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We study baryons in SUðNÞ gauge theories at finite temperature according to the gauge/string

correspondence based on IIB string theory. The baryon is constructed out of the D5-brane and N

fundamental strings to form a color singlet N-quark bound state. At finite temperature and in the

deconfining phase, we could find kð<NÞ-quark baryons. Thermal properties of such k-quark baryons

and also of the N-quark baryon are examined. We study the temperature dependence of color screening

distance and the Debye length of the baryon of the k quark and the N quark. We also estimate the melting

temperature, where the baryons decay into quarks and gluons completely.
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I. INTRODUCTION

In the context of string/gauge theory correspondence the
baryons related to the D5-branes has been proposed [1–9]
and studied using the Born-Infeld approach [10–12]. In
these approaches, the fundamental strings (F string) are
dissolved in the D5-brane in order to make a baryon vertex.
Here the D5-brane is embedded as a probe in a 10D
background in which the conformal invariance is broken
by the nontrivial dilaton. As a result of nonconformal
invariance, the embedded configurations of the D5-brane
generally have cusps, which are the singular points to be
cancelled out by some external objects. This is performed
by introducing F strings whose surface term cancels out
with this cusp singularity. This is represented by the no-
force condition between the F strings and the D5-brane.
From a viewpoint of the smoothed picture of the baryon
configuration, these added F strings could be regarded as
the ones which flow from the D5-brane through the cusps.

According to the above idea, an analysis for the baryon
configurations has been performed in [13] based on a
simple holographic model. At finite temperature and in
the quark deconfinement phase, we could find possible
bound states of a small number kð<NÞ of quarks with a
D5 vertex. Here we study the thermal properties of these
states and also the usual N-quarks baryons. The quarks in
the baryon are connected to the vertex through the F string.
This F string is common to the one of mesons which are the
bound states of a quark and an antiquark. So we expect, for
the part related to the quarks in the baryon, that the thermal
properties are similar to the ones of the mesons. But the
situation is different from the meson case in the following

two points: (i) Since the baryon is constructed from N
quarks, various configurations are possible in the quark
deconfinement phase. They are discriminated by the num-
ber of quarks retained in the state. (ii) The second point is
the nontrivial configuration of the vertex given by the D5-
brane, which is determined by the dynamics of the gauge
theory.
These properties depend on the temperature (T). At low

temperature, we find four types [ðAÞ � ðDÞ] of D5-brane
canfigurations. Two of them [(C) and (D)] appear for the
first time at finite temperature. When the temperature ex-
ceeds a value Tc1 , which is given in [13], the solution is

reduced to the one type [(A)]. But before arriving at this
temperature, any baryon state decays into quarks and glu-
ons since its energy (E) exceeds the sum of the effective
mass of free quarks. We call this temperature the melting
point, Tmelt, which is slightly smaller than Tc1 as estimated

below.
The baryon energy E varies with its size. We study here

the relation between the size and the energy E of the
baryon. As for the size of the baryon, we could measure
it as the F string length observed in the real three-
dimensional space. The configurations of the F strings
are intimately related to the vertex configurations or the
D5-brane structure, which varies with the temperature.
Through the study of the F string configurations, we find
that the quarks in the baryon can not stay far from the
vertex exceeding a distance (Lmax) which increases with
decreasing T. This is the reflection of the thermal screening
of the color force and it is seen by measuring Lq�v, the

distance of the quarks from the vertex, as a function of E.
At low temperature, we find E� Lq�v relation as three

connected curves. They are a little complicated compared
to the case of mesons. The first curve starts from Lq�v ¼ 0

and ends at Lmax, then it comes back toward the small Lq�v

side along the second curve with larger E and it stops at
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Lq�v ¼ L1ð>0Þ. Then it turns to the larger Lq�v again

along the third curve with larger E, and it stops at Lq�v ¼
L2ð<LmaxÞ. (See Fig. 5.) This behavior is common to all
the baryon configurations of different k0’s, and the slopes of
the curves of different k’s are proportional to k.

However we find a real screening point at L�ð� LmaxÞ,
where the baryon decays to the quarks and gluons, before
arriving at Lmax. So we could not see the above compli-
cated properties as stable baryon states, and for L� < Lq�v,

they decay into the quarks and gluons. When T increases
and approaches to Tmelt, then L

� vanishes to zero and all the
baryons melt down.

In Sec. II, we review our model briefly, and the equation
of motion for D5-branes is solved to show four types of
solutions and to discuss the stability of the baryon. In
Sec. III, the balance condition of the forces is given, and
in Sec. IV, E� Lq�v relations and the estimation of the

screening mass are given. In Sec. V, we discuss the stability
of the baryon state from the viewpoint of baryon vertex
energy and the gauge condensate parameter. The summary
and discussions are given in the final section.

