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The simplest type III seesaw model as originally proposed introduces one lepton triplet. It thus contains

four active neutrinos, two massive and two massless at tree level. We determine the radiative masses that

the latter receive first at two loops. The masses are generally so tiny that they are definitely excluded by

the oscillation data, if the heavy leptons are not very heavy, say, within the reach of the CERN LHC. To

accommodate the data on masses, the seesaw scale must be as large as the scale of grand unification. This

indicates that the most economical type III model would entail no new physics at low energies beyond the

tiny neutrino masses.
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I. INTRODUCTION

The standard model (SM) of electroweak interactions
when viewed as an effective field theory at low energies has
a unique dimension five operator that can generate
Majorana neutrino masses [1]. And the operator has only
three possible realizations at tree level [2]. These corre-
spond to the three celebrated types of seesaw models [3–5].
While the type I model introduces sterile neutrinos as the
minimal option to operate the seesaw, the other two pre-
scribe particles that participate in electroweak interactions.
If the seesaw scale is not too high, richer phenomena are
expected in the last two types of models. There have been
extensive investigations on the types I and II seesaw mod-
els, but the interest in type III has been catalyzed recently
by the advent of the LHC at CERN [6], where the assumed
triplet leptons could be directly produced through gauge
interactions if they are not too heavy [7–10]. Various other
phenomenological aspects of the model have also been
explored, including possible modifications to leptogenesis
[10–14], low energy effects in lepton flavor changing
processes [15] and anomalous magnetic moments of
charged leptons [16,17], renormalization group running
of neutrino parameters [18], and the potential role as
dark matter [19], to mention a few.

For a seesaw model like type III to be relevant at
relatively low energies, it must be capable of incorporating
the data from oscillation experiments and other constraints
with a not too high seesaw scale. We are thus motivated to
start with the simplest type III seesaw as was originally
proposed [5]. It extends the SM by one triplet of leptons,
resulting in two massive and two massless neutrinos at tree
level, plus a pair of heavy charged leptons. It also serves as

an approximation to more general structures that contain
additional sequentially heavier triplets of leptons. The
massless neutrinos not being protected by any symmetry
should receive radiative masses, which will be determined
in this work. It would be interesting to ask whether it is
possible in this minimal model to get a radiative mass at a
desired level with a seesaw scale accessible at LHC.
The idea of generating a one-loop radiative mass for

neutrinos was originally suggested in Ref. [20], and ex-
tended to two loops in [21,22]. It offers a nice way to
induce hierarchical and tiny neutrino masses. There is
vast literature that extends the idea in various aspects
(see, as examples, [23–27]) and calculates radiative masses
in different models [28–30]. We will not attempt to review
the topic but reemphasize the point that for a mechanism of
radiative mass generation to be testable at colliders [31–
33], the relevant heavy mass scale cannot be too high.
The paper is organized as follows. In the next section we

describe in some detail the minimal model to set up our
notations. The exact constraints on the lepton masses and
diagonalization matrices are highlighted. They will be
extensively utilized in our analytic evaluation of radiative
mass. Also listed are the Yukawa couplings of leptons that
may be useful in other applications. The radiative mass is
then calculated in Sec. III in a manner that facilitates later
numerical analysis, and the final answer is given in terms
of some loop integrals. These integrals are defined in the
Appendix, and their leading terms in the heavy mass limit
are given. For numerical analysis in Sec. IV, we first
demonstrate the order of magnitude of radiative mass for
a heavy mass scale that would be accessible at colliders.
Then we consider the heavy mass limit trying to accom-
modate neutrino masses derived from oscillation experi-
ments. We conclude in the last section where the main
points of the work are recapitulated.*liaoy@nankai.edu.cn
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II. TYPE III SEESAW MODEL

We describe systematically in this section the type III
seesaw model proposed in Ref. [5]. While the exposed
relations among the lepton mixing matrix and the lepton
masses will be employed in the next section to evaluate the
radiative neutrino masses, the displayed interactions may
also be useful in other applications.

A. Yukawa couplings and lepton mass matrices

The model introduces a lepton multiplet, �, that is a
triplet of SUð2ÞL but carries no hypercharge, on top of the
fields present in the SM. We shall restrict ourselves to the
leptonic sector of the model. The lepton fields are

FL ¼ nL
fL

� �
; fR; �R ¼

1ffiffi
2

p �0
R �þ

R

��
R � 1ffiffi

2
p �0

R

 !
:

(1)

We have assumed without loss of generality that � is right
handed. The Yukawa couplings plus the bare mass for �
are

�LYuk ¼ 1
2 trðM�

��R�
C
R þM�

�
��C
R�RÞ

þ ð �FLy�fR�þ�y �fRy
y
�FLÞ

þ ð �FLy��R
~�þ ~�y ��Ry

y
�
FLÞ; (2)

where� is the scalar doublet with ~� ¼ i�2��. y� and y�
are, respectively, 3� 3 and 3� 1 complex Yukawa cou-
pling matrices. The superscript C denotes the charge con-
jugation, c C ¼ C�0c � with C ¼ i�0�2. Our notation is
such that c C

L ¼ ðc LÞC. It is not necessary to include a
FC
L ��C

R coupling since �c C�C ¼ ��c . Note that we can
choose M�, which is the seesaw scale in the model, to be
real positive as any phase of it may be absorbed into y�.

