
(A16)

O 8ð1S0Þ ¼ c yta��ytac ;

O8ð3S1Þ ¼ c y ~�ta� � �y ~�tac :
(A17)

(ii) Operators of dimension 8

P 1ð1S0Þ ¼
1

2
c y

�
� i

2
D
$�2

��yc þ H:c:;

P 1ð3S1Þ ¼
1

2
c y ~�� � �y ~�

�
� i

2
D
$�2

c þ H:c:;

P 1ð3S1; 3D1Þ ¼
1

2
c y�i��y�j

�
� i

2

�
2
D
$ði

D
$jÞ

c

þ H:c:: (A18)

O1ð1P1Þ ¼ c y
�
� i

2
D
$�

� � �y
�
� i

2
D
$�

c ;

O1ð3P0Þ ¼
1

3
c y

�
� i

2
D
$ � ~�

�
��y

�
� i

2
D
$ � ~�

�
c ;

O1ð3P1Þ ¼
1

2
c y

�
� i

2
D
$ � ~�

�
� � �y

�
� i

2
D
$ � ~�

�
c ;

O1ð3P2Þ ¼ c y
�
� i

2
D
$ði

�jÞ
�
��y

�
� i

2
D
$ði

�jÞ
�
c :

(A19)

P 8ð1S0Þ¼
1

2
c y

�
� i

2
D
$�2

ta��ytac þH:c:;

P 8ð3S1Þ¼
1

2
c y ~�ta� ��y ~�

�
� i

2
D
$�2

tac þH:c:;

P 8ð3S1;3D1Þ¼ 1

2
c y�ita��y�j

�
� i

2

�
2
D
$ði

D
$jÞ

tac

þH:c:: (A20)

O8ð1P1Þ¼ c y
�
� i

2
D
$�

ta� ��y
�
� i

2
D
$�

tac ;

O8ð3P0Þ¼
1

3
c y

�
� i

2
D
$ � ~�

�
ta��y

�
� i

2
D
$ � ~�

�
tac ;

O8ð3P1Þ¼
1

2
c y

�
� i

2
D
$� ~�

�
ta� ��y

�
� i

2
D
$� ~�

�
tac ;

O8ð3P2Þ¼ c y
�
� i

2
D
$ði

�jÞ
�
ta��y

�
� i

2
D
$ði

�jÞ
�
tac :

(A21)

O1 cm ¼ c y
�
� i

2
D
$�� ~�� � ~rð�yc Þ þ H:c:;

O01 cm ¼ �c y
�
� i

2
D
$�

� � ~r� ð�y ~�c Þ þ H:c:;

O8 cm ¼ c y
�
� i

2
D
$�� ~�ta� � ~Dabð�ytbc Þ þ H:c:;

O08 cm ¼ �c y
�
� i

2
D
$�

ta� � ~Dab � ð�ytb ~�c Þ
þ H:c:: (A22)

P 1a cm ¼ riðc y�j�Þrið�y�jc Þ;
P 1b cm ¼ ~r � ðc y ~��Þ ~r � ð�y ~�c Þ;
P 1c cm ¼ ~rðc y�Þ � ~rð�yc Þ;
P 8a cm ¼ Di

abðc yta�j�ÞDi
acð�ytc�jc Þ;

P 8b cm ¼ ~Dab � ðc ytb ~��Þ ~Dac � ð�ytc ~�c Þ;
P 8c cm ¼ ~Dabðc ytb�Þ � ~Dacð�ytcc Þ: (A23)

S 1–8ð1S0; 3S1Þ ¼
1

2
c yg ~B � ~���yc þ H:c:;

S1–8ð3S1; 1S0Þ ¼
1

2
c yg ~B� � �y ~�c þ H:c::

(A24)
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(iii) Operators of dimension 9

T 1–8ð1S0; 1P1Þ ¼
1

2
c y��yðD$ � g ~Eþ g ~E �D$Þc þ H:c:;

F 8-8ð1S0; 1P1Þ ¼
1

2
fabcc yta��ytbðD$ � g ~Ec þ g ~Ec �D$Þc þ H:c:;

D8-8ð1S0; 1P1Þ ¼
1

2
dabcc yta��ytbðD$ � g ~Ec þ g ~Ec �D$Þc þ H:c:;

Dð0Þ
8-8ð3S1; 3PÞ ¼

1

6
dabcc yta ~�� � �y ~�ðD$ � g ~Eb þ g ~Eb �D$Þtcc þ H:c:;