II. D5 BARYON VERTEX AT FINITE
TEMPERATURE

Here, we consider the baryon configurations in the non-
confining, finite temperature Yang-Mills (YM) theory.
Such a model is given by the AdS black hole solution,
which represents the high temperature gauge theory. In our
theory with dilaton, the corresponding background solu-
tion is given as [14]

ds210 ¼ e�=2

�
r2

R2
½�f2dt2 þ ðdxiÞ2�

þ R2

r2f2
dr2 þ R2d�2

5

�
: (1)

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
rT
r

�
4

s
; e� ¼ 1þ q

r4T
log

�
1

f2

�
;

� ¼ �e�� þ �0:
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The temperature (T) is denoted by T ¼ rT=ð�R2Þ. The
world volume action of the D5-brane is rewritten by elim-
inating the U(1) flux in terms of its equation of motion as
above, then we get its energy as [13]1

UD5 ¼ N

3�2�0
Z

d�e�=2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02=f2 þ ðr=RÞ4x02

q

�
ffiffiffiffiffiffiffiffiffiffiffiffi
V�ð�Þ

q
; (3)

where

V�ð�Þ ¼ Dð�; �Þ2 þ sin8�; (4)

D � Dð�; �Þ

¼
�
3

2
ð��� �Þ þ 3

2
sin� cos�þ sin3� cos�

�
: (5)

Here,D denotes the electric flux at the � cross section. And
the integration constant � is expressed as 0 � � ¼ k=N �
1, where k corresponds to the number of F strings emerging
from one of the poles of the S5 at � ¼ 0. Then N � n
comes out from the other pole at � ¼ �.
As mentioned above, we restricted the solutions to the

SO(5) symmetric form of r ¼ rð�Þ here. Although the SO
(6) symmetric solution, r ¼ constant, is the simplest one,
the less symmetric SO(5) solution considered here contains

the SO(6) symmetric one, r ¼ q1=4, as shown below. This

solution (r ¼ q1=4) gives actually the minimum of the
vertex energy as shown in Sec. V (see Fig. 8). The baryon
is however made by adding N fundamental strings to this
vertex with no-force condition (15). In this case, the energy
of the baryon is given as the sum of the one of the vertices
and the attached F strings. Hence we can show that the
baryon with this SO(6) symmetric vertex is not the lowest
energy state, and the lowest state is found rather in the
baryon with a SO(5) symmetric vertex. Then, it would be
meaningful to consider SO(5) symmetric solutions. As for
the SOðnÞ symmetric solutions with smaller nð� 4Þ, we
should examine them if possible. But it will be postponed
as the next stage of work for us, and we will find more
complicated baryon vertex configurations.
As for the background solution given here, we give the

following comment. Here we are considering the finite
temperature gauge theory holographically. Hence the su-
persymmetry of the gauge theory is lost, then one might
reconsider whether the state with q ¼ F2

�� � 0 is still the

ground state of the theory. We think that the above back-
ground with q � 0 could be regarded as the ground state in
the present model, and to investigate the above solution is
meaningful from the following two viewpoints:
(i) The density values of the bulk action with the back-

ground of q ¼ 0 and nonzero q are the same in spite
of the finite temperature since q does not appear in
the action.2 This would be understood as the remnant
of N ¼ 2 supersymmetry at T ¼ 0. So we cannot
judge which state of q ¼ 0 or q � 0 is the ground
state from the bulk theory. In other words, our solu-
tion with q � 0 can be said to be the ground state
still.

(ii) (ii) On the other hand, from 4D lattice QCD simu-
lations, we could find the observation that the gauge

1Here we consider the SO(5) symmetric solution, so only the
coordinate � remains.

2Here the 5D reduced action can be given as

S ¼ 1

2�2

Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 3�� 1

2
ð@�Þ2 þ 1

2
e2�ð@�Þ2

�
:
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condensate disappears at the deconfinement tem-
perature [15]. But, we could point out two possible
reasons to use our model with nonzero q even at the
finite temperature. (a) Our model is the finite tem-
perature version of ‘‘N ¼ 2 supersymmetry SUðnÞ
YM theory, where n is large.’’ This point is different
from the ‘‘QCD’’ simulated on the lattice. Then there
might be the region where our solution is ground
state. (b) Second, there would be a finite region of
temperature for the finite q ground state if the real
transition was not so sharp with respect to q in the
real QCD.

A. Embedded solutions of the D5-brane

The vertex configuration is obtained from the above
Legendre transformed action (3). Here, for simplicity, we
concentrate on the point vertex configuration and � ¼ 0,
which means the quarks come from the cusp at � ¼ �.
There is no other cusp. Then, we set x0 ¼ 0, and we obtain

UD5 ¼ N

3�2�0
Z

d�e�=2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02=f2

q ffiffiffiffiffiffiffiffiffiffiffiffi
V0ð�Þ

q
: (6)

From this action, the equation of motion of rð�Þ is obtained
as follows:

@�

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2f2 þ ðr0Þ2p
ffiffiffiffiffiffiffiffiffiffiffiffi
V0ð�Þ

q �
� PðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2f2 þ ðr0Þ2p
ffiffiffiffiffiffiffiffiffiffiffiffi
V0ð�Þ

q
¼ 0:

(7)

PðrÞ ¼ 1

2e�
@rðe�r2f2Þ: (8)

The solutions rð�Þ of Eq. (7) are characterized by the
prefactor PðrÞ in the second term. Its behavior depends on
the temperature. For comparison, PðrÞ at T ¼ 0 is also
shown in Fig. 1 with the one of the various finite
temperatures.