After � develops a vacuum expectation value, v, the
lepton mass terms become

�Lm ¼ 1

2
M�ð ��0

R�
0C
R þ ���

R�
þC
R þ ��þ

R�
�C
R þH:c:Þ

þ vffiffiffi
2

p
�
�fLy�fR þ 1ffiffiffi

2
p �nLy��

0
R þ �fLy��

�
R þH:c:

�
:

(3)

Since ��
R carry electric charge, they cannot be Majorana

particles. Instead, their equal bare mass suggests the com-
bination to a Dirac field,

� ¼ ��
R þ �þC

R ; (4)

with �þC
R ¼ C�0ð�þ

R Þ�. It is then impossible to assign a
lepton number to � without explicitly breaking gauge
symmetry. The lepton mass terms are summarized as

�Lm ¼ 1
2
�NLmNN

C
L þ �ELmEER þ H:c:; (5)

where the neutral and charged lepton fields and their mass

matrices are

NL ¼ nL
�0C

R

� �
; NR ¼ NC

L ¼ nCL
�0

R

� �
; E ¼ f

�

� �
;

(6)

mN ¼ 03
1
2vy�

1
2vy

T
� M�

 !
; mE ¼

1ffiffi
2

p vy�
1ffiffi
2

p vy�
0 M�

� �
:

(7)

B. Gauge couplings of leptons

The kinetic term for the triplet field is

L �
kin ¼ tr ��Ri 6D�R; (8)

where the covariant derivative is

D��R ¼ @��R � ig2
1
2½Aa

��
a;�R�; (9)

with Aa
� and g2 being the SUð2ÞL gauge fields and cou-

pling. The kinetic term can be expressed in terms of the
fields defined in Eq. (6). In so doing, the following relations
are useful, �c C���C ¼ � ����c , �c C@6 �C ¼ ��@6 c �
@�ð ����c Þ, where the total derivative may be dropped

from the Lagrangian.
Including the standard kinetic terms for the SM fields FL

and fR, the complete kinetic terms for leptons are

Lkin ¼ 1

2
�Ni@6 N þ �Ei@6 Eþ g2ffiffiffi

2
p ðJþ�

W Wþ
� þ J��

W W�
� Þ

þ g2
cW

J
�
Z Z� þ eJ

�
emA�; (10)

where W�
� , Z�, and A� are the weak and electromagnetic

fields coupled to the currents

J
þ�
W ¼ �N��ðwLPL þ wRPRÞE;
J
�
Z ¼ �N��zNLPLN þ �E��ðzELPL þ zERPRÞE;

J
�
em ¼ � �E��E;

(11)

and J��
W ¼ ðJþ�

W Þy, with the coupling matrices being

wL ¼ 13 ffiffiffi
2

p
 !

; wR ¼ 03 ffiffiffi
2

p
 !

;

zNL ¼
1
2 13

0

 !
; zEL ¼ ð� 1

2 þ s2WÞ13
�c2W

 !
;

zER ¼ s2W13

�c2W

 !
: (12)

We have used the conventional notations cW ¼ cos�W ,
sW ¼ sin�W , with �W being the weak angle.
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C. Diagonalization of lepton mass matrices

Noting that the upper left 3� 3 block of mN is zero, we
can make mN standardized as follows. A unitary trans-
formation in family space, FL ! UyFL, only modifies
the Yukawa couplings, y� ! Uy� and y� ! Uy�. One
can choose U to rotate the column vector y� to its third
component, so that

mN ¼
02

0 1
2vr�

1
2vr� M�

0
B@

1
CA; (13)

where r� is real positive. There are thus two massless
neutrinos (named 1 and 2) at tree level. They will generally
get a radiative mass as their masslessness is not protected
by any symmetry. The other two neutrinos (3 and 4) get the
masses

m3;4 ¼ 1
2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

�
þ ðvr�Þ2

q
�M��: (14)

The mass eigenstate fields of neutrinos are therefore

�L ¼ UT
NNL; �R ¼ �C

L ¼ Uy
NNR; (15)

where

UN ¼
12

ic� s�
�is� c�

0
@

1
A; (16)

with c� ¼ cos�, s� ¼ sin�, and tan� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=m4

p
.

The mass matrix of the charged leptons is diagonalized
by bi-unitary transformations,

EL;R ¼ UL;R‘L;R; Uy
LmEUR ¼ diagðme;m�;m�;m�Þ:

(17)

Here �4 and � are the new neutral and charged leptons
beyond the SM. They must be very heavy to evade the
experimental detection so far. The tiny (small) mass of the
observed neutrinos (charged leptons) then implies that, to
very good precision, we have approximately

m4 � m�; �2 � m3

m4

; (18)

which will be employed in later numerical analysis.

D. Summary of lepton interactions

We can now express the interactions of leptons in terms
of their mass eigenstate fields, �iði ¼ 1; 2; 3; 4Þ and
‘�ð� ¼ e;�; �; �Þ. The currents in Eq. (11) become

Jþ�
W ¼ ����ðW LPL þW RPRÞ‘;
J�Z ¼ ����Z�

LPL�þ �‘��ðZ‘
LPL þZ‘

RPRÞ‘;
J
�
em ¼ � �‘��‘;

(19)

where

W L ¼ UT
NwLUL; W R ¼ Uy

NwRUR;

Z�
L ¼ UT

Nz
N
LU

�
N; Z‘

L ¼ Uy
Lz

E
LUL;

Z‘
R ¼ Uy

Rz
E
RUR:

(20)

Note that there is a degree of freedom in presenting the
neutral current of Majorana neutrinos. Using � ¼
�L þ �C

L ¼ �C and �c C��PL;R�
C ¼ � ����PR;Lc , we

can write

����Z�
LPL� ¼ 1

2 ���
�ðZ�

LPL �Z�T
L PRÞ�: (21)

SinceUN and w, z are known, the following explicit results
are useful:

W L ¼
12

ic� �i
ffiffiffi
2

p
s�

s�
ffiffiffi
2

p
c�

0
BB@

1
CCAUL;

W R ¼ ffiffiffi
2

p 02

0 is�

0 c�

0
B@

1
CAUR;

Z�
L ¼ 1

2

12

c2� ic�s�

�ic�s� s2�

0
BB@

1
CCA:

(22)

One observes from the above that the right-handed charged
current involves only the massive neutrinos �3;4 while the

flavor changing neutral currents occur for both charged
leptons and (massive) neutrinos.
For completeness, we present some additional results

that may be useful in other applications of the model. First
of all, one can construct the coupling matrices in the
neutral currents in terms of those in the charged currents:

Z�
L ¼ 14 � 1

2W LW
y
L;

Z‘
L ¼ s2W14 � 1

2W
y
LW L;

Z‘
R ¼ s2W14 � 1

2W
y
RW R:

(23)

The Yukawa couplings of the would-be Goldstone bosons
G�;0 are

LG0;�
Yuk ¼ þ g2ffiffiffi

2
p

mW

Gþ ��½m�ðW LPL þW RPRÞ

� ðW LPR þW RPLÞm‘�‘þ H:c:

