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We calculate the orbital angular momentum of the ‘‘quark’’ in the scalar diquark model as well as that

of the electron in QED (to order �). We compare the orbital angular momentum obtained from the Jaffe-

Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector

potential in the definition of orbital angular momentum.
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I. INTRODUCTION

While the total angular momentum of an isolated system
is uniquely defined, ambiguities arise when decomposing
the total angular momentum of an interacting multicon-
stituent system into contributions from various constitu-
ents. Moreover, in a gauge theory, switching the gauge may
result in shuffling angular momentum between matter and
gauge degrees of freedom. In the context of nucleon struc-
ture, this gives rise to subtleties in defining these quantities
which may have important consequences for the numerical
value of the contribution from spin and orbital degrees of
freedom to the nucleon spin s ¼ 1

2 .

In the context of hadron structure, it is natural to perform
a decomposition of the ẑ component of the angular mo-
mentum as the ẑ component of the quark spin has a
partonic interpretation as a difference between parton den-
sities. Indeed, in the light-cone framework, Jaffe and
Manohar proposed a decomposition of the form [1]

1

2
¼ 1

2

X
q

�qþX
q

Lz
q þ 1

2
�GþLz

g; (1)

whose terms are defined as matrix elements of the corre-
sponding terms in the þ12 component of the angular
momentum tensor

Mþ12 ¼ 1

2

X
q

qyþ�5qþ þX
q

qyþð ~r� i ~@Þzqþ

þ "þ�ij TrFþiAj þ 2TrFþjð ~r� i ~@ÞzAj: (2)

The first and third term in (1) and (2) are the ‘‘intrinsic’’
contributions (no factor of ~r� ) to the nucleon’s angular
momentum Jz ¼ þ 1

2 and have a physical interpretation as

quark and gluon spin, respectively, while the second and
fourth term can be identified with the quark/gluon orbital
angular momentum (OAM). Here qþ � 1

2�
��þq is the

dynamical component of the quark field operators, and
light-cone gauge Aþ � A0 þ Az ¼ 0 is implied. The resid-
ual gauge invariance is fixed by imposing antiperiodic

boundary conditions A?ðx?;1�Þ ¼ �A?ðx?;�1�Þ on
the transverse components of the vector potential.
Since the quark spin term does not contain any deriva-

tives, its manifest gauge invariance is evident. However,
�G is also gauge invariant, as it is experimentally acces-
sible. In gauges other than light-cone gauge, it is defined
through a nonlocal operator [2]. The net parton OAM

L z ¼ X
q

Lz
q þLz

g ¼ 1

2
� 1

2

X
q

�q� 1

2
�G (3)

can be related to differences between observables and is
thus also obviously gauge invariant. However, similar to
the case of �G, a manifestly gauge invariant operator
definingLz would be nonlocal, reducing to a local expres-
sion in light-cone gauge only. For the individual OAMs the
situation is more subtle and a detailed discussion can be
found in Ref. [2].
An alternative decomposition [3] of the nucleon spin

1

2
¼ 1

2

X
q

�qþX
q

Lz
q þ Jzg (4)

into quark spin, quark OAM, and gluon (total) angular
momentum is obtained from the expectation value of

M0xy ¼ X
q

1

2
qy�zqþX

q

qyð ~r� i ~DÞzqþ ½ ~r� ð ~E� ~BÞ�z

(5)

with i ~D ¼ i ~@� g ~A. Its main advantages are that each term
can be expressed as the expectation value of a manifestly
gauge invariant local operator and that the quark total
angular momentum Jzq ¼ 1

2 �qþ Lz
q can be related to gen-

eralized parton distributions (GPDs), using [3]

Jzq ¼ 1

2

Z 1

0
dxx½qðxÞ þ Eqðx; 0; 0Þ�; (6)

and can thus be measured in deeply virtual Compton
scattering (DVCS) or calculated in lattice gauge theory.
Its main disadvantage is that both quark OAM Lz

q as well as

gluon angular momentum Jzg contain interactions through

the vector potential in the gauge covariant derivative,
which complicates their physical interpretation.
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Since the expectation value of �q�z�zq vanishes for a

parity eigenstate, one can replace qy�zq ! �q�þ�zq ¼
qyþ�5qþ, i.e. the �q are common to both decompositions.
This is not the case for all the other terms. For example, the
angular momenta in these decompositions (1) and (4) are
not defined through matrix elements of the same operator
and one should not expect them to have the same numerical
value (Fig. 1). However, no intuition exists as to how large
that difference is.