At any temperature, PðrÞ is positive at large r and
changes its sign to the negative value for the low tempera-
ture cases according to the curves (�) and (�) in the Fig. 1.
When we take the value of rð0Þð� r0Þ at the point of P> 0
[P< 0], then we obtain the typical configuration (A) [(B)]
of the baryon as shown in Fig. 2 where F strings are added
according to the condition given below. The details of the
boundary r ¼ rmax, used in Fig. 2, are given in Sec. III B.
Here, we notice only the configuration of the vertex part.

In Fig. 2, we assumed circular quark distribution for the
sake of simplicity. However, it is possible to consider other
complicated positioning as far as the no-force condition is
satisfied for the fundamental strings connecting to the
quarks. But such configurations are not considered here
since it is not effective to understand various properties of
the theory in a simple way. A comment on this point is
given in Sec. IVA.

For the case of zero temperature, the two types of
solutions (A) and (B) correspond to the region of P> 0

and P< 0, respectively. However, at finite and low tem-
peratures, the behavior of P is not so simple since the
second zero point appears at smaller r. When r0 is chosen
near this zero point, we find two typical solutions (C) and
(D) for P< 0 and P> 0, respectively, as shown in Fig. 3.
They oscillate once with respect to �, and these solutions
cannot be seen at zero temperature.
At higher temperature, T > Tc1 , the zero points of PðrÞ

disappear as shown by the curve (	) in Fig. 1. In this case,
only the type (A) solutions are obtained, and several solu-
tions with different r0 are shown in Fig. 4. We can see that
the end point value rð�Þ � rc of the solutions rð�Þ takes its
minimum for some initial value rð0Þ, then it rises when
rð�Þ decreases furthermore and approaches the horizon rT .
Next, we turn to the F strings. In the present finite T

model, the effective-quark mass ( ~mq) is finite and it di-

verges at T ¼ 0. In this sense, the present theory is in the
quark deconfinement phase for finite T. So, free quarks or
independent F strings could exist, and the end points of
these F strings touch on the horizon rT and rmax. Then,
some of the F strings, which were originally attached to the
baryon, could escape from the baryon to form such free F
strings. And as shown in Fig. 2, we could find
kð<NÞ-quarks baryon configuration with extra N � k F
strings which connect the vertex and the horizon. These
N � k F strings are not observed as quarks in the gauge
theory, but they contribute to the energy of the baryon. As a
result, some number of N � k quarks disappear from the
original baryon, and we would find it as a k-quarks baryon.
Then, this implies that we may find color nonsinglet bary-
ons as depicted in Fig. 2.
Finally, in this section, we comment on the role of the

parameter q in the dilaton solution given in Eq. (2). It
represents the vacuum expectation value of gauge field
strength hF��F

��i from the AdS/CFT dictionary. When

we neglect this parameter by setting q ¼ 0, then the end

FIG. 1 (color online). PðrÞ for q ¼ 2 and rT ¼ ð�Þ0:1,
ð�Þ0:45, ð	Þ0:8, ð
Þ0:689. The curve (
) is given at the critical
point Tc1 . The curve of T ¼ 0 shows 3Pjrt¼0 ¼ 3rð1�
q=r4Þ=ð1þ q=r4Þ.
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point rð� ¼ �Þ of the solution diverges to infinity. In other
words, we cannot find the cusp at a finite r. This situation is
seen for supersymmetric solutions [4] since there was no
scale parameter to break the scale invariance of the solu-
tions. In the present case, the dimensionful parameter q
plays the role of giving a scale of the cusp point. Another
dimensionful parameter rT , which is proportional to the
temperature, does not work as q.

III. NO-FORCE CONDITION AND k-QUARKS
BARYON

Full baryon configuration is given by the vertex and F
strings. The configurations are determined through the no-

rT

rc

rmax

r
Lq v

A

D5

rT

rc

rmax

r
Lq v

B

D5

rmin

FIG. 2 (color online). Baryons at finite temperature with k quarks (N � k quarks) on the boundary (in the horizon) at r ¼ rmax (rT).
The spindles represent the D5 vertex with one cusp at rc ¼ rð�Þ since � ¼ 0. The left panel [right panel] corresponds to the solutions
(A) and (C) [(B) and (D)]. Notice that the strings end on the cusp of the D5-brane vertex at rc in any case. The distance (Lq�v) between

the vertex and the quarks in the real three space, for example, to x direction, is shown for each baryon configuration. The scale of r is
arbitrary.