� ig2
cWmZ

G0 ��½m�Z�
LPL �Z�

Lm�PR��

� ig2
cWmZ

G0 �‘½m‘ðZ‘
LPL þZ‘

RPRÞ
� ðZ‘

LPR þZ‘
RPLÞm‘�‘; (24)

where m� and m‘ are the diagonal mass matrices of the
neutrinos and charged leptons. The above simple structure
is dictated by the nature of G�;0 although the intermediate
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results in a direct derivation from LYuk may look cumber-
some. In constrast, the Yukawa couplings to the physical
Higgs field h are quite different since the leptons obtain
masses from both the bare mass term and the Yukawa
couplings:

Lh
Yuk ¼ � h

v
m3c

2
�ð ��3�3 þ ��4�4Þ

� i
h

v
ðm4 �m3Þc�s�ð ��3L�4R � ��4R�3LÞ

� h

v
f �‘�L½m�	�
 � ðm4 �m3ÞU�

L��UR�
�‘
R
þ H:c:g: (25)

E. Constraints on mixing matrices and lepton masses

For convenience in the next section, we collect here the
constraints on UL;R, m�, and mi:

C1: m2
3c� ¼ m2

4s�; (26)

C2:
X
�

U�
Li�UL3� ¼X

�

U�
Li�UL4� ¼ 0; (27)

C3:
X
�

m�U
�
Li�UR4� ¼ 0; (28)

C4:
X
�

m2
�U

�
Li�UL4� ¼ 0; (29)

where i ¼ 1, 2 in C2, C3, and C4. They will be extensively
used to improve the apparent convergence of the loop
integrals and extract the leading terms in the large mass
limit of heavy leptons. These constraints are exact and can
be readily derived. The constraint C1 is from the diago-
nalization ofmN while C2 represents unitarity ofUL. After
rotating the column vector y� to its third component, the

first two columns in the last row of my
E vanish. This yields

ðURm
y
‘U

y
LÞ4i ¼ ðmy

EÞ4i ¼ 0 for i ¼ 1, 2 which is C3. In

addition, we find that ðmEm
y
EÞ4i also vanishes for i ¼ 1, 2

which gives the last constraint C4. For the sake of nota-
tional simplicity, we sometimes also use the Latin letters i,
j and numbers, which enter through the charged current
matrices W L;R, as the indices for the corresponding

charged leptons.

III. TWO-LOOP INDUCED NEUTRINO MASSES

Nowwe calculate the radiative mass of the neutrinos �1;2

that are massless at tree level. This is given by their minus
self-energy evaluated at the zero momentum. We thus need
to calculate the amplitude for the transition, �iL ! �C

jL,

with i, j ¼ 1, 2. There is no contribution at one loop. This
arises because, while the neutral current does not couple
�1;2 to the massive ones �3;4, the charged current involving

�1;2 is purely left handed and thus cannot induce a mass for

a massless particle.
At two loops, we note first that a diagram with at least

one of the two external lines connected to a virtual Z boson
cannot contribute. This is because, if it did, removing this
virtual Z line would also contribute since Z couples diago-
nally to �1;2 and conserves chirality. But this would contra-

dict our claim at one loop. The external lines must
therefore all connect to virtual W� bosons. Finally, the
two external lines cannot connect to the same virtual W�
due to charge conservation. This leaves us with the single
diagram shown in Fig. 1.
We shall evaluate the radiative mass in unitarity gauge.

We first simplify and classify the contributions from the
diagram. Then we apply the constraints C1–C4 to reach
manifest convergence in loop integrals and to get prepared
for isolating leading terms in the seesaw limit. Finally, the
contributions are expressed in terms of some standard
parameter integrals.
To start with, we note that the external �i;j (i, j ¼ 1, 2)

have no right-handed couplings to the corresponding vir-
tual charged leptons ‘�;
. The diagram then decomposes

into four terms according to the chiralities of the two
vertices involving the virtual neutrino �k. After some
algebraic work, we can remove all � matrices in favor of
the products of loop momenta and obtain

uTj�jiui ¼ Mjiu
T
j CPLui;

Mji ¼ g42
4ð4�Þ4 ½T

LL þ TRR þ TRL þ TRLji$j�;
(30)

where ui;j are the spinors for external neutrinos, and M
gives the radiative neutrino mass. The T functions are

TLL ¼ mkW �
Li�W

�
Lj
W Lk�W Lk
F

LLð�;
; kÞ;
TRR ¼ mkm�m
m

�2
W W �

Li�W
�
Lj
W Rk�

�W Rk
F
RRð�;
; kÞ;

TRL ¼ m�W �
Li�W

�
Lj
W Rk�W Lk
F

RLð�;
; kÞ;

(31)

where the loop functions F are dimensionless functions of
the mass ratios. Upon Wick rotation to Euclidean space,
they become

FIG. 1. Diagram contributing to �i�ji.
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FLLð�;
; kÞ ¼ �
ZZ p � q

Dð�;
; kÞ ½4þ p2q2 þ 4ðp2 þ q2Þ�;

FRRð�;
; kÞ ¼
ZZ 1

Dð�;
; kÞ ½�8þ 2ðp � qÞ2 � q2p2

� 2ðp2 þ q2Þ�;
FRLð�;
; kÞ ¼

ZZ 1

Dð�;
; kÞ ½�4ðp � qþ q2Þ
� p2q2ðp � qþ q2Þ
þ 2ðp2p � qþ 2ðp � qÞ2 � q2p2Þ
� 4q2ðp � qþ q2Þ�;

(32)

where the notations are

Dð�;
; kÞ ¼ ½ðpþ qÞ2 þ rk�½p2 þ r��½p2 þ 1�½q2 þ r
�
� ½q2 þ 1�;

rk ¼ m2
k

m2
W

; r� ¼ m2
�

m2
W

;
ZZ

¼ 1

�4

Z
d4p

Z
d4q:

(33)