Dð2Þ
8�8ð3S1; 3PÞ ¼

1

2
dabcc yta�i��y�jðD$ðig ~EbjÞ þ g ~EðbiD

$jÞÞtcc þ H:c:;

F 8ð1S0Þ ¼
i

2
fabcc yð ~D � ~EÞbtc��ytac þ H:c:;

T 1–8ð1P1;
1S0Þ ¼

1

2
c yg ~E� � �yDc þ H:c:;

T ð0Þ
1–8ð3S1; 3PÞ ¼

1

6
c y ~�� � �y ~�ðD$ � g ~Eþ g ~E �D$Þc þ H:c:;

T ð1Þ
1–8ð3S1; 3PÞ ¼

1

4
c y ~�� � �y ~�� ð�D$ � g ~E� g ~E�D

$Þc þ H:c:;

T ð1Þ0
1–8ð3S1; 3PÞ ¼

1

4
c y ~�� � �y ~�� ðD$ � g ~E� g ~E�D

$Þc þ H:c:;

T ð1Þ0
8�1ð3S1; 3PÞ ¼

1

4
c yta ~�� � �y ~�� ðD$ � g ~Ea � g ~Ea �D

$Þc þ H:c:;

T ð2Þ
1–8ð3S1; 3PÞ ¼

1

2
c y�i��y�jðD$ðig ~EjÞ þ g ~EðiD

$jÞÞc þ H:c:;

T 1–8ð3P0;
3S1Þ ¼

1

6
c yðD$ � ~�Þ��y ~� � g ~Ec þ H:c:;

T 1–8ð3P1;
3S1Þ ¼

1

4
c yðD$ � ~�Þ� � �y ~�� g ~Ec þ H:c:;

T 1–8ð3P2;
3S1Þ ¼

1

2
c yðD$ði�jÞÞ��y�ðigEjÞc þ H:c:: (A25)

(iv) Operators of dimension 10

Q0
1ð1S0Þ ¼ c y

�
� i

2
D
$�2

��y
�
� i

2
D
$�2

c ;

Q00
1ð1S0Þ ¼

1

2
c y

�
� i

2
D
$�4

��yc þ H:c:;

Q0
1ð3S1Þ ¼ c y

�
� i

2
D
$�2

~�� � �y
�
� i

2
D
$�2

~�c ;

Q00
1 ð3S1Þ ¼

1

2
c y

�
� i

2
D
$�4

~�� � �y ~�c þ H:c:;

Q0
1ð3S1; 3D1Þ ¼

1

2
c y

�
� i

2

�
2
D
$ði

D
$jÞ

�i��y�j

�
� i

2
D
$�2

c þ H:c:;

Q00
1 ð3S1; 3D1Þ ¼

1

2
c y

�
� i

2
D
$�2�� i

2

�
2
D
$ði

D
$jÞ

�i��y�jc þ H:c:: (A26)
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P 1ð1P1Þ ¼
1

2
c y

�
� i

2
D
$�2�� i

2
D
$i
�
��y

�
� i

2
D
$i
�
c þ H:c:;

P 1ð3P0Þ ¼
1

6
c y

�
� i

2
D
$ � ~�

��
� i

2
D
$�2

��y
�
� i

2
D
$ � ~�

�
c þ H:c:;

P 1ð3P1Þ ¼
1

4
c y

�
� i

2
D
$ � ~�

��
� i

2
D
$�2

� � �y
�
� i

2
D
$ � ~�

�
c þ H:c:;

P 1ð3P2Þ ¼
1

2
c y

�
� i

2
D
$ði

�jÞ
��
� i

2
D
$�2

��y
�
� i

2
D
$ði

�jÞ
�
c þ H:c:;

P 1ð3P2;
3F2Þ ¼

1

2
c y

�
� i

2

�
2
D
$ði

D
$jÞ�� i

2
D
$ � ~�

�
��y

�
� i

2
D
$ði

�jÞ
�
c

� 1

5
c y

�
� i

2

�
D
$ði

�jÞ
�
� i

2
D
$�2

��y
�
� i

2
D
$ði

�jÞ
�
c þ H:c:: (A27)

Q1ð1D2Þ ¼ c y
�
� i

2

�
2
D
$ði

D
$jÞ

��y
�
� i

2

�
2
D
$ði

D
$jÞ

c ;