FIG. 3. The four types of solutions of rð�Þ for q ¼ 2 at rT ¼ 0:45. The curves represent types A) r0 ¼ 1:5, (B) r0 ¼ 1:1,
(C) r0 ¼ 0:6, and (D) r0 ¼ 0:5, respectively.

FIG. 4 (color online). The type (A) solutions of rð�Þ for q ¼ 2,
rT ¼ 0:8, and (Aa) r0 ¼ 0:80001, (Ab) r0 ¼ 1:0, (Ac) r0 ¼ 1:2,
(Ad) r0 ¼ 1:5.
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force condition at the cusp point of the vertex and the
profiles of the vertex and the F strings. They are charac-
terized by the energy of the total system, the baryon energy,
and the distance between the quark and the vertex (Lq�v).

The tension of the D5-brane at rc is given as

@UD5

@rc
¼ NTFe

�=2 r0cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02c þ r2cfðrcÞ2

p : (9)

As for the F string, the energy is written as

UF ¼ kUð1Þ
F þ ðN � kÞUð2Þ

F : (10)

Here, Uð1Þ
F is the energy of string which extends to the x

direction and its action is written as

Sð1ÞF ¼ � 1

2��0
Z

dtdxe�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ f2ðrÞðr=RÞ4

q
; (11)

where rx ¼ @r
@x and the world sheet coordinates are set as

ðt; xÞ. Then, its energy and r-directed tension at the point
r ¼ rc are obtained as follows:

Uð1Þ
F ¼ TF

Z
dxe�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ f2ðrÞðr=RÞ4

q
; (12)

@Uð1Þ
F

@rc
¼ TF

rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ ðrc=RÞ4fðrcÞ2

p : (13)

Uð2Þ
F is the energy of the string extending from horizon rT

to rc, and it is written as

Uð2Þ
F ¼ TF

Z rc

rT

dre�=2: (14)

Then the no-force condition is obtained as

N
r0cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r02c þ r2cfðrcÞ2
p þ ðN � kÞ ¼ k

rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ ðrc=RÞ4fðrcÞ2

p :

(15)

A. Lower bound on k

From this equation, we can estimate the lower bound for
k, which is written as

k 	 N

2
ð1þQ5Þ; Q5 � r0cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r02c þ r2cfðrcÞ2
p : (16)

The value of Q5 depends on the parameters, but we can
see it does not arrive at �1. Then k > 0, however, k could
decrease and approach zero by choosing the parameters.
For example, we find Q5 ¼ �:999 16 for ðq; r0; rTÞ ¼
ð2:0; 0:6; 0:01Þ.

In our model, the F-string configuration must satisfy
Eq. (17) with a constant h. This implies h ¼ 0 for the
string which touches on the horizon rT since fðrTÞ ¼ 0.
So we obtain a vertical straight line as the configuration.
However, it would be possible to obtain a slightly curved

string configuration in a more realistic model. Then the
configuration of k ¼ 0 would be possible in principle at
finite temperature. But it would not be realized energeti-
cally as a stable state.

B. Energy of k-quarks baryon

The energy of baryons is constructed by the F-strings’
energy and that of the vertex. In obtaining the F-string
configuration from Eq. (12), we introduce the constant h as
follows,

e�=2 r4f2ðrÞ
R4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ ðr=RÞ4f2ðrÞp ¼ h: (17)

For rx > 0ð<0Þ, k-quarks baryons configuration be-
comes the type (A)[(B)]. First, consider the solution of
(A). In this case, the energy of the F strings is given as

UF ¼ TF

�
k
Z rmax

rc

dr
e�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2R4

f2e�r4

q þ ðN � kÞ
Z rc

rT

dre�=2

�
:

(18)

The second term denotes the F strings stretching between
the horizon and rc. And the distance Lq�v is given as

LðAÞ
q�v ¼ R2

Z rmax

rc

dr
1

r2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�r4f2

h2R2 � 1
q : (19)

Here we make the following point. The rmax can be
introduced as the position of the embedded D7-brane to
provide quarks, but it is abbreviated in this article to
simplify the problem. So, in the strict sense, rmax simply
plays the role of the UV cutoff and does not have any other
physical meaning. Then the quantities depending on rmax,
like Lq�v andUF given above, must be renormalized by an

appropriate physical mass scale, for example, some hadron
mass. Then their absolute values have no physical meaning
at the present stage. On the other hand, rmax independent
quantities like L�, tension, Tmelt, and mD, which are given
below, have physical meaning in this article, and they are
important quantities in our paper.
Next, we turn to the configuration of (B). In this case, the

string configuration includes a bottom part of the U-shaped
configuration and the bottom point is seen at r ¼ rmin,
where we find

dr

dx

��������r¼rmin

¼ 0: (20)

Since (17) can be used at any r, we obtain

h ¼ e�ðrminÞ=2fðrminÞ
�
rmin

R

�
2

¼ e�ðrcÞ=2 r4cf
2ðrcÞ

R4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ ðrc=RÞ4f2ðrcÞ

p : (21)

From this, rmin is determined by rc, then by r0. On the other
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hand, rx is determined by using rc from (15). As a result,
we obtain the string energy and the distance between the
quark and the vertex as follows:

UF ¼ TF

�
k

�Z rmax

rmin

dr
e�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2R4

f2e�r4

q þ
Z rc

rmin

dr
e�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2R4

f2e�r4

q
�

þ ðN � kÞ
Z rc

rT

dre�=2

�
; (22)

LðBÞ
q�v ¼ R2

�Z rmax

rmin

dr
1

r2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�r4f2

h2R4 � 1
q

þ
Z rc

rmin

dr
1

r2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�r4f2

h2R4 � 1
q

�
: (23)

Here we consider the energy of k-quark (for any k) baryon
and N � k free quarks to compare the energy with that of
the N free quarks which form the baryon as a singlet state.
So we add (N � k) free quarks, which are strings stretching
between the horizon and rmax, to the k-quark baryon state.
We estimate the energy of the baryon in this way as a
function of the distance Lq�v. Then the total k-quark

baryon energy is obtained as

Ek ¼ UF þUD5 þ ðN � kÞ ~mq; (24)

where we note that the first two terms UF and UD5 are
dependent on k, and ~mq is the energy of a free quark,

~mq ¼ TF

Z rmax

rT

dre�=2: (25)

In the following, we give numerical analyses by setting
rmax ¼ 10 for simplicity. This value changes the energy of
the string part or quark mass. In the sense, rmax ¼ 10
would be set at the position of the embedded D7-brane
which provides quarks. But here we do not discuss the
embedding of the quark brane.

IV. COLOR SCREENING AND BARYON MELTING

Here we consider the stability of the various baryon
configurations in the deconfining thermal medium.
Although the baryon is in the deconfining phase some of

the baryon states could be stable until the temperature
arrives at the critical point where all the baryons melt
down to free quarks. This melting temperature is estimated
below by comparing the baryon energy and the energy of
free quarks.
In the following, we estimate numerically the energy E

and the distance between the quark and the vertex, Lq�v,

for the k-quark baryon (k � N) in order to cover various
cases. The color screening due to the temperature is ob-
served as the existence of a maximum value of Lq�v for

each baryon states. However, the real maximum value of
Lq�v is determined energetically by comparing the energy

of the baryon state and the one of the summation of the free
quarks.

A. For k ¼ N case

Typical E� Lq�v curves are shown in Fig. 5 for two

temperatures. The beginning point at L ¼ 0 corresponds to
the solution of rð�Þ with ðrð�Þ ¼Þrc ¼ rmax and ðrð0Þ ¼
Þr0 > rT . Then E increases almost linearly with Lq�v. We

notice two turnover points in these curves, and the second
one has not been seen in the case of the mesons. We could
see that the second turnover is related to the existence of
two zero points of PðrÞ and two new types of solutions [(C)
and (D)] as seen in Sec. II. However, this intriguing be-
havior of E� Lq�v curves is seen in the unstable region of

the baryon since the baryon energy in this region is higher
than the sum of the free quarks energy, which are shown by
the horizontal lines. They cross at L ¼ L�, which depends
on the temperature; then the baryon, which has the energy
below N ~mq, is allowed as a stable state. The point L� is

therefore interpreted as the maximum size of the baryon.
Within this distance, the color force works on the quark,
and the color gauge force is screened outside this distance.
As a result, all the baryons decay into quarks and gluons for
L� < Lq�v.

We notice here that the rmax dependence of L� is very
small and we could neglect this dependence. For example,
in Fig. 6, we can show the numerical estimation of this rmax

dependence for the case of Fig. 5. It shows that the physical
quantity L� is almost independent for rmax > 5.

FIG. 5 (color online). Energy of the N-quarks baryon versus Lq�v (which is denoted simply by L in the figure) at rT ¼ 0:05 (left
panel) and rT ¼ 0:1 (right panel) for q ¼ 2 and rmax ¼ 10. In these figures two turnovers are seen as mentioned in the text. However,
the physically allowed region is only the part below the horizontal lines of N ~mq.

GHOROKU, ISHIHARA, NAKAMURA, AND TOYODA PHYSICAL REVIEW D 79, 066009 (2009)

066009-6



Of course, the value of L� depends on the temperature.
The values for various temperatures are plotted in Fig. 7.
The numerical results show that L� is proportional to 1=rT
or 1=T, and it approaches to zero at some limiting tem-
perature. Above this temperature, any baryon state is not
allowed.

The value of L� should be related to the Debye screen-
ing. In the gauge theory, the Debye screening has been
considered the correction to the gluon propagator. Then the
potential between two colored particles separating r is
given by the form e�mDr=r. However, in the present model,
the force at short distance is given by the strong coupling
conformal field theories (CFT) and a long range force
which leads to linear potential. And we find a linearlike
potential near L� even if it is still not so large. So the
potential screened by the thermal effect is just this linear-
like potential, which is considered as the tail of the linear
potential seen at large Lq�v in the case of T ¼ 0. When we

denote this tail as V0ðLÞ at zero temperature, it is modified
at finite temperature as,

V � E� N ~mq ¼ V0ðLÞe�mDðTÞL; (26)

where mDðTÞ denotes the Debye mass. Using this formula,
the numerical curves of E� L are fitted by this form, and
we obtain mDðTÞ. However we used here VTmin

ðLÞ instead

of V0ðLÞ, where VTmin
ðLÞ denotes the potential of the lowest

temperature. So we corrected the data of mDðTÞ obtained
by shifting the temperature T ! T0 such that we could
obtain mDðT0Þ ! 0 for T0 ! 0. The results are shown in
the left-hand side of Fig. 7.
Then we could find the relation L� ¼ c=mDðTÞ with a

definite constant c ¼ 6:8. And we obtain the result that
mRðTÞ increases linearly with the temperature T.
In [16], using the AdS/CFT correspondence, Bak, Karch

and Yaffe examined the behavior of correlators of
Polyakov loops and other operators in N ¼ 4 supersym-
metric Yang-Mills theory at nonzero temperature. And the
implications for Debye screening in that strongly coupled
non-Abelian plasma, and comparisons with available re-
sults for thermal QCD, were discussed. The connection
with our result is that the proportionality mD / T is com-
mon with [16]. In [17], however, mD=T is predicted to
decrease slowly with T=Tc on the basis of nonperturbative
computation in the deconfined phase of QCD, using the
method called background perturbation theory. This pre-
diction is in good agreement with the data of lattice QCD
[18]. In order to reproduce this decrease, string-string
interactions should be considered in the string theory
side. This is a future problem.
Here we give a comment on the other possible configu-

rations to be considered. We have assumed that the quarks
are on the same circle. In order to investigate the stability
of this configuration, we compare it with the one of the two
circles configuration (see Fig. 8). In the latter configura-
tions, we assumed that quarks are divided into two groups
with equal numbers. Then the no-force condition is given
as

N
r0cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r02c þ r2cfðrcÞ2
p þ ðN � kÞ ¼ ðk=2Þrð1Þxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð1Þ2x þ ðrc=RÞ4fðrcÞ2
q

þ ðk=2Þrð2Þxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2Þ2x þ ðrc=RÞ4fðrcÞ2

q ;

(27)

where c � rð1Þx =rð2Þx is assumed as a constant. When c varies

FIG. 6 (color online). The cutoff (rmax) dependence of L� for
q ¼ 2, rT ¼ 0:1, and R ¼ 1.

FIG. 7 (color online). The left-hand side shows the Debye screening mass mD estimated for k=N ¼ 1 and 0.8. The line is fitted as
mD ¼ 6:81rT (mD ¼ 10:5rT) for k=N ¼ 1 (k=N ¼ 0:8). In the right-hand figure, melting points L� are shown by the curves for
k=N ¼ 1 and 0.8 baryon versus 1=rT at q ¼ 2 and rmax ¼ 10. The dots represent the superposition of the data for mD given in the left-
hand figure. They are given as L� ¼ 6:8=mD for both k=N ¼ 1 and 0.8.
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from 1 to 2, 3, 4 the radius of two circles are changed. The
energies of these configurations for fixed r0 and rmax are
given in the Table I. The total energies vary only a little bit
as c varies. However it should be emphasized that a single
circle configuration has the lowest energy. Thus an as-
sumption of the single circle configuration is justified.

B. For k < N case

In this subsection, we discuss the properties discussed
above for the baryon with k < N. Several E� Lq�v curves

for different k baryons are shown in Fig. 9. The melting
points L� are obtained from these results, and they are
shown for k=N ¼ 0:8 in Fig. 7. Compared to the case of
k=N ¼ 1, it starts from a larger 1=rT (smaller temperature)
with a smaller grade in the L� � 1=rT plane. For smaller k,
the starting point moves to larger 1=rT with smaller slope.

Then we could find small k baryon at low temperature as
stated in Sec. III A.
However, the energy of k baryon is larger than the k0

baryon for k < k0 at the same L. Then the k baryon (k < N)
is always observed as an exited state of the N-quark
baryon. One more point to be noted is that our model is
in the deconfinement phase as far as the temperature is
finite. However, the confinement phase would be realized
at a finite temperature, in other words, the critical tempera-
ture of quark confinement and deconfinement must be
finite. In this sense, the lower bound of k would be existing
at some finite value. But this bound is not given here.

V. BARYON STABILITY

We discuss, here, more about the stability of the baryon
from two viewpoints in order to get physical insights. Since
the vertex is an important part of the baryon, it would be
important to see its role for the baryon stability. Another
important ingredient in our model is the gauge condensate
which is the main source of the confinement force. So we
like to see its role in the deconfinement phase considered
here.

A. Vertex energy and stability

First, we give a comment from the viewpoint of the
vertex energy. In [14], a comment on the stability of the
baryon at finite temperature has been given through the

TABLE I. Various energies and string lengths of configurations for c ¼ rð1Þx =rð2Þx ¼ 1, 2, 3, 4. r0 is an initial value of r. (The final
value of r is rmax.) E, E2, E3, and E4 are the total energies for c ¼ 1, 2, 3, and 4. L is a corresponding length to c ¼ 1 and L1:L2 is each
corresponding value of length to c ¼ 2, 3, 4. The other parameters are set to q ¼ 2, k=N ¼ 1, rT ¼ 0:05, and rmax ¼ 20.

r0 E E2 E3 E4

(L) (L1:L2) (L1:L2) (L1:L2)

1.3 21.0915 21.0933 21.0953 21.0968

(0.087 4267) (0:063 526:0:107 572) (0:049 5745:0:116 267) (0:040 3862:0:120 839)
1.2 22.3686 22.3697 22.3710 22.3721

(0.535 681) (0:514 419:0:557 827) (0:504 027:0:569 335) (0:497 848:0:576 406)

FIG. 9 (color online). Energy of the k-quarks baryon versus
Lq�v for rT ¼ 0:05. The curves represents k=N ¼ 1 (a), 0.8 (b),

and 0.67 (c). And the flat line (d) represents N ~mq ¼ 48:8066 for

rmax ¼ 10.

rT

rc

rmax

r

L2

D5

L1

FIG. 8 (color online). Baryon configuration on two circles with
radius L1 and L2.
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vertex energy without any inner structure. We give a simi-
lar kind of comment on this point in terms of the energy of
the vertex with the structure given above. Before doing it,
we first notice that the energy of the vertex is without
structure. Assuming the baryon is at r, the energy is given
from Eq. (6) by setting r0 ¼ 0 as

UD5 ¼ ~Ne�=2rfðrÞ; (28)

where ~N ¼ N
3�2�0

R
d�

ffiffiffiffiffiffiffiffiffiffiffiffi
V0ð�Þ

p
denotes a r-independent

constant. Then we find

PðrÞ / @UD5

@r
: (29)

From this, we can say that the zero point of PðrÞ is needed
to find a minimum of UD5, and we actually find such a
point at low energy. However, there is a temperature Tc1

above which the zero point disappears, then the vertex
becomes unstable as mentioned in [14]. However, this
statement should be modified when the structure of the
vertex is taken into account.

By substituting the solution of (7) into (3), we obtain the
vertex energy UD5 as a function of r0. In this case, we find
the minimum even if the temperature is taken to be larger
than Tc1 , as seen in Fig. 10. Then we need another criterion

to see the stability of the baryon.
The new criterion can be stated as follows. The stability

of the baryon is assured when its energy is smaller than the
sum of free effective-quark mass, N ~mq,because the baryon

decays to free quarks when its energy exceeds N ~mq.

The energy of the baryon is given by the sum of ED5 and
F strings. Then the minimum value of the baryon energy is
given by Emin

D5 when the F strings part vanishes due to L ¼
0. Then, the stability of the baryon is found by comparing
Emin
D5 with N ~mq. The value of Emin

D5 is given by the D5

energy with a configuration of rT < rðoÞ< r < rð�Þ ¼
rmax. In this configuration, the F strings are reduced to a
point at rc. The higher energy states are obtained by adding

F strings with finite length to the D5-brane with rð�Þ<
rmax and rð0Þ 	 rT .
In Fig. 11, the minimum energy of the N-quark baryon

(ED5) and N ~mq are plotted as functions of rT . We find the

melting point (Tmelt) near Tc1 , above which ED5 exceeds

N ~mq. Then the baryon decays to quarks and gluons. It is an

interesting point that this temperature is very near to Tc1 .

This temperature Tmelt depends sensitively on the gauge
condensate q, so q is also related to the stability of the
baryon state. We discuss this point in the following
subsection.

B. Gauge condensate and baryon at high temperature

As shown in Fig. 11, Tmelt increases with q. Then an
unstable baryon at a temperature can be stabilized by
increasing the gauge condensate q. This point is under-
stood in terms of the role of the gauge condensate in the
gauge theory.
The role of q as a source of quark confinement force has

been made clear. At zero temperature with finite q, we find
the linear potential between quark and antiquark in the
mesons [19], and also between the vertex and the quark in
the baryons [13]. The tension of this linear potential is

proportional to q1=2 in both cases. On the other hand, the
role of the temperature is to screen the color force and to
prevent making the bound states of quarks. The highly
exited state has a large size, then it would be destabilized
by the screening effect at high temperature. However, this
temperature would depend on the magnitude of the force or
the value of q.
Actually, we find that the strength of the linear potential

preserved even in the short range is proportional to q1=2, so
the force to make the baryon at finite T is also proportional

to q1=2. Then we need a higher temperature to destroy the
baryon formed at larger q. Since the effects of T and q are
opposite, then the melting point Tmelt increases with q.
This implies that the baryon configuration constructed

by the vertex and F strings can not be obtained for q ¼ 0.

FIG. 10 (color online). The vertex energy UD5 versus r0. The
minimum of UD5 exists near r0 ¼ q1=4. For rT 	 0:8, the mini-
mum increases rapidly.

FIG. 11 (color online). The T dependence of the minimum
energy of the N-quark baryon (ED5) are shown by the top,
middle, and the bottom lines for q ¼ 2:0, 1.0 and 0.2, respec-
tively. The three curves show N ~mq for q ¼ 2:0, 1.0, and 0.2, and

rmax ¼ 10.
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In other words, the gauge condensate is essential to find the
kð� NÞ-quark baryon at finite temperature. On the other
hand, mesons are expected to be observed even in the
deconfinement high temperature phase of q ¼ 0 [14].

This is understood also from the vertex energy given by
(28) which is represented for q ¼ 0 as follows:

UD5 ¼ ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r4T

r2

s
: (30)

This implies that the vertex is not stable and it vanishes into
the horizon. But this result is given for the structureless
vertex [14]. When the structure is considered, the end point
of the vertex increases infinitely toward the boundary when
we solve the configuration of the D5-brane, rð�Þ. The
reason is that the mass scale to retain rc at a finite value
is given by q. For q ¼ 0, the configurations given above do
not exist. In other words, the confinement force given at
zero temperature should be retained at finite temperature in
order to get the kð� NÞ-quark baryon. This point should be
verified by the experiments at the finite temperature.

VI. SUMMARYAND DISCUSSION

The baryon is studied here from a holographic approach.
It has a complicated structure since it is constructed by the
N quarks and their vertex, which would not be a point but
an extended object. From the holographic viewpoint, the
baryon vertex is identified with the D5-brane and its con-
figuration is obtained by solving the equation of motion
given by D5-brane action which includes N fundamental
string flux. At zero temperature, this vertex has two typical
structures. When we observe it in our real space-time, its
shape is a pointlike or one-dimensionally extended object.
From the 10D supergravity side, both configurations have a
further complicated structure due to the extra six-
dimensional coordinates.

For simplicity, here, we study the baryon with the vertex,
which appears as a point in the 4D space-time, at finite
temperature. In our model, the quarks are not confined in
the sense that the effective free quark mass is finite. In this
sense, the theory is in the deconfinement phase. Then, the
fundamental strings could touch on the horizon and the
baryon configuration with the kð<NÞ quark is possible in
this phase. The configuration of the k-quark baryon is
formed by the D5-brane vertex and k fundamental strings
which connect the cusp of the vertex and the boundary. The
boundary is set here at the finite radial coordinate of the
extra dimension as a cutoff point of the string energy or the

position of the flavor quark brane. And the remaining N �
k fundamental strings are connecting the vertex and the
horizon. Then the k-quark baryons with k � N in a thermal
medium are studied here.
The structure of the vertex becomes a little rich at finite

temperature since two extra new solutions of vertex con-
figuration are found. They are not seen at zero temperature.
However, we find that these new configurations cannot be
observed since they are unstable against the decay into the
free quarks. This instability is studied through the calcu-
lation of the baryon energy for its fixed size L. The size is
defined by the distance between the vertex and a quark. We
assumed that the quarks in the baryon are distributed
maximally symmetric, then we impose the no-force con-
dition given at the connecting point of the fundamental
strings and the vertex. The energy of the k-quark baryon is
obtained in this way and it is compared with the one of the
free k quarks.
From these analyses, the baryon energy is smaller than

the one of the free quarks at small L. And we find a point
L ¼ L�, where the baryon energy exceeds the one of the
free quarks. Then the baryon with large size ðL�<ÞL
decays into the free quarks, we call this point the melting
point. The size depends on the vertex configuration through
the no-force condition, and the configurations newly found
at finite temperature give a larger size than L�.
The value of L� can also be related to the Debye length,

which was originally introduced for the Coulomb potential
in electromagnetism, and it depends on the temperature.
This is estimated here by multiplying the Gauss damping
factor to the linearlike potential, which appear as the tail of
the zero temperature linear potential. And we find the
expected behavior of the Debye mass gap, which is pro-
portional to the temperature. This temperature dependence
is seen for all the states of the k-quark baryon, but small
k-quark baryons are restricted to low temperature.
Furthermore, we find that the baryon stability at finite

temperature is supported by the gauge condensate q. The
thermal medium destabilizes the baryon by the screening
effect of the color force, but q support the color force to
make a linear potential to retain the baryon at a not so high
temperature, and we could observe the baryon even at finite
temperature.
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