Here the summation over the virtual lepton flavors �, 
, k
is implied in the T functions, and Mji is manifestly

symmetric as expected for Majorana particles.
Since only massive neutrinos enter the right-handed

charged current, the virtual �k in the T functions is actually
restricted to �3;4. Using the explicit forms of W L;R shown

in Eq. (22), the T functions decompose into

TLL ¼ U�
Li�U

�
Lj
fUL3�UL3
½m4s

2
�F

LL
4 �m3c

2
�F

LL
3 �

þ 2UL4�UL4
½m4c
2
�F

LL
4 �m3s

2
�F

LL
3 �

þ ffiffiffi
2

p
c�s�ðUL4�UL3
 þUL3�UL4
Þ

� ½m4F
LL
4 þm3F

LL
3 �g;

TRR ¼ 2m�m
m
�2
W U�

Li�U
�
Lj
UR4�UR4


� ½m4c
2
�F

RR
4 �m3s

2
�F

RR
3 �;

TRL ¼ m�U
�
Li�U

�
Lj
UR4�f

ffiffiffi
2

p
c�s�UL3
½FRL

4 � FRL
3 �

þ 2UL4
½s2�FRL
3 þ c2�F

RL
4 �g;

(34)

where for brevity the first two arguments �, 
 of the F
functions are suppressed while the third one k appears as a
subscript 3 or 4. In addition to improving apparent con-
vergence, the main merit of applying the constraints
C1–C4 is to subtract heavy leptons �4, � from the loops.
This manifestly avoids in the contributing terms some large
numbers that are actually balanced by the small matrix
elements mixing the light and heavy leptons. Furthermore,
this facilitates the extraction of the leading terms that can
survive upon being multiplied by the mixing matrix ele-
ments and summing over light flavors �, 
, for which the
hierarchical limit 1 	 r� 	 r3 works very well. We stress
that we are not discarding the contributions from heavy

leptons but are combining them in a judicious manner with
those from light leptons before numerical analysis is done.
In the following sections we shall reduce the T functions
using the constraints.

A. Reduction of TLL

We note first of all that the numerator of FLL is sepa-
rately linear in p2 and q2. Take p2 as an example. By
decomposing p2 ¼ ðp2 þ r�Þ � r�, the first term cancels
the corresponding factor in Dð�;
; kÞ so that its contribu-
tion to FLL is independent of �. The constraint C2 then
implies that it does not survive in TLL upon summing over
�. We can thus effectively set in the numerator of FLL,
p2 ! �r� and similarly q2 ! �r
:

FLLð�;
; kÞ ! �½4þ r�r
 � 4ðr� þ r
Þ�
�
ZZ p � q

Dð�;
; kÞ ; (35)

where the arrow means equality when multiplied by U
factors and summing over �, 
. To go further, we have
to cope separately with the four terms in TLL according to
the UL factors involved:

TLL ¼ U�
Li�U

�
Lj
fUL3�UL3
T

LL
33 þ 2UL4�UL4
T

LL
44

þ ffiffiffi
2

p ½UL4�UL3
T
LL
43 þUL3�UL4
T

LL
34 �g (36)

with obvious definitions on TLL
33 etc. by comparing with

Eq. (34).
Although the first term, TLL

33 , is already convergent upon

applying C1 due to the subtraction between FLL
4 and FLL

3 ,

we can do better by subtracting explicitly the contribution
from the heavy charged lepton �. The trick is that, for a
term in FLL that is not proportional to r� we make the
substitution

1

p2 þ r�
! 1

p2 þ r�
� 1

p2 þ r4

 d�ðpÞ; (37)

while for a term that is proportional to r�, we do as follows:

r�
p2 þ r�

! r�
p2 þ r�

� r4
p2 þ r4


 e�ðpÞ: (38)

The legitimacy of the substitutions is guaranteed by the
constraint C2. Thus,

TLL
33 ! m3c

2
�

ZZ p � q
½p2 þ 1�½q2 þ 1�d3ðpþ qÞ½4d�ðpÞd
ðqÞ

þ e�ðpÞe
ðqÞ � 4e�ðpÞd
ðqÞ � 4d�ðpÞe
ðqÞ�:
(39)

The second term, TLL
44 , is multiplied byUL4�UL4
 so that

we have a choice of whether to use the constraint C2 [i.e.,
Eq. (37)] or C4 [Eq. (38)] for the terms proportional to r�
or r
. It turns out that the latter is better as it can reduce the

amount of work by bringing down more factors of r�;
 for
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light leptons �, 
, which makes the corresponding term
subdominant in the hierarchical limit. The last two terms
may be similarly manipulated. The results are summarized
as follows:

TLL
44 ! ½4þ r�r
 � 4ðr� þ r
Þ�

�
ZZ p � q

½p2 þ 1�½q2 þ 1�d�ðpÞd
ðqÞ

�
�

m3s
2
�

ðpþ qÞ2 þ r3
� m4c

2
�

ðpþ qÞ2 þ r4

�
;

TLL
43 !

ZZ p � q
½p2 þ 1�½q2 þ 1� ½4ðr� � 1Þd
ðqÞ

þ ð4� r�Þe
ðqÞ�d�ðpÞ
�
�

m4

ðpþ qÞ2 þ r4
þ m3

ðpþ qÞ2 þ r3

�
c�s�;

(40)

while TLL
34 is obtained from TLL

43 by � $ 
 and i $ j.
Since �,
 are summed over, this amounts to symmetrizing
TLL
43 in i, j.
The advantage of the above results can be understood by

recalling that we now only need to sum over light flavors�,

 in TLL. Since 1 	 r�;
 	 r3, it is numerically very

good to set r� ¼ r
 ¼ r3 ¼ 0. For instance, the largest

r� � 5� 10�4 while r3 � 6� 10�24 for m3 � 0:2 eV.
This will not introduce mass singularities in the loop
integrals. In addition, when a term proportional to m3 is
accompanied by one proportional to m4, we ignore the
former since it cannot make a significant contribution to
the radiative mass. (Note that TLL is exceptional since
m3c

2
� ¼ m4s

2
�.) Although the above argument is self-

evident, we have inspected and compared carefully all of
the terms to verify it. This considerably simplifies the
integrals to compute

TLL
33 ! m3c

2
�r

2
4f4½X2ð0Þ �X2ðr4Þ�

þ 8½X1ð0Þ �X1ðr4Þ� þX0g;
TLL
44 ! �m4c

2
�4r

2
4X2ðr4Þ;

TLL
43 ! �m4c�s�4r

2
4½X2ðr4Þ þX1ðr4Þ�;

(41)

and TLL
34 ¼ TLL

43 , where the loop integrals X are defined in

the Appendix. These functions are independent of�,
 and
depend only on r4.