Q1ð3D3Þ ¼ c y
�
� i

2

�
2
D
$ðði

D
$jÞ

�lÞ��y
�
� i

2

�
2
D
$ðði

D
$jÞ

�lÞÞc ;

Q1ð3D2Þ ¼
2

3
c y

�
� i

2

�
2ð"ilmD$ðjD$lÞ

�m þ 1

2
"ijlD

$ðm
D
$lÞ

�mÞ��y
�
� i

2

�
2
�
"inpD

$ðj
D
$nÞ

�p þ 1

2
"ijnD

$ðp
D
$n

�pÞc ;

Q1ð3D1Þ ¼ c y
�
� i

2

�
2
D
$ði

D
$jÞ

�i��y
�
� i

2

�
2
D
$ðl

D
$jÞ

�lc : (A28)

Q0
8ð1S0Þ ¼ c y

�
� i

2
D
$�2

ta��y
�
� i

2
D
$�2

tac ;

Q00
8ð1S0Þ ¼

1

2
c y

�
� i

2
D
$�4

ta��ytac þ H:c:;

Q0
8ð3S1Þ ¼ c y

�
� i

2
D
$�2

~�ta� � �y
�
� i

2
D
$�2

~�tac ;

Q00
8 ð3S1Þ ¼

1

2
c y

�
� i

2
D
$�4

~�ta� � �y ~�tac þ H:c:;

Q0
8ð3S1; 3D1Þ ¼

1

2
c y

�
� i

2

�
2
D
$ði

D
$jÞ

�ita��y�j

�
� i

2
D
$�2

tac þ H:c:;

Q00
8 ð3S1; 3D1Þ ¼

1

2
c y

�
� i

2
D
$�2�� i

2

�
2
D
$ði

D
$jÞ

�ita��y�jtac þ H:c:: (A29)

P 8ð1P1Þ ¼
1

2
c y

�
� i

2
D
$�2�� i

2
D
$i
�
ta��y

�
� i

2
D
$i
�
tac þ H:c:;

P 8ð3P0Þ ¼
1

6
c y

�
� i

2
D
$ � ~�

��
� i

2
D
$�2

ta��y
�
� i

2
D
$ � ~�

�
tac þ H:c:;

P 8ð3P1Þ ¼
1

4
c y

�
� i

2
D
$ � ~�

��
� i

2
D
$�2

ta� � �y
�
� i

2
D
$ � ~�

�
tac þ H:c:;

P 8ð3P2Þ ¼
1

2
c y

�
� i

2
D
$ði

�jÞ
��
� i

2
D
$�2

ta��y
�
� i

2
D
$ði

�jÞ
�
tac þ H:c:;

P 8ð3P2;
3F2Þ ¼

1

2
c y

�
� i

2

�
2
D
$ði

D
$jÞ�� i

2
D
$ � ~�

�
ta��y

�
� i

2
D
$ði

�jÞ
�
tac

� 1

5
c y

�
� i

2

�
D
$ði

�jÞ
�
� i

2
D
$�2

ta��y
�
� i

2
D
$ði

�jÞ
�
tac þ H:c:: (A30)
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Q8ð1D2Þ ¼ c y
�
� i

2

�
2
D
$ði

D
$jÞ

ta��y
�
� i

2

�
2
D
$ði

D
$jÞ

tac ;

Q8ð3D3Þ ¼ c y
�
� i

2

�
2
D
$ðði

D
$jÞ

�lÞta��y
�
� i

2

�
2
D
$ðði

D
$jÞ

�lÞÞtac ;

Q8ð3D2Þ ¼
2

3
c y

�
� i

2

�
2
�
"ilmD

$ðj
D
$lÞ

�m þ 1

2
"ijlD

$ðm
D
$lÞ

�m

�
ta��y

�
� i

2

�
2
�
"inpD

$ðj
D
$nÞ

�p þ 1

2
"ijnD

$ðp
D
$nÞ

�p

�
tac ;

Q8ð3D1Þ ¼ c y
�
� i

2

�
2
D
$ði

D
$jÞ

�ita��y
�
� i

2

�
2
D
$ðl

D
$jÞ

�ltac : (A31)

APPENDIX B: SUMMARY OF MATCHING
COEFFICIENTS

In the following, we list all the imaginary parts of the
matching coefficients of the four-fermion operators up to
dimension 10, calculated at Oð�2

sÞ in the strong coupling
constant in Sec. III.