In the matrix element defining Lz
q, one may make the

replacement

qyð ~r� i ~DÞzq ¼ �q�0ð~r� i ~DÞzq ! �qð�0 þ �zÞð~r� i ~DÞzq
¼ qyþð~r� i ~DÞzqþ; (7)

provided that the expectation value is taken in a parity
eigenstate. While the Dirac structure of the operator on
the right-hand side of (7) is now the same as that appearing
in (2), Eq. (7) still contains the transverse component of the
vector potential through the gauge covariant derivative,
and therefore, even in light-cone gauge, Lz

q and Lz
q differ

by the expectation value of qyþð~r� g ~AÞzqþ. While it has
long been realized that in general Lz

q � Lz
q, little intuition

exists regarding the expected size, or even sign, of the
difference between these two definitions for the quark
orbital angular momentum. The main purpose of this paper
is to address this issue first in the context of a scalar diquark
model and then in QED.

II. ORBITAL ANGULAR MOMENTUM IN THE
SCALAR DIQUARK MODEL

In a two particle system we introduce center of momen-
tum and relative ? coordinates as

P? � p1? þ p2? (8)

R? � x1r1? þ x2r2? ¼ xr1? þ ð1� xÞr2?
k? � x2p1? � x1p2? ¼ ð1� xÞp1? � xp2?
r? � r1? � r2? (9)

where x1 ¼ x and x2 ¼ 1� x are the momentum fractions

carried by the active quark and the spectator, respectively.
For a state with P? ¼ 0, this implies p1? ¼ �p2? ¼ k?,
allowing one to replace the OAM operator for particle 1 by
(1� x) times the relative OAM in such a state [4]

L z
1 ¼ r1? � p1? ¼ ½R? þ ð1� xÞr?� � k?

! ð1� xÞr? � k? ¼ ð1� xÞLz: (10)

Here we used that the internal wave function of a bound
state satisfies hk?i ¼ 0. Likewise one finds that the expec-
tation value ofLz

2 can be replaced by the expectation value

of xLz.
We now use the above decompositions (1) and (4) to

calculate the OAM of the ‘‘quark’’ in the scalar diquark
model, where the two particle Fock space amplitudes read
[5]

c "
þð1=2Þðx;k?Þ ¼

�
Mþm

x

�
�ðx;k2

?Þ

c "
�ð1=2Þðx;k?Þ ¼ � k1 þ ik2

x
�ðx;k2

?Þ
(11)

with � ¼ g=
ffiffiffiffiffiffiffi
1�x

p

M2�k2?þm2

x �k2?þ�2

1�x

. Here g is the Yukawa coupling

and M=m=� are the masses of the ‘‘nucleon’’/‘‘quark’’/
diquark, respectively. Furthermore x is the momentum
fraction carried by the quark and k? � k?e � k?� repre-

sents the relative ? momentum. The upper wave function
index " refers to the helicity of the ‘‘nucleon’’ and the lower
index to that of the quark. With the light-cone wave func-
tions available (11), it is straightforward to compute either
Lz

q or Jzq, and hence Lz
q from the Ji relation.

This yields for the orbital angular momentum Lz
q of the

‘‘quark’’

L z
q ¼

Z 1

0
dx

Z d2k?
16�3

ð1� xÞjc "
�ð1=2Þj2: (12)

Alternatively one may consider the OAM as obtained from
GPDs using the Ji relation (6) as

Lz
q ¼ 1

2

Z 1

0
dx½xqðxÞ þ xEðx; 0; 0Þ � �qðxÞ�; (13)

where

xqðxÞ¼Z�ð1�xÞþx
Z d2k?