B. Reduction of TRR

The second term in TRR is doubly suppressed by m3s
2
�

compared to the first one and will be ignored from the start.
Since the numerator in the integrand of FRR

4 is again linear
in p2 and q2, they may be replaced by �r� and �r
,

respectively, employing the constraint C3. For the 2ðp �
qÞ2 term in the numerator, we decompose as follows:

2ðp � qÞ2 ¼ p � qð½ðpþ qÞ2 þ r4� � ½p2 þ r��
� ½q2 þ r
� þ ½r� þ r
 � r4�Þ:

The first term is canceled by the same factor in the de-
nominator D making the integrand odd in p, and thus
vanishes upon integration. The second term again cancels
a same factor from D and is killed upon summing over �
by the constraint C3, and the same happens with the third
term as well. The numerator now becomes effectively,

� ð8þ r4p � qÞ þ ðp � qþ 2Þðr� þ r
Þ � r�r
:

Now we make the substitutions in Eqs. (37) and (38) as
we did in the previous section, though employing this time
the constraint C3, to obtain

FRR
4 !

ZZ 1

½p2 þ 1�½q2 þ 1�½ðpþ qÞ2 þ r4�
� f�ð8þ r4p �qÞd�ðpÞd
ðqÞþ ðp �qþ 2Þ
� ½e�ðpÞd
ðqÞþ e
ðpÞd�ðqÞ�� e�ðpÞe
ðqÞg: (42)

Since it is now legitimate to sum only over light flavors �,

, the above simplifies to

FRR
4 ! �r24f8Y2ðr4Þ þ 4Y1ðr4Þ þY0ðr4Þ þ r4X2ðr4Þ

þ 2X1ðr4Þg; (43)

where the new integrals Y are also defined in the
Appendix.

C. Reduction of TRL

This chirality-mixed part from the two vertices involv-
ing the virtual neutrino �k contains the most number of
terms in FRL

k :

TRL ¼ m�U
�
Li�U

�
Lj
UR4�f

ffiffiffi
2

p
c�s�UL3
½FRL

4 � FRL
3 �

þ 2c2�UL4
F
RL
4 g; (44)

where we have dropped the s2�F
RL
3 term as one cannot rely

on it to induce a reasonable mass due to a tiny s2� � 10�12

at m3 � 0:2 eV and m4 � 200 GeV, for instance.
The numerator of the integrand in FRL is linear in p2,

which can thus be replaced by�r� using the contraint C3.
On the other hand, since the numerator is quadratic in q2,
we must distinguish between the two terms in TRL which
are proportional to UL3
 and UL4
, respectively. For the

first one, we can only set one factor of q2 to�r
 using C2.

After this, we apply C2 and C3 via the substitutions in
Eqs. (37) and (38) and obtain

FRL
4 � FRL

3 !
ZZ d3ðpþ qÞ

½p2 þ 1�½q2 þ 1� ½ðp � qþ q2 þ 2Þ

� e�ðpÞe
ðqÞ þ 2p � qe�ðpÞd
ðqÞ
� 4ðp � qþ q2 þ 1Þd�ðpÞe
ðqÞ
þ 4ðp � q� ðp � qÞ2Þd�ðpÞd
ðqÞ�: (45)
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The summation over light flavors �, 
 then yields the
result in terms of the standard integrals:

FRL
4 � FRL

3 ! r24fr4½U0 þ 4U1� þX0

þ 6½X1ð0Þ �X1ðr4Þ�
þ 4½X2ð0Þ �X2ðr4Þ� � 2r4X2ðr4Þ
þ ½Y0ð0Þ �Y0ðr4Þ�g: (46)

For the second term proportional toUL4
 in TRL, we can

set two factors of q2 to �r
 because of C2 and C4. The

subsequent manipulation based on the constraints and

Eqs. (37) and (38) is similar, and gives

FRL
4 ! r24fr
ðY0ðr4Þ þ ½X1ðr4Þ þ 2Y1ðr4Þ� þ 4Y1ðr4Þ

þ 4½Y2ðr4Þ þX2ðr4Þ�Þ � 4X2ðr4Þ
� 2½X1ðr4Þ þ r4X2ðr4Þ�g; (47)

where the terms suppressed by r
 will be ignored from now

on.
To finish this section, we summarize the terms in the

radiative neutrino mass as follows:

Mji ¼ m4
WG

2
F

25�4
U�

Li�U
�
Lj
fUL3�UL3
T

LL
33 þ 2UL4�UL4
T

LL
44 þ ffiffiffi

2
p ðUL4�UL3
 þUL3�UL4
ÞTLL

43

þ 2
ffiffiffiffiffiffiffiffiffiffi
r�r


p
UR4�UR4
m4c

2
�F

RR
4 þ ffiffiffi

2
p

c�s�ðm�UR4�UL3
 þm
UR4
UL3�ÞðFRL
4 � FRL

3 Þ
þ 2c2�ðm�UR4�UL4
 þm
UR4
UL4�ÞFRL

4 g; (48)

where the relevant functions are given in Eqs. (41), (43),
(46), and (47), in terms of the standard integrals calculated
in the Appendix. The summation over the light charged
leptons ‘� and ‘
 is understood in the above.

IV. NUMERICAL ANALYSIS

Now we investigate whether we can accommodate the
neutrino masses measured in oscillation experiments. Our
starting formula was given in (48) which involves the light-
heavy mixing parameters in addition to the upper left 3� 3
submatrix ofUL. From Eq. (22) we see that the latter is just
the leptonic mixing matrix measured in oscillation experi-
ments to very good precision. However it is no more
exactly unitary, and the deviation from unitarity is deter-
mined by the light-heavy mixing. A realistic numerical
estimate should take all this into account to avoid a mis-
leading conclusion. Although a global fitting to the lepton
mixing parameters is possible with radiative corrections
included, our main result on the seesaw scale required to
reproduce the neutrino masses is independent of this
fitting.