In the presentation of the results we give for complete-
ness also the matching coefficients obtained by using a
basis of operators that includes 1=2ðQ0

8ð3S1Þ �Q00
8 ð3S1ÞÞ,

1=2ðQ0
8ð3S1; 3D1Þ �Q00

8 ð3S1; 3D1ÞÞ and T ð1Þ0
8�1ð3S1; 3PÞ in-

stead of T 1–8ð3P0;
3S1Þ, T 1–8ð3P1;

3S1Þ, T 1–8ð3P2;
3S1Þ.

It is understood that when this basis is used, the coefficients
Imt1–8ð3PJ;

3S1Þ, with J ¼ 0, 1, 2 are set to 0. Vice versa if
our basis contains the operators T 1–8ð3PJ;

3S1Þ, with J ¼
0, 1, 2 the coefficients Imh08ð3S1Þ � Imh008 ð3S1Þ,
Imh08ð3S1; 3D1Þ � Imh008 ð3S1; 3D1Þ and Imtð1Þ08�1ð3S1; 3PÞ are
set to 0.

Operator of dim. 6 Matching coefficient Im (Value)

O1ð1S0Þ Imf1ð1S0Þ �2
s	

CF

2Nc
[4]

O1ð3S1Þ Imf1ð3S1Þ 0

O8ð1S0Þ Imf8ð1S0Þ �2
s	

N2
c�4
4Nc

[4]

O8ð3S1Þ Imf8ð3S1Þ 1
6�

2
s	nf [4]

Operator of dim. 8 Matching coefficient Im (Value)

P 1ð1S0Þ Img1ð1S0Þ � 4
3�

2
s	

CF

2Nc
[4]

P 1ð3S1Þ Img1ð3S1Þ 0

Operator of dim. 8 Matching coefficient Im (Value)

P 1ð3S1; 3D1Þ Img1ð3S1; 3D1Þ 0

O1ð1P1Þ Imf1ð1P1Þ 0

O1ð3P0Þ Imf1ð3P0Þ 3�2
s	

CF

2Nc
[4]

O1ð3P1Þ Imf1ð3P1Þ 0

O1ð3P2Þ Imf1ð3P2Þ 4
5�

2
s	

CF

2Nc
[4]

S1–8ð1S0; 3S1Þ Ims1–8ð1S0; 3S1Þ �2
s	

4Nc
ð13 nf� NcÞ

S1–8ð3S1; 1S0Þ Ims1–8ð3S1; 3S0Þ 0

P 8ð1S0Þ Img8ð1S0Þ � 4
3�

2
s	

N2
c�4
4Nc

[4,17]

P 8ð3S1Þ Img8ð3S1Þ � 2
9�

2
s	nf [4,17]

P 8ð3S1; 3D1Þ Img8ð3S1; 3D1Þ � 1
6�

2
s	nf [4,17]

O8ð1P1Þ Imf8ð1P1Þ �2
s	Nc

12 [4,17]

O8ð3P0Þ Imf8ð3P0Þ 3�2
s	

N2
c�4
4Nc

[4,17]

O8ð3P1Þ Imf8ð3P1Þ 0 [4,17]

O8ð3P2Þ Imf8ð3P2Þ 4
5�

2
s	

N2
c�4
4Nc

[4,17]

O1 cm Imf1 cm
1
4�

2
s	

CF

2Nc

O01 cm Imf01 cm 0

O8 cm Imf 8 cm
1
4�

2
s	

N2
c�4
4Nc

O08 cm Imf08 cm
1
24�

2
s	nf

P 1a cm Img1a cm 0

P 1b cm Img1b cm 0

P 1c cm Img1c cm � 1
4�

2
s	

CF

2Nc

P 8a cm Img8a cm � 1
24�

2
s	nf

P 8b cm Img8b cm 0

P 8c cm Img8c cm � 1
4�

2
s	

N2
c�4
4Nc

Operator of dim. 9 Matching coefficient Im (Value)

Tð1Þ01–8ð3S1; 3PÞ Imtð1Þ01–8ð3S1; 3PÞ � 1
8�

2
s	

N2
c�4
4N2

c

T ð1Þ0
8�1ð3S1; 3PÞ Imtð1Þ08�1ð3S1; 3PÞ 1

24�
2
s	

nf
Nc
þ 1

48�
2
s	� 1

8�
2
s	

CF

Nc

T 1–8ð3P0;
3S1Þ Imt1–8ð3P0;