16�3
½jc "

þð1=2Þj2þjc "
�ð1=2Þj2�

�qðxÞ¼Z�ð1�xÞþ
Z d2k?

16�3
½jc "

þð1=2Þj2�jc "
�ð1=2Þj2�

xEðx;0;0Þ¼2Mg2x
Z d2k?

16�3

� ð1�xÞ2ðxmþMÞ
½xð1�xÞM2�ð1�xÞm2�x�2�k2

?�2

¼Mg2

8�2

xð1�xÞ2ðxmþMÞ
�xð1�xÞM2þð1�xÞm2þx�2

: (14)

FIG. 1. Schematic comparison between the two decomposi-
tions (1) and (4) of the nucleon spin. In general, only 1

2 �� �
1
2

P
q�q is common to both decompositions.
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As one may have expected, the wave function renormal-
ization constant

Z ¼ 1�
Z 1

0
dx

Z d2k?
16�3

½jc "
þð1=2Þj2 þ jc "

�ð1=2Þj2� (15)

cancels in Lz
q, yielding

Lz
q ¼ 1

2

Z 1

0
dx

Z d2k?
16�3

½ðx� 1Þjc "
þð1=2Þj2

þ ðxþ 1Þjc "
�ð1=2Þj2� þ

1

2

Z 1

0
dxxEðx; 0; 0Þ: (16)

Since some of the above k? integrals diverge, a manifestly
Lorentz invariant Pauli-Villars regularization (subtraction
with heavy scalar �2 ! �2) is always understood.
Evaluating the above integrals is tedious, but straightfor-
ward, and one finds

L z
q ¼ Lz

q (17)

as was expected since Lz
q in the scalar diquark model does

not contain a gauge field term. However, there is no such
identity for the OAM distribution. The distribution of the ẑ
component of the OAM Lz

qðxÞ is defined as in (12), but

without the x-integration. A comparison with (13) without
x-integration, i.e. comparing Lz

qðxÞ with Lz
qðxÞ � 1

2 �½xqðxÞ þ xEðx; 0; 0Þ ��qðxÞ� (Fig. 2) shows that, even in
a model without gauge fields, Lz

qðxÞ cannot be identified

with the x-distribution ofLz
q for a longitudinally polarized

nucleon [6]. Of course, the difference between the unin-
tegrated orbital angular momenta is expected to become
less significant under QCD evolution, and may almost
vanish at the experimental scale. However, in the following
section we will explicitly demonstrate that in QED the

difference between the integrated orbital angular momenta
is nonzero, Lz

e � Lz
e � 0, and that difference does not

change under leading order QCD evolution.

III. ORBITAL ANGULAR MOMENTUM IN QED

In QED, there are four polarization states in the e� Fock
component. To lowest order, the respective Fock space
amplitudes for a dressed electron with Jz ¼ þ 1

2 read

�"
þð1=2Þþ1ðx;k?Þ ¼ k1 � ik2

xð1� xÞ�ðx;k2
?Þ

�"
þð1=2Þ�1ðx;k?Þ ¼ � k1 þ ik2

1� x
�ðx;k2

?Þ

�"
�ð1=2Þþ1ðx;k?Þ ¼

�
m

x
�m

�
�ðx;k2

?Þ

�"
�ð1=2Þ�1ðx;k?Þ ¼ 0

(18)

with �ðx;k2
?Þ ¼

ffiffi
2

pffiffiffiffiffiffiffi
1�x

p e

M2�k2?þm2

x �k2?þ�2

1�x

.