Both matrices mEm
y
E and my

EmE for the charged leptons
have the hierarchical structure

M ¼ B d
dy A

� �
; (49)

where B and d are, respectively, a 3� 3 and a 3� 1
matrix, whose entries are much smaller in magnitude
than the positive number A. Then, the submatrix of the
diagonalization matrix that mixes the small and large en-
tries can be estimated as � � dA�1. Application of this to

mEm
y
E and my

EmE yields for � ¼ e, �, �:

UL4� � ðm3=m4Þ1=2 ¼ ðr3=r4Þ1=4 ¼ �;

UR4� � ðm3=m4Þ1=2ðm�=m4Þ ¼ �ðr�=r4Þ1=2;
(50)

where (18) is used. And the unitarity violation in the
submatrix of light leptons is, for i ¼ 1, 2X

�¼e;�;�

U�
Li�UL3� ¼ �U�

Li�UL3� � �2: (51)

Consider first the case in whichm4 is not very large. This
is the range of parameters that is particularly relevant to
LHC physics. A heavy active lepton, especially the
charged one �, is supposed to be accessible if it is not
much heavier than several hundred GeV. Our estimate of
heavy-light mixing parameters is still good enough since
m4 is much larger than the light lepton masses. Using the
estimates in Eqs. (18) and (50) [but not yet the one in (51)],
we find that the three classes of contributions to Mji in

Eq. (48) consist of the following terms in units of
2�5��4m4

WG
2
Fm3:

LL: U�
Li�U

�
Lj
UL3�UL3
; U

�
Li�U

�
Lj
;

ðU�
Li�U

�
Lj
 þU�

Lj�U
�
Li
ÞUL3
;

RR: r�r
U
�
Li�U

�
Lj
;

RL: r�ðU�
Li�U

�
Lj
 þU�

Lj�U
�
Li
ÞUL3
;

r�ðU�
Li�U

�
Lj
 þU�

Lj�U
�
Li
Þ;

(52)

where each term is to be multiplied by a coefficient that is a
sum of integrals as can be obtained from Eqs. (41), (43),
(46), and (47). The point is that these coefficients are
order 1 numbers for r4 not very large. Then, independent
of the mixing matrix of light leptons, it is safe to say that

jMjij< 1:8� 10�6m3: (53)
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Since no light neutrinos can be heavier than an eV from
cosmological considerations, there is no hope to induce a
large enough radiative mass m1 or m2 from m3. Therefore,
the minimal type III seesaw model cannot accommodate
oscillation data if the heavy leptons have an intermediate
mass. To put it another way, the oscillation data already
exclude the possibility that the active heavy leptons in the
model would be accessible at the LHC.

It is interesting to ask whether there is a chance at all in
the model to induce a large enough neutrino mass. For this
purpose, we study the seesaw limit in which m4 blows up.
ThenMji is a sum of the following terms (again in units of

2�5��4m4
WG

2
Fm3):

LL: r3r4½X0� �U�
Li�U

�
Lj
8½r24X2ðr4Þ�

� ðU�
Li� þU�

Lj�Þ4
ffiffiffiffiffiffiffiffiffiffiffi
2r3r4

p ½r4X1ðr4Þ�;
RR: � r�U

�
Li�r
U

�
Lj
2½r4Y0ðr4Þ þ r24X2ðr4Þ

þ 2r4X1ðr4Þ�;
RL: ðr�U�

Li�

ffiffiffiffiffiffiffiffiffiffiffi
2r3r4

p ½r4U0 þX0�
� r�U

�
Li�U

�
Lj
4½r4X1ðr4Þ þ r24X2ðr4Þ�Þ

þ ði $ jÞ:

(54)

All combinations of loop integrals in the square brackets
are Oð1Þ constants up to logarithmic corrections in the
large r4 limit. We have also taken into account the unitarity
violation estimated in Eq. (51). Because of the estimates
employed, the relative sign and factors of 2 between terms
in the above cannot be taken seriously. But this does not
preclude us from making a definite conclusion as shown
below.

To induce a mass ofOðm3Þ, some terms in Eq. (54) must
be above 105. This obviously requires a large r4. But even
this is insufficient. On the one hand, the terms not multi-
plied by r4 factors outside the square brackets can be safely
ignored; on the other hand, all remaining terms are con-
trolled by r3r4. We must therefore require r3r4 	 1. This
corresponds to the combined limit in terms of the original
parameters in Lagrangian,M� 	 vr� 	 mW . In the limit,
only the first term in the LL class is relevant:

M ji � 2�5��4m4
WG

2
Fm3r3r4½X0�: (55)

Inspection of our derivation shows that this is the term that
is doubly suppressed by the unitarity violation between the
third row and the first two rows of the light lepton mixing
matrix. But unfortunately it is impractical to measure the
violation down to the level that we are interested in, i.e.,
��2 ¼ r3=r4 ¼ m2

3=m
2
4. The information on the indices (i,

j) is lost also because of the estimates employed. This
means in passing that our analysis on the neutrino masses
in the above limit is independent of a detailed fitting to the
leptonic mixing parameters. We find it is natural for the
model to favor the normal hierarchy scenario; namely, a
larger m3 seeds a smaller m1;2. For the purpose of illus-

tration, we assume m1 ¼ 0. The solar and atmospherical
oscillation data then give m2 � 8:7� 10�3 eV and m3 �
4:9� 10�2 eV, respectively, which can be fulfilled by
requiring

m4 � 4� 1016 GeV: (56)

This is roughly the scale of grand unification.