3S1Þ � 3
2�

2
s	

CF

2Nc
þ ð 61240þ 7

192

nf
Nc
Þ�2

s	

T 1–8ð3P1;
3S1Þ Imt1–8ð3P1;

3S1Þ ð 172þ 107
576

nf
Nc
Þ�2

s	

T 1–8ð3P2;
3S1Þ Imt1–8ð3P2;

3S1Þ ð 110þ 25
576

nf
Nc
Þ�2

s	

Operator of dim. 10 Matching coefficient Im (Value)

Q0
1ð1S0Þ Imh01ð1S0Þ 10

9 �
2
s	

CF

2Nc
� 1

48�
2
s	

Q00
1 ð1S0Þ Imh001 ð1S0Þ 2

5�
2
s	

CF

2Nc
þ 1

48�
2
s	

Q0
1ð3S1Þ Imh01ð3S1Þ 1

12�
2
s	

N2
c�4
4N2

c

Q00
1 ð3S1Þ Imh001 ð3S1Þ � 1

12�
2
s	

N2
c�4
4N2

c

Q0
1ð3S1; 3D1Þ Imh01ð3S1; 3D1Þ 1

4�
2
s	

N2
c�4
4N2

c

Q00
1 ð3S1; 3D1Þ Imh001 ð3S1; 3D1Þ � 1

4�
2
s	

N2
c�4
4N2

c
[9]
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Operator of dim. 10 Matching coefficient Im (Value)

P 1ð1P1Þ Img1ð1P1Þ 0

P 1ð3P0Þ Img1ð3P0Þ �7�2
s	

CF

2Nc

P 1ð3P1Þ Img1ð3P1Þ 0

P 1ð3P2Þ Img1ð3P2Þ � 8
5�

2
s	

CF

2Nc

P 1ð3P2;
3F2Þ Img1ð3P2;

3F2Þ � 20
21�

2
s	

CF

2Nc

Q1ð1D2Þ Imh1ð1D2Þ 2
15�

2
s	

CF

2Nc
[16]

Q1ð3D1Þ Imh1ð3D1Þ 0

Q1ð3D2Þ Imh1ð3D2Þ 0

Q1ð3D3Þ Imh1ð3D3Þ 0

Q0
8ð1S0Þ Imh08ð1S0Þ 10

9 �
2
s	

N2
c�4
4Nc

Q00
8 ð1S0Þ Imh008 ð1S0Þ 2

5�
2
s	

N2
c�4
4Nc

Q0
8
ð3S

1
ÞþQ00

8
ð3S

1
Þ

2 Imh08ð3S1Þ þ Imh008 ð3S1Þ 29
108�

2
s	nf þ 1

108�
2
s	Nc

Q0
8
ð3S

1
;3D

1
ÞþQ00

8
ð3S

1
;3D

1
Þ

2 Imh08ð3S1; 3D1Þ þ Imh008 ð3S1; 3D1Þ 23
72�

2
s	nf þ 1

18�
2
s	Nc

Q0
8
ð3S

1
Þ�Q00

8
ð3S

1
Þ

2 Imh08ð3S1Þ � Imh008 ð3S1Þ 17
108�

2
s	nf � 41

108�
2
s	Nc þ 1

3�
2
s	CF

Q0
8
ð3S

1
;3D

1
Þ�Q00

8
ð3S

1
;3D

1
Þ

2 Imh08ð3S1; 3D1Þ � Imh008 ð3S1; 3D1Þ 17
72�

2
s	nf � 23

45�
2
s	Nc þ �2

s	CF

P 8ð1P1Þ Img8ð1P1Þ � 3
20�

2
s	Nc

P 8ð3P0Þ Img8ð3P0Þ �7�2
s	

N2
c�4
4Nc

P 8ð3P1Þ Img8ð3P1Þ 0

P 8ð3P2Þ Img8ð3P2Þ � 8
5�

2
s	

N2
c�4
4Nc

P 8ð3P2;
3F2Þ Img8ð3P2;

3F2Þ � 20
21�

2
s	

N2
c�4
4Nc

Q8ð1D2Þ Imh8ð1D2Þ 2
15�

2
s	

N2
c�4
4Nc

Q8ð3D1Þ Imh8ð3D1Þ 1
24�

2
s	nf þ 1

12�
2
s	Nc

Q8ð3D2Þ Imh8ð3D2Þ 1
30�

2
s	Nc

Q8ð3D3Þ Imh8ð3D3Þ 1
21�

2
s	Nc
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