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The influence of the Maxwell field on a static, asymptotically flat, and spherically-symmetric Gauss-

Bonnet black hole is considered. Numerical computations suggest that if the charge increases beyond a

critical value, the inner determinant singularity is replaced by an inner singular horizon.
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The study of new physical effects induced by the four-
dimensional, low-energy effective string action with sec-
ond order curvature correction has been an important topic
in black hole physics during the last three decades (see,
e.g., [1]). The internal structure of black holes described by
the action

S ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p ½m2

plð�Rþ 2@��@��Þ
� e�2�F��F

�� þ �e�2�SGB�; (1)

where mpl is the Plank mass, � is the dilaton field, R is the

scalar curvature, SGB ¼ RijklR
ijkl � 4RijR

ij þ R2 is the

Gauss-Bonnet term, F��F
�� is the Maxwell field, and �

is the string coupling constant, has been investigated in [2].
The influence of the magnetic charge of the black hole on
the behavior of the metric functions was considered and it
was shown that there exists a ‘‘critical value’’ of the charge
beyond which the influence of the Maxwell term becomes
more important than the Gauss-Bonnet one. The inner
determinant singularity at r ¼ rs is then replaced by a
smooth local minimum.

In this paper, we focus on the behavior of the curvature
invariant RijklR

ijkl near this critical point and in the vicinity

of the main singularity at r ¼ rx.
Considering a static, asymptotically flat and spherically-

symmetric black hole solution, we focus on the following
metric:

ds2 ¼ �dt2 � �2

�
dr2 � f2ðd�2 þ sin2�d’2Þ; (2)

where �, �, and f are functions that depend on the radial
coordinate r only. To simplify the problem, only the mag-
netic charge will be taken into account. Therefore, for the

Maxwell tensor F��, one can use the ansatz F ¼
q sin�d� ^ d’ [3]. The corresponding field equations in
the Garfincle-Horowitz-Strominger (GHS) gauge (�ðrÞ ¼
1) are as follows:

m2
pl½ff00 þ f2ð�0Þ2� þ 4e�2��½�00 � 2ð�0Þ2��ðf0Þ2 � 1

þ 4e�2���02�f0f00 ¼ 0; (3)

m2
pl½1þ �f2ð�0Þ2 ��0ff0 � �ðf0Þ2�
þ 4e�2���0�0½1� 3�ðf0Þ2� � �e�2�q2f�2 ¼ 0; (4)

m2
pl½�00fþ 2�0f0 þ 2�f00 þ 2�fð�0Þ2�
þ 4e�2��½�00 � 2ð�0Þ2�2��0f0

þ þ4e�2���02½ð�0Þ2f0 þ ��00f0 þ��0f00�
� 2e�2�q2f�3 ¼ 0; (5)

� 2m2
pl½�0f2�0 þ 2�ff0�0 þ�f2�00�

þ 4e�2��½ð�0Þ2ðf0Þ2 þ��00ðf0Þ2 þþ2��0f0f00 ��00�
� 2e�2�q2f�2 ¼ 0: (6)

The behavior of the metric functions and of the dilatonic
field near the horizon are described by a simple Taylor
expansion [4]

� ¼ d1xþ d2x
2 þOðx2Þ;

f ¼ f0 þ f1xþ f2x
2 þOðx2Þ;

e�2� ¼ e�2�0 þ�1xþ�2x
2 þOðx2Þ;

(7)

where (x ¼ r� rh, � 1).
Without the Gauss-Bonnet term, the Gibbons-

Maeda–Garfinkle-Horowitz-Strominger solution (GM-
GHS) [3] should be recovered as the basic solution of the
Einstein equations with the dilaton and Maxwell terms.
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This solution is given by

ds2 ¼
�
1� 2M

r

�
dt2 �

�
1� 2M

r

��1
dr2

� r

�
r� q2 expð2�0Þ

M

�
d�;

expð�2�Þ ¼ expð�2�0Þ � q2

Mr
;

(8)

whereM stands for the black hole mass. In the limit � ! 0,
the solution of Eqs. (3)–(6) at infinity should coincide with
Eq. (8).
In order to determine the two metric functions and the

dilatonic field, three equations are required. Among the
four Eqs. (3)–(6), only Eqs. (3), (5), and (6), which contain
the second derivative of the metric functions and the dila-
ton, are used. In contrast, Eq. (4), which contains the first
derivative only, is considered as a constraint to check the
solution.
To solve the system (3)–(6), the equations are rewritten

using E ¼ e�2� instead of the dilaton itself. Furthermore,
the case � ¼ 1 is considered. In the chosen metric gauge,
the squared Riemann tensor is given by

RijklR
ijkl ¼ �002 þ 4�02 f

02

f2
þ 8�2 f

002

f2
þ 8��0 f

0f00

f2
þ 4

f4

� 8�
f02

f4
þ 4�2 f

04

f4
: (9)

The main difficulty in solving the system numerically is
the fact that the metric function � has a coordinate singu-
larity at the event horizon, making the numerical calcula-
tion ‘‘through’’ the horizon intricate. This is why the
computation process was divided into two parts. First,
the GM-GHS solution (8) was taken as the initial condition
at infinity. Solutions for the metric functions and the dila-
ton outside the event horizon were found. Then, the results
near the horizon were taken as new initial conditions.
The behavior of metric the functions � and f, together

with the dilaton exponent e�2�, was investigated under the
event horizon of the black hole. It differs significantly
depending on the black hole charge. If the charge is zero
or small the metric function� is defined only for r > rs (rs
being smaller than the event horizon radius rh). In this
case, there exist two mathematical branches: one is physi-

FIG. 1. Metric function � as a function of the radial coordinate
r for q ¼ 21:50< qcr (left curve) and q ¼ 24:81> qcr (right
curve) when rh ¼ 200:0 Planck units.