V. CONCLUSION

The minimal type III seesaw model introduces a lepton
triplet on top of the particles in the SM. Two neutrinos out
of four are massless at the tree level, but they are not
protected by any symmetry from getting a radiative mass
at the quantum level. We have shown that the latter takes
place first at two loops, and determined it in terms of some
parameter functions. By employing realistic estimates of
the mixing parameters between the light and heavy leptons,
we studied the pattern of the neutrino masses. We found
that it is not possible to accommodate the spectrum deter-
mined in oscillation experiments if the heavy leptons have
a mass that would be within the reach of the LHC.
However, if the seesaw scale is as large as that of grand
unification, it is still possible to accommodate the spectrum
in a nice manner: one light neutrino gets mass directly from
seesaw while the other two get a radiative mass. The model
would then contain nothing new but the tiny neutrino
masses. The main message extracted from this work is
therefore, if the LHC sees something like a triplet lepton,
it definitely comes from a structure that goes beyond the
economical one as originally suggested.
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APPENDIX: LOOP INTEGRALS

The loop integrals in the final result of TLL [see Eq. (41)]
are defined as

X2ðrÞ ¼
ZZ p � q

D1ðrÞp2q2
; X1ðrÞ ¼

ZZ p � q
D1ðrÞq2

;

X0 ¼
ZZ p � qr4

D1ðr4Þðpþ qÞ2 ; (A1)

where

D1ðrÞ ¼ ½p2 þ r4�½p2 þ 1�½q2 þ r4�½q2 þ 1�
� ½ðpþ qÞ2 þ r�: (A2)

The new integrals appearing in TRR and TRL are, respec-
tively,
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Y2ðrÞ ¼
ZZ 1

D1ðrÞp2q2
; Y1ðrÞ ¼

ZZ 1

D1ðrÞq2
;

Y0ðrÞ ¼
ZZ 1

D1ðrÞ ; (A3)

and

U 0 ¼
ZZ 1

D2

; U1 ¼
ZZ 1

D2q
2
; (A4)

where

D2 ¼ ðpþ qÞ2½ðpþ qÞ2 þ r4�½q2 þ 1�½q2 þ r4�½p2 þ r4�:
(A5)

There is another integral in calculating TRL that can be
related to those already defined:

ZZ ðp � qÞ2
D1ðrÞp2q2

¼ �X1ðrÞ � r

2
X2ðrÞ:

The basic technique to compute the above integrals is to
use fractions and the one-loop integrals in n ¼ 4� 2
dimensions:

ð4�Þ2
Z dnp

ð2�Þn
1

½ðpþ qÞ2 þ r�½p2 þ a�
¼ ð4�Þ

�
�ðÞ �

Z 1

0
dx lngða; rÞ

�
;

ð4�Þ2
Z dnp

ð2�Þn
p � q

½ðpþ qÞ2 þ r�½p2 þ a�
¼ ð4�Þq2

�
� 1

2
�ðÞ þ

Z 1

0
dxx lngða; rÞ

�
;

(A6)

where

gða; rÞ ¼ q2xð1� xÞ þ rxþ að1� xÞ: (A7)

Introducing the abbreviations,

�gða; rÞ ¼ xð1� xÞð1� yÞ þ ½rxþ að1� xÞ�y;

~g0 ¼ �gð0; r4Þ
�gðr4; r4Þ ; ~g1ðrÞ ¼ �gð1; rÞ

�gðr4; rÞ ;

GðrÞ ¼ ln �gðr4; rÞ
ðr4 � 1Þr4 þ

ln �gð1; rÞ
1� r4

þ ln �gð0; rÞ
r4

;

(A8)

and denoting the parameter integrals in the form,

X ¼
Z 1

0
dx

Z 1

0
dyI½X�; (A9)

where X enumerates all of the defined integrals, the inte-
grands are

I½X2ðrÞ� ¼ xð1� yÞGðrÞ
yð1� yþ r4yÞ ;

I½X1ðrÞ� ¼ 1

r4 � 1

xð1� yÞ
yð1� yþ r4yÞ ln~g1ðrÞ;

I½X0� ¼ 1

r4 � 1

xð1� yÞ2
y2ð1� yþ r4yÞ

ln
~g1ð0Þ
~g1ðr4Þ ;

(A10)

for the X sequence, and

I½Y2ðrÞ� ¼ � GðrÞ
1� yþ r4y

;

I½Y1ðrÞ� ¼ 1

1� r4

1

1� yþ r4y
ln~g1ðrÞ;

I½Y0ðrÞ� ¼ 1

1� r4

1� y

yð1� yþ r4yÞ ln~g1ðrÞ;

I½U0� ¼ � 1

r4

1� y

yð1� yþ r4yÞ ln~g0;

I½U1� ¼ � 1

r4

1

1� yþ r4y
ln~g0;

(A11)

for the Y and U sequences.
The above integrals have a magnitude of order 1 or

smaller for r4 not very large, and can be readily integrated
numerically. This is a sufficient message for the first part of
our numerical analysis in Sec. IV. For the analysis in the
heavy mass limit, we need the leading terms of the inte-
grals. We obtain them in two ways. One is to use the
techniques and formulas developed already in the literature
[30,34], and extend them slightly to cover all cases occur-
ring in our integrals. [There is a typographic error in
expansion (ii) on page 230 in Ref. [34]: 1

2 ln
2a should

have a plus sign instead of a minus.] The leading terms
can also be extracted directly. For illustration, we calculate
below the integrals X1ðr4Þ and X2ðr4Þ that appear most
frequently in Eq. (54). We finish first the integration over y
in terms of logarithm and dilogarithm functions using

IðbÞ ¼
Z 1

0

dy

y
ln½1þ ðb� 1Þy� ¼ �Li2ð1� bÞ;

Jðb; rÞ ¼ ðr� 1Þ
Z 1

0
dy

ln½1þ ðb� 1Þy�
1þ ðr� 1Þy

¼ Li2

�
b� r

ðb� 1Þr
�
� Li2

�
b� r

b� 1

�

� ln
r� 1

b� 1
lnrþ 1

2
ln2r;

(A12)

where b > 1, r > 1. Denoting

b1 ¼ r4xþ 1� x

xð1� xÞ ; b2 ¼ r4
xð1� xÞ ;

b3 ¼ r4
1� x

; ai ¼ bi � r4
bi � 1

;

(A13)

with b2 � b1 � b3 � r4 > 1> ai > 0 for x 2 ð0; 1Þ, and
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using the abbreviations

Ii ¼ IðbiÞ; Ji ¼ Jðbi; r4Þ; (A14)

we express the integrals as follows:

ðr4 � 1ÞX1ðr4Þ ¼
Z

xdx

�
ð½I1 � I2� � ½J1 � J2�Þ

� J1 � J2
r4 � 1

�
;

r4ðr4 � 1ÞX2ðr4Þ ¼
Z

xdx

�
r4ð½I2 � I1� � ½J2 � J1�Þ

� ðr4 � 1Þð½I2 � I3� � ½J2 � J3�Þ
� r4

�
J2 � J1
r4 � 1

� J2 � J3
r4

��
: (A15)

Since none of Ii and Ji diverge as a power as r4 becomes
large, we have for r4 	 1,

ðr4 � 1ÞX1ðr4Þ ¼
Z

xdxf½I1 � I2� � ½J1 � J2�g
þOðr�1

4 Þ;
r4ðr4 � 1ÞX2ðr4Þ ¼

Z
xdxfr4ð½I3 � I1� � ½J3 � J1�Þ

þ ½I2 � I3� þ ½J1 � J2�g þOðr�1
4 Þ:

(A16)

To extract the leading terms, we have to expand the first
combination in X2ðr4Þ to Oðr�1

4 Þ and all others to Oð1Þ.
Consider the latter first. Since all bi 	 1 for r4 	 1, we
use the Landen identity of dilogarithm for the last two
combinations in X2:

I2 � I3 ¼ 1

2
lnðb2b3Þ lnb2b3 þLi2ð1�b�1

2 Þ�Li2ð1�b�1
3 Þ

¼�1

2
½2 lnr4 � lnx� 2 lnð1� xÞ� lnxþOðr�1

4 Þ;
J1 � J2 ¼ ½Li2ða1=r4Þ�Li2ða1Þþ lnðb1 � 1Þ lnr4�

� ða1 ! a2;b1 ! b2Þ
¼ Li2ð1� xð1� xÞÞ�Li2ðxÞþ lnx lnr4 þOðr�1

4 Þ:
(A17)

Then

B2 

Z

xdxf½I2 � I3� þ ½J1 � J2�g

¼ � 1

2
� 11�2

36
þ 1

12
c 1ð1=6Þ þ 1

12
c 1ð1=3Þ þOðr�1

4 Þ
� 0:435þOðr�1

4 Þ; (A18)

where c 1ðzÞ ¼ d2

dz2
ln�ðzÞ is the trigamma function. Since

½I1 � I2� � ½J1 � J2� ¼ �½I2 � I3� � ½J1 � J2� þOðr�1
4 Þ;

(A19)

this also gives the leading term

r4X1ðr4Þ ¼ �B2 þOðr�1
4 Þ: (A20)

The first combination inX2 is more complicated. Using
the Landen identity and expansions of Li2ðzÞ at z ¼ 0 and
z ¼ 1�, we have

I3 � I1 ¼ � 1

r4

1� x

x
ln

r4
1� x

þOðr�2
4 Þ;

J3 � J1 ¼ Li2ða1Þ � Li2ða3Þ � 1

r4

1� x

x
lnr4 þOðr�2

4 Þ:
(A21)

The combination is thus

B1 
 r4
Z

xdxf½I3 � I1� � ½J3 � J1�g

¼
Z

dxfð1� xÞ lnð1� xÞ
þ r4x½Li2ða3Þ � Li2ða1Þ�g þOðr�1

4 Þ: (A22)

The Li2ðaiÞ terms can be worked out by integration by
parts, noting that a1;3 ¼ 1 at x ¼ 1 while a1 ¼ 1 and a3 ¼
0 at x ¼ 0:

Z
xdxLi2ða1;3Þ ¼ �2

12
þ 1

2

Z
dxx2 lnð1� a1;3Þ d lna1;3dx

;

(A23)

where d
dzLi2ðzÞ ¼ � lnð1�zÞ

z is applied. Upon expanding the

integrand in r�1
4 , we arrive at

Z
xdx½Li2ða3Þ � Li2ða1Þ�

¼ 1

2r4

Z
dx

�
� lnð1� xÞ

x
ð2x� 2Þ þ ð1� xÞ

�
þOðr�2

4 Þ

¼ 5

4r4
� �2

6r4
þOðr�2

4 Þ; (A24)

so that B1 ¼ 1� �2=6þOðr�1
4 Þ.

We collect below the leading terms for all integrals:

X0 ¼ �2

12
� 1

2
C0 þOðr�1

4 Þ;

r4X1ð0Þ ¼ 1

2
� �2

6
þOðr�1

4 Þ;

r4X1ðr4Þ ¼ 1

2
þ �2

12
� 1

2
C0 þOðr�1

4 Þ;

r24X2ð0Þ ¼ �1þ 1

3
�2 � lnr4 þOðr�1

4 Þ;

r24X2ðr4Þ ¼ 1

2
� �2

4
þ 1

2
C0 þOðr�1

4 Þ;

(A25)
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r4Y0ð0Þ ¼ �2

3
þOðr�1

4 Þ;

r4Y0ðr4Þ ¼ ��2

6
þ C0 þOðr�1

4 Þ;

r24Y1ð0Þ ¼ 1� �2

3
þ lnr4 þ 1

2
ln2r4 þOðr�1

4 Þ;
r24Y1ðr4Þ ¼ 3� C0 þ lnr4 þOðr�1

4 Þ;

r24Y2ð0Þ ¼ �2

3
þOðr�1

4 Þ;

r34Y2ðr4Þ ¼ �7þ �2

2
þ C0 � 2 lnr4 þ ln2r4 þOðr�1

4 Þ;

(A26)

and

r4U0 ¼ ��2

6
þ C0 þOðr�1

4 Þ;
r24U1 ¼ 3� C0 þ lnr4 þOðr�1

4 Þ;
(A27)

with C0 ¼ 2
ffiffiffi
3

p
Clð�=3Þ ¼ �4�2=9þ 1=6c 1ð1=6Þ þ

1=6c 1ð1=3Þ � 3:515 86, where Cl is the Clausen function.
These leading terms have been numerically verified.
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