Using these light-cone wave functions, it is again
straightforward to calculate the orbital angular momentum
(10) of the electron in the Jaffe-Manohar [1] decomposi-
tion

L z
e ¼

Z 1

0
dx

Z d2k?
16�3

ð1� xÞ½j�"
þð1=2Þ�1ðx;k?Þj2

� j�"
þð1=2Þþ1ðx;k?Þj2� (19)

Likewise, it is straightforward to evaluate the OAM using
the Ji relation

Lz
e ¼ 1

2

Z 1

0
dx½xqeðxÞ þ xEeðx; 0; 0Þ � �qeðxÞ� (20)

with [5]

xqeðxÞ ¼ Z�ð1� xÞ þ x
Z d2k?

16�3
½jc "

þð1=2Þ;þ1j2

þ jc "
þð1=2Þ;�1j2 þ jc "

�ð1=2Þ;þ1j2�

�qeðxÞ ¼ Z�ð1� xÞ þ
Z d2k?

16�3
½jc "

þð1=2Þ;þ1j2

þ jc "
þð1=2Þ;�1j2 � jc "

�ð1=2Þ;þ1j2�

xEeðx; 0; 0Þ ¼ 4m2e2
Z d2k?

16�3

x2ð1� xÞ2
½m2ð1� xÞ2 þ �2xþ k2

?�2

¼ m2e2

4�2

x2ð1� xÞ2
m2ð1� xÞ2 þ �2x

: (21)

Again the wave function renormalization constant

Z ¼ 1�
Z 1

0
dx

Z d2k?
16�3

½jc "
þð1=2Þ;þ1j2 þ jc "

þð1=2Þ;�1j2

þ jc "
�ð1=2Þ;þ1j2� (22)

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1
x

FIG. 2. x distribution of the orbital angular momentum Lz
qðxÞ

(full line) compared to Lz
qðxÞ from the unintegrated Ji relation

(dotted line) in the scalar diquark model for parameters �2 ¼
10m2 ¼ 10�2. Both in units of g2

16�2 .
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drops out in (20), yielding

Lz
e ¼ 1

2

Z 1

0
dx

Z d2k?
16�3

½ðx� 1Þjc "
þð1=2Þ;þ1j2

þ ðx� 1Þjc "
þð1=2Þ;�1j2 þ ðxþ 1Þjc "

�ð1=2Þ;þ1j2�

þ 1

2

Z 1

0
dxxEeðx; 0; 0Þ: (23)

Because of the divergent k? integrals a Pauli-Villars sub-
traction with �2 ! �2 is understood and �2 ! 0 at the end
of the calculation, while �2 � m2.

The evaluation of the above integrals is again straight-
forward, yielding

Lz
e ¼ � �

2�

Z 1

0
dxð1� x2Þ logð1� xÞ2m2 þ x�2

ð1� xÞ2m2 þ x�2

!
�!1
�!0 � �

4�

�
4

3
log

�2

m2
� 2

9

�
(24)

and

Lz
e ¼ � �

4�

Z 1

0
dxð1þ x2Þ

�
log

ð1� xÞ2m2 þ x�2

ð1� xÞ2m2 þ x�2

� ð1� xÞ2m2

ð1� xÞ2m2 þ x�2
þ ð1� xÞ2m2

ð1� xÞ2m2 þ x�2

�

!
�!1
�!0 � �

4�

�
4

3
log

�2

m2
þ 7

9

�
: (25)

Both Lz
e and L

z
e are negative, regardless of the value of �

2

(as long as �2 > �2). In the case ofLz
e the physical reason

is a preference for the emission of photons/gluons with the
spin parallel (as compared to antiparallel) to the original
quark spin [7]—resulting more likely in a state with nega-
tive OAM. In fact, when x ! 0, this preference reflects the
more general principle of helicity retention [8], which
favors the lead parton (i.e. the parton carrying most of
the momentum) to carry a spin as close as possible to
that of the parent. It is also encoded in the evolution
equations derived in Ref. [6]. The divergent parts of Lz

e

and Lz
e are the same so that their difference is UV finite

(Fig. 3)

L z
e � Lz

e !
�!1
�!0 �

4�
: (26)

Applying these results to a (massive) quark with Jz ¼
þ 1

2 yields to Oð�sÞ
L z

q � Lz
q ¼ �s

3�
: (27)