TABLE I. Black hole critical charge qcr as a function of the
mass M.

M 5.0 10.0 20.0 50.0 60.0 70.0 90.0 100.0

qcr 4.53 7.20 11.42 21.03 23.75 26.32 31.13 33.39

FIG. 2. Metric function f as a function of the radial coordinate r for q ¼ 21:50< qcr (left plot) and q ¼ 24:81> qcr (right plot)
when rh ¼ 200:0 Planck units.
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cal (and displayed in Fig. 1), ranging from r ¼ rs to
infinity, and the other one is an artifact, ranging from r ¼
rs to r ¼ rx. If the value of the charge is larger than a
critical value qcr, the inner singularity does not exist any-
more and, as it can be seen in Fig. 1 (right), � exhibits a
local minimum. When the black hole charge increases
from zero, a phase transition occurs at q ¼ qcr such that
the inner singularity disappears (being relpaced by a local
minimum for �) and an inner horizon forms at rx. This is
the main difference between the considered solution and
the GM-GHS case.

The values of the critical charge have been numerically
computed for different masses and are given in Table I.

The behavior of the metric function fðrÞ (Fig. 2) and
e�2�ðrÞ (Fig. 3) outside the horizon are analogous to the
GM-GHS case. For large values of the radial coordinate,
fðrÞ � r. When q < qcr these functions are monotonic
from r ¼ rs to infinity. However, when q > qcr, they are
defined in a wider interval ½rx;1�. The metric function fðrÞ
vanishes for r ¼ rx, together with e�2�. This underlines
that for r ! rx, the influence of the Maxwell term becomes
subdominant when compared to the Gauss-Bonnet one.

The behavior of the curvature invariant RijklR
ijkl under

the event horizon of the black hole was also studied and it
was confirmed that RijklR

ijkl ! 1 for r ! rs when q <

qcr. The situation when the black hole charge reaches its
critical value and the metric function � begins to exhibit a
local minimum instead of a singularity at r ¼ rs was
considered in more detail. It was checked that in this
case the value of the curvature invariant does not diverge
anymore. It is therefore obvious that the local minimum of
the metric function �ðrÞ is intrinsically nonsingular.

When q > qcr (i.e. when the rs singularity vanishes), the
important point is rx, where f vanishes. It was numerically
checked that the curvature invariant diverges at this point.
So, it can be conjectured that r ¼ rx becomes a singular

horizon inside the black hole. When q < qcr, this horizon
belongs to the nonphysical branch of the considered system
of equations. Near the singular horizon rx (when q > qcr),
the curvature invariant diverges significantly more rapidly
than near the singularity rs (when q < qcr).
In Fig. 4, the curvature invariant is shown as a function

the of metric function f which, in the chosen metric, has
the intuitive meaning of the radius of a two-sphere. The
asymptotic behavior of the metric function f can be ex-
pressed as [2]

fðr ! rsÞ ¼ fs þ fs2ðr� rsÞ þ fs3ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rs

p Þ3 þ � � � ;
fðr ! rxÞ ¼ fx þ fx1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rx

p þ fx2ðr� rxÞ þ � � � ; (10)

where fi are expansion coefficients.

FIG. 4. Curvature invariant RijklR
ijkl as a function of the

metric function f for q ¼ 21:50< qcr (left curve) and q ¼
24:81> qcr (right curve), with rh ¼ 200:0 Planck units.

FIG. 3. Dilatonic exponent e�2� as a function of the radial
coordinate r for q ¼ 21:50< qcr (upper curve) and q ¼ 24:81>
qcr (lower curve) when rh ¼ 200:0 Planck units.

FIG. 5. Three-dimensional dependence of the curvature invari-
ant RijklR

ijkl against the charge q and the radial coordinate r for

rh ¼ 200:0.
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So, the divergence of the curvature invariant in terms of
the metric function f is given by

RijklR
ijkl � const1 � ðf� fsÞ�1

for f ! fs; RijklR
ijkl � const2 � ðf� fxÞ�5

for f ! fx: (11)

The three-dimensional dependence of the curvature invari-
ant as a function of the charge q and the radial coordinate r
is given in Fig. 5.

This establishes the internal structure of a Maxwell-
Gauss-Bonnet black hole. It can also be noticed that the
regularization of the internal structure, which is expected
by some models of ‘‘cosmological natural selection’’ [5]
and is predicted by loop quantum gravity [6], does not
happen in Gauss-Bonnet gravity, even for highly charged
black holes.
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