In QCD, the gluon spin is experimentally accessible, but
the gluon OAM Lz

g is not. On the other hand, the gluon

(total) angular momentum Jzg appearing in the Ji decom-

position is accessible, either indirectly (by subtraction,
using quark GPDs from lattice QCD and/or DVCS), or
directly, using by calculating gluon GPDs on a lattice and/

or deeply virtual J=c production. Even though 1
2 �G and

Jzg belong to two incommensurable decompositions of the

nucleon spin, one may thus be tempted to consider the
difference between these two quantities, hoping to learn
something about gluon OAM. Subtracting (1) from (4), it is
straightforward to convince oneself that

Jzg � 1

2
�G ¼ Lz

g þ
X
q

ðLz
q � Lz

qÞ; (28)

i.e. numerically Jzg � 1
2 �G differs from Lz

g by the same

amount that
P

qL
z
q differs from

P
qL

z
q. In our QED ex-

ample, with

�� ¼
Z 1

0
dx

Z d2k?
16�3

½jc "
þð1=2Þ;þ1j2 � jc "

þð1=2Þ;�1j2

þ jc "
�ð1=2Þ;þ1j2� (29)

being the photon spin contribution, one thus finds (for � !
0, � ! 1)

Jz� � 1

2
�� ¼ Lz

� þ �

4�
: (30)

As was the case in (26), �
4� appears to be a small correction,

but one needs to keep in mind that for an electron Jz�, ��,

and Lz
� are also only of order �.

IV. DISCUSSION AND SUMMARY

We have studied both the Jaffe/Manohar, as well as the Ji
decomposition of angular momentum in the scalar diquark
model, as well as for an electron in QED to order �. As
expected, both decompositions yield the same numerical
value for the fermion OAM in the scalar diquark model, but
not in QED. This calculation demonstrates explicitly that
the presence of the vector potential in the manifestly gauge
invariant local operator for the OAM does indeed contrib-

–4

–3

–2

–1

0

2 4 6 8 10

FIG. 3. Cutoff dependence of Lz
e (full line) and Lz

e (dotted
line). Both in units of �

4� .
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ute significantly to the numerical value of the OAM. While
the numerical value for difference between the fermion
OAM in these two decompositions in QED appears to be
small ( �

4� ), one should keep in mind that the OAM itself is

of the same order �. Moreover, applying the same calcu-
lation to a massive quark in QCD yields a contribution
from the vector potential term to the angular momentum of
the quark of �s

3� .

The sign of the contribution to the angular momentum
arising from the vector potential is also significant in light
of recent lattice results for the contributions from the u and
d quark OAM to the nucleon spin [9], yielding Lz

u < 0 and
Lz
d > 0. The signs of the lattice results are thus exactly

opposite to what one would have expected on the basis of
relativistic quark models, such as the bag model, where the
OAM arises from the lower Dirac component and its
expectation value is thus positively correlated to the ex-
pectation value of the quark spin. While the lattice results
still neglect insertions of the operator into disconnected
quark loops, this does not affect Lz

u � Lz
d, and the sign of

that difference should be reliable. Virtual gluons emitted
from a quark tend to have their helicity aligned with that of

the parent quark, which implies that the quark acquires
OAM in the direction opposite to its spin from virtual
gluon emission [7]. This observation is encoded in the
evolution equations derived in Ref. [6], and can also be
read off from the cutoff dependence of the quark OAM
depicted in Fig. 3. The negative OAM resulting from QCD
evolution has been used in Ref. [10] to numerically explain
the apparent discrepancy between the lattice result [9] and
quark-model-based intuition. Our main result, Eqs. (26)
and (27) adds to that effect in the sense that the vector
potential also adds a contribution to the OAM that is in the
opposite direction from the quark spin. Such a shift would
imply Lz

u > Lz
u and Lz

d < Lz
d, moving Lz

q closer to the

quark-model-based intuitive expectation than Lz
q